
121

Efficient RAID Disk Scheduling on Smart Disks

Tai-Sheng Chang David H.C. Du
tchang@cs.umn.edu

Tel: +1-847-856-8074
Department of Computer Science and

Engineering,
University of Minnesota

200 Union Street SE #4-192
Minneapolis MN 55455

du@cs.umn.edu
Tel: +1-612-625-2560

Department of Computer Science and
Engineering,

University of Minnesota
200 Union Street SE #4-192

Minneapolis MN 55455

1. Introduction

With the emerging high-performance storage systems as well as the availability of faster
processors and high-speed networks, many applications that were only dreams a few
years ago, have become reality. For example, Digital Libraries and Digital Medical
Imaging Archive Systems have become available today. Many of these new applications
are making great impacts on the way we work and the way we live. Among the
supporting technologies, a high-performance storage system is one of the most critical
factors in these systems.

RAID (Redundant Array of Independent Disks) has been playing a very important role in
supporting high performance storage systems. It exists in storage systems ranging from
one with a couple disks to those with several terabytes capacity. RAID uses data striping
and parity information to provide higher I/O throughput on large data access and fault
tolerance against disk failure. The implementation of RAID systems can be categorized
into two different groups. The first category is the hardware RAID that uses additional
RAID controllers to manage and process most of the required tasks in a RAID system.
Those tasks include data parity computation and volume management. The other category
of RAID uses the existing CPU(s) and memory on the system instead for all the
necessary tasks (as opposed to the hardware RAID solution, we call it software RAID).
From a user’s point of view, hardware RAID solutions require RAID controllers and
increase the costs of a system; On the other hand, Software RAID solutions consume
CPU and memory resource when performing RAID operations. Therefore, the
applications running on the same hosts where the software RAID resides will suffer
performance degradation.

Fortunately, there is a new technology that provides an alternative solution between the
expensive Hardware RAID solutions and the poorer performing Software RAID
solutions. This new technology is called Disk-Based XOR. Disk-Based XOR is a
technology utilizing the capability of computation on disks. By calculating the XOR
results on disks, the CPU resource is no longer required for the computation-intensive
XOR computation in RAID systems. Another big advantage of the Disk-Based XOR
approaches is that the data amount needs to be transferred on storage channel can be
greatly reduced by as much as 50%. With traditional RAID’s, both old data and old parity

122

data have to be sent to the host or a RAID controller for new parity construction. The new
data and the new parity will be then transferred back to the target data disk and parity
disk, respectively. On the contrary, in a Disk-Based XOR RAID, only the new data and
the XOR results of the new and old data will be transferred. Therefore, with Disk-Based
XOR, up to twice as many disks could be connected to a storage channel without
saturation under the similar load. This advantage has been proved with simulation results
in an earlier study.

However, there are challenges in implementing a Disk-Based XOR RAID system.
Because XOR calculations of the new and old data will be executed on the data disk and
the results need to be transferred to the parity disk, the results have to be saved on data
disk before the results have been transferred successfully to the parity disk. It may have a
big impact on performance. Researchers have found a potential deadlock situation with
traditional single-threaded executions of SCSI commands in Disk-Based XOR RAID’s.
Some researchers proposed a different RAID parity placement on disks to avoid such a
problem. Another research showed the deadlock could be avoided with a small change on
the FC-AL protocol. A multi-threaded SCSI command execution approach has been
proposed not only to resolve the deadlock problem but also improve disk efficiency. The
approach uses a conditionally prioritized disk command queue to resolve the deadlock
problem. Simulation results were shown that such an approach outperformed a host-based
RAID.

While the proposed multi-threaded XOR approach seems promising, it does raise another
issue: The proposed conditionally prioritized disk command queue execution may
conflict with disk scheduling discipline designed to optimize disk efficiency. The conflict
is due to the fact that free cache segments may not be always available for the next new
read-modify-write command. In such a case, one of the other commands will be executed
next instead. As a result, a disk may not execute commands as efficiently as it could have
been. In this paper, we will investigate the performance impact of such scheduling
conflict and propose two new disk scheduling algorithms.

We choose a popular disk scheduling, Shortest Service Time First (or SSTF) as the base
line for comparison. This method has been widely used and shown as having good
performance in a dynamic environment where commands are arriving over time. In this
paper, we call the SSTF scheduling a Greedy Algorithm. In this scheduling, each disk
chooses the command with the shortest service time (seek time plus latency time) to be
the next command. In the case when available cache segments are not enough for next
read-modify-write operation, the command with the shortest service time among the other
commands will be chosen. This is the same as in the proposed multi-threaded approach
by other researchers in their study. The only difference is that in this paper, SSTF
scheduling discipline will be used to choose from the list of executable commands. When
no other commands are in the disk queue, a disk will be forced idle.

Two reasons may cause disk cache to build-up. The first is due to congested data links.
When the disks are putting data to cache faster than cache can transfer data to the storage
channel, the cache will be filled. This could happen when too many disks are connected
to a single storage channel. This situation can be easily avoided with proper sizing when

123

configuring a system if the traffic load can be realized. In Disk-Based XOR, there is
another possible cause. Disk cache segments filled with XOR results need to be protected
until the associated parity update is completed. Depending on the disk scheduling
discipline, a parity update command may take a long time waiting in disk queue before it
has been executed. The longer the waiting time is, the longer time the associated cache
segments on the target disk remains to be saved and protected from being used by other
commands. Our proposed approaches will intend to reduce the waiting time of the parity
updates.

The rest of this paper is organized as the following. In Section 2, we will provide a more
detailed description of Disk-Based XOR operations. In Section 3, we will also describe in
details the Greedy disk scheduling discipline and those two new enhancements. In
Section 4, we will present our simulation results to show the performance of those three
disk scheduling disciplines following an overview of our simulation model. Finally in
Section 5, we will summarize what we found in this study and conclude the paper.

2. Disk-Based XOR and Its Operations

Three new SCSI commands (see [1]) have been created for supporting the Disk-Based
XOR implementation. They are XD-write (or XDW), XP-write (or XPW), and XD-write
extend (or XDW-ext). Each XDW is always associated with one XPW command. An
XDW command consists of four operations. To begin, data (old data) will be read from
target disk to its disk buffer (disk cache). At the same time, new data will be sending
from the host to the target data disk. When both new and old data become available on
disk buffer, exclusive-or operations will be executed on the new and old data. The new
data will be written onto the disk. The results of the XOR operations, on the other hand,
will remain on the disk buffer for later use by the associated XPW. The results need to be
saved and protected on the disk buffer from being overwritten by other operations. Figure
1 shows an XDW operation.

Memory
Disk

medium

Disk
buffer

Old dataNew Data
New Data

XOR result

Figure 1: XDW Operation

Host Data Disk Drive

After an XDW command is completed, the associated XPW command will be sent to the
associated parity disk. The old parity will be read from the disk medium. At the same
time, the XOR results of the associated XDW command stored earlier on the target data
disk will be sent to the parity disk. When the XOR results and old parity information

124

become available, XOR operations will be executed. The newly derived XOR results will
be written onto the parity disk. After the XPW has completed, the disk buffer storing the
XOR results saved on the target data disk by the associated XDW will be freed. Figure 2
shows the operations of an XPW command.

New
data Disk

buffer

Figure 2: An XPW Operation

Host Data Disk Drive

Disk
buffer

XOR result

Old parity

Parity Disk Drive

XOR result (from XDW)

An XDW-ext command is a macro command that consists of one or more XDW
commands followed by the associated XPW command(s). A read-modify-write operation
on a data block can be fulfilled by an XDW-ext command.

One big advantage of the Disk-Based XOR approach is that the data amount being
transferred on storage channel can be greatly reduced by as much as 50%. With the
traditional RAID's (either hardware or software RAID's), both old data and old parity
data have to be firstly sent to the host or a RAID controller to construct the new parity
data. The new data and the newly derived parity data will be transferred back to the target
data disk and parity disk, respectively. In other words, if we need to update a block of
data, there will be four blocks of data that are required to be transferred from and to the
disks. As opposed to the traditional RAID’s, in a Disk-Based XOR RAID it only needs to
transfer the new data and the XOR results of the XDW on the storage channel. Therefore,
with Disk-Based XOR, a larger number of disks can be connected to a storage channel
before saturating it with the same disk load.

3. Two XPW-Enhanced Disk Scheduling Disciplines

Many disk scheduling disciplines have been proposed to improve disk efficiency. For
example, SCAN and C-SCAN ([2]) were proposed to reduce the seek time without
moving back and forth from one request to another. Some other approaches considered to
reduce both seek time and rotation latency (i.e. disk service time). Shortest Service Time

125

First (SSTF) is one of those approaches and has been widely used as the disk scheduling
discipline.

Before RAID was first introduced, disks operated individually and independently. There
was no correlation between any two operations on different disks in terms of their access
location on disks. RAID changed such independency. Updating a data block on one disk
in a RAID will result in updating the associated parity block that has the same Logical
Block Address (LBA) as the data blocks but resides on a different disk (parity disk).
However, most disks in a RAID (except RAID-3) are still operating independently
without coordination between disks. That is, reading the old data from a disk is
performed independently with the reading of the associated old parity data from another
disk. Because the new parity data is constructed by the old data, old parity data and the
new data, intermediate results must be saved before both the old data and old parity are
available. Without collaboration, the retrievals of the old data and old parity will be
scheduled independently on two disks. As a result, the intermediate results may have to
be saved for a long period of time. That is why most of the RAID systems require a large
amount of memory either on the RAID controller or on the host.

Such a big memory requirement is impractical in a Disk-Based XOR RAID. With a very
limited buffer space on most disks, disk buffer can be filled quickly with Disk-Based
XOR operations. When the disk buffer is full, no more commands will be executed until
some buffer becomes available. A more severe condition is that a deadlock may happen
when the buffer is full in Disk-Based XOR. That is why in [3], the proposed conditional
prioritized disk scheduling forced a disk to choose a command other than XDW-ext after
the occupancy of the disk buffer is higher than a predefined threshold. However, such an
alternation on the disk scheduling will have an impact on the disk efficiency. The disk
efficiency could be much lower when choosing a sub-optimal command.

In the following, we will introduce two XDW-enhanced algorithms. Both of them are
intended to reduce the probability of being required to make a dramatic change on disk
scheduling. As for a baseline comparison, we use a greedy algorithm with the SSTF
scheduling. The discussion of this Greedy scheduling approach is also included in the
following sections.

3.1 Greedy Disk Scheduling

The Greedy algorithm chooses the command with the shortest service time (seek time
plus latency time) to be the next command to be executed. This method has been widely
used and performs well in dynamic environment where commands are arriving over time.
We use this method as a baseline for comparison purpose.

Because cache may be filled in Disk-Base XOR as discussed in the previous section,
some modification is needed when applying the Greedy method to Disk-Based XOR
RAID’s. Each XDW-ext command requires at least two segments of cache to store data;
one for the old data from disk and another for the new data from the host (assuming
request data size is less than or equal to the segment size). Hence, we need at least two

126

segments of free cache space in order to start execution of an XDW-ext command. When
the number of available cache segments is small enough for the next XPW-ext command,
we change the Greedy Algorithm and choose the command with the shortest service time
from commands other than XDW-ext commands. The modified greedy method is used in
this paper as a performance baseline to compare with the proposed (two) enhancements.

As discussed in the previous section, one drawback of the Greedy method in Disk-Based
XOR is that when it is running out of free cache space, it has to pick a sub-optimal
command, or even worse, stay idle. In a case when there is no command other than
XDW-ext in the disk queue, the disk has to stay idle until either a new non-XDW-ext
command arrives or some cache space is freed.

One straight forward way to reduce such inefficiency is to prevent it from happening.
There are two reasons causing the cache to back up. The first is due to a congested link.
When the disks are putting data to cache faster than cache can transfer data to the storage
channel, the cache will be filled. This could happen when too many disks are connected
to a single storage channel. This problem may be eliminated with proper system sizing
when configuring a system.

In Disk-Base XOR, there is another possibility. That is when the number of outstanding
XDW-ext commands on a disk is close to the number of cache segments. An outstanding
XDW-ext command is an XDW-ext command finishing its XDW part but waiting for its
XPW part to be complete on another disk. Depending on the disk scheduling discipline,
an XPW command may take a long time waiting in disk queue before it is executed. The
longer the wait time, the longer the cache segment on the data disk needs to be saved and
protected from being used by other commands.

After understanding the cause of a long-waiting outstanding XDW-ext command, we
proposed two approaches to reduce the possibility of filled cache in Disk-Based XOR
RAID’s. The details are in the next two subsections.

3.2 An XPW Service Time Based Promotion Scheme (XPWT)

The first approach is to selectively give an XPW the higher priority. By giving XPW
commands higher priority, it helps to reduce its wait time in disk queue and as a result,
the associated XDW-ext command can be completed and release the cache space it used
earlier. However, selecting XPW should be made with caution such that the disk
efficiency will not be over-compromised. We use a relative difference in disk service
time as the criteria to give an XPW the higher priority. When an XPW has less than
smallest service time plus the predetermined time δ available, the XPW with the smallest
service time will be given the highest priority and will be executed next.

We formulate the approach proposed above in the following.

127

Let CAll

min be the command with the shortest service time TAll
min

Let CXPW
min be the XPW command with the shortest service time

among XPW commands TXPW
min.

If TXPW

min - TAll
min <= δ then choose CXPW

min to be the next
command.
Otherwise choose CAll

min.

Note that when δ equal to zero, this approach degenerates to the Greedy Algorithm. On
the other hand, when δ becomes a large number, XPW commands will be given the
higher priority all the time. For example, when δ is greater than or equal to the largest
possible disk service time, the above method will always give the higher priority to XPW
commands.

3.3 An XPW Queue Length Based Promotion Scheme (XPWQ)

The performance of the previous approach highly depends on the value of δ. Choosing a
large δ may result in lower disk efficiency but reduce the number of XPW’s in disk
queue; while choosing a small δ makes it closer to the Greedy Algorithm. Therefore, the
optimal value of δ is difficult to determine in a dynamic situation. The second approach
we are proposing in this paper is to give XPW commands the higher priority when the
number of XPW commands on a disk reaches a certain threshold. The idea is based on
the fact that with a uniformly distributed access among disks in a RAID and a large
number of XPW commands in one disk queue, the more occupied disk cache will be on
the other disks. Therefore, choosing an XPW to execute will likely help in releasing the
disk cache buffer on another disk. Furthermore, when the threshold is chosen properly,
there will be a set of XPW commands in disk queue to choose from when the number of
occupied cache segments reaches the threshold. The larger the number of XPW
commands to choose from, the closer the chosen XPW command to the optimal
command. The detailed formulation of this approach is provided in the following.

Let MaxNxpw be the threshold value of the number of XPW
commands.
Let Nxpw be the number of XPW commands in a disk command
queue.

If Nxpw <= maxNxpw then follow the Greedy Algorithm.
Otherwise, pick the XPW command with the shortest service time
of all XPW's.

Note that when the value of maxNxpw is set to zero, this approach will always choose an
XPW if one exists. On the other hand, when the value of maxNxpw is set to infinity, then
this approach will not give XPW a special higher priority at any case. Therefore it will
degenerate to the Greedy Method.

128

4. Simulation Model and Results

In this section, we will use simulation results to demonstrate the performance difference
of the three disk-scheduling disciplines discussed in the previous section. For better
understanding of the simulation results, we first provide an overview of our simulation
models in the following subsection.

4.1 Simulation Model

We used a storage subsystem simulation model to simulate operations of a storage
subsystem based on the Fibre Channel - Arbitration Loop (FC-AL) ([5]) protocol. The
model consists of three major components: A disk and its disk cache component; A
storage interface component that follows FC-AL protocol and controls data transfers
to/from the storage channel; And a command generator component that simulates a host
generating data requests.

4.1.1 Disk and Disk Cache Model

The disk model is based on an IBM Ultrastar XP 4.51GB disk. The implementation of
this disk model employs zone bit recording and non-linear seek time functions for read
and write operations using information from the disk manufacture in [6]. Table 1 shows a
summary of disk parameters used in the simulation.

Table 1: Disk Parameters
Disk Parameters Value

Capacity 4.51 GB
Rotation Speed 7202.7 RPM

Average rotation latency 4.17 ms
Seek times 0.5 – 16.5 ms

Transfer rate 5.53 – 7.48 MB/sec

Disk cache is the buffer for temporarily storing data sent to/from the storage interface. It
is partitioned into segments. Each segment consists of many 512-byte blocks. In our
simulation model, each segment will be used by one command. The cache component
also employs an LRU (Least Recently Used) cache segment replacement scheme. The
parameters that the disk cache used in the model are summarized in Table 2. In our
simulation, the number of segments is a controlled parameter. We used different numbers
of segments in order to understand the impact of cache size and disk scheduling schemes
on the system performance.

Table 2: Disk cache parameters
Disk Cache Parameter Values

Block Size 512 bytes
Number of segments Varied

Segment size 64 KB

129

4.1.2 FC-AL Model

We follow the FC-AL standard to model our disk interface. FC-AL is a protocol allowing
Fibre Channel to operate in a loop topology. It is logically located between FC-1 and FC-
2. The FC-AL component in our model consists of both Loop Port State Machine
(LPSM) and Fibre Channel Protocol for SCSI (FCP). LPSM defines the behavior of the
FC-AL loop port. It includes an arbitration protocol which determines who can access the
loop. It also includes a fairness protocol that enforces fair sharing of loop among all the
nodes. FCP is one of the Fibre Channel mapping protocols (FC-4) which uses the service
provided by FC-PH to transmit SCSI commands and data. It also transmits status
information between a SCSI initiator and a SCSI target. More details about FC-AL can
be found in [5] and [7]. Table 3 summarizes the parameters we used in the FC-AL model.

Table 3: FC-AL Simulation parameters
FC-AL Simulation Parameters Values Descriptions
Link Speed 100 MB/Sec Bandwidth of an FC-AL loop
Propagation Delay 3.5 ns Propagation delay between two nodes
Per Node delay 6 word time The delay of forwarding a frame by

interface
Fairness algorithm Enabled The fairness protocol in its arbitration

scheme

4.1.3 Command Generator

Command Generator is responsible for generating commands in our model. At the
beginning of each simulation run, it will generate the number of commands indicated by
the value of the maximum outstanding command parameter. When a command finishes,
it will generate another command immediately to maintain the maximum outstanding
commands in the system. The target disk of each command and the command’s access
location (LBA) on the disk will be randomly assigned by the command generator. The
Command generator is also responsible for sending the SCSI command response to the
target disk and generating data to be written on disks.

4.2 Simulation Results

To better understand the impact of disk scheduling on Disk-Based XOR, we conducted
simulations in many different scenarios. We compared three disk scheduling disciplines
under different system loads with different data request sizes. We also compared them in
small and large-scale storage systems. To predict the impact of the three different disk
scheduling algorithms on the Disk-Based XOR RAID performance with the high-end
disks, we further conducted simulations using a disk model with a two times
improvement in the disk rotation and seek times. By conducting these different
simulations, we hope to provide a better view of the impact of the disk scheduling on
Disk-Based XOR RAID performance and therefore, to demonstrate its importance.

130

To better present our results, we will use an eight-disk FC-AL model as a base model.
We will compare the performance by changing the system parameters such as system
load, data request size, and number of disks while keeping the other parameters the same.
As the base model, We will show the average command response time for 4KB read-
modify-write requests in the eight-disk FC-AL system. The total number of outstanding
commands was 768. That is, the number of outstanding commands was maintained at 768
after the simulation started. A new command was generated immediately after a previous
command had completed. For the XPWT scheduling, the value δ was set to 3
milliseconds. That is, an XPW command was given the higher priority over XDW
commands if its disk service time is less than the smallest service time among all the
XDW commands plus 3 milli-seconds. The maxNxpw value was set to the number of
segments minus four. That is, the XPW commands in disk command queue will be given
a higher priority when the total number of XPW commands in that disk command queue
is greater than the number of cache segments minus four. For example, if the number of
cache segments is twelve and there are more than eight XPW commands in disk queue,
the next command will be chosen from those XPW commands in the queue. In such a
case, the XPW with the shortest service time among the XPW commands will be chosen
as the next command.

The simulation result of the base model is shown in Figure 3. The XPWT Algorithm has
the least average command response time among the three on all the cache segment sizes
used in this study. It was 7% better than the Greedy algorithm when the number of
segments is eight. The results of the XPWQ Algorithm varied with the number of
segments. When the number of segments was eight, it performed closely to the XPWT
Algorithm. When the number of segments increases, the response time fell between those
of the Greedy Algorithm and the XPWT Algorithm.

Average command latency time
for 4KB request with 768

commands

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 3:Average command latency with 4KB requests and 768 outstanding commands.

Figure 4 shows the system throughput achieved by the three scheduling algorithms on the
base model. Since the system was loaded with a fixed number of outstanding commands
(768 commands), the throughput was highly dependent on disk efficiency. The more
efficient the disk is, the higher throughput it will generate. In Figure 4, we see that the
XPWT Scheduling had the highest throughput among the three methods and had about
7% higher throughput than that of the Greedy Method in certain cases.

131

Average system throughtput for
4KB request with 768 commands

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 4:Average system throughput with 4KB requests and 768 outstanding commands.

Different System Loads

To understand the impact of the three different scheduling methods under different levels
of the system loads, we also investigated the performance difference with a different
number of outstanding commands in the system. As opposed to 768 outstanding
commands, we conducted simulations with 512 outstanding commands on the 8-disk
model. Figure 5 shows the results with both 768 and 512 outstanding commands. With
512 outstanding commands, the average command latency time was about two thirds of
the time with 768 commands. The XPWT method outperformed the other two with 512
outstanding commands in all the three numbers of segments. The difference between the
Greedy Method and XPWT Method was reduced from about 7% with 768 outstanding
commands to about 5.4% with 512 outstanding commands. From the results, we found
that the larger the number of outstanding commands, the higher the performance gap is
between the XPWT method and Greedy Method. The major reason is that with more
outstanding commands, it is more likely to execute an XDW command than an XPW
command. When the cache segments are all filled, the disk will be forced to execute an
XPW command. In such a case, the efficiency of the disk will be compromised.

Average command latency time
for 4KB request with 512

commands

1650
1700
1750
1800
1850
1900
1950

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 4KB request with 768

commands

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 5: Average command latency with and 512 vs. 768 outstanding commands with 4KB requests.

132

Another observation from the results is that the XPWQ method tended to be close to the
performance of the XPWT Method when the number of segments is small. On the other
hand, it tended to be close to the Greedy Method's performance when the number of
segments is large. This is because when the number of segments is large, more XPW
commands are allowed in a disk queue before they are given the higher priority.
Therefore, most of the time, the XPWQ method may perform as the Greedy Method.
While with a smaller number of segments, it is more likely to reach the maxNxpw
threshold. Therefore, it performs closer to the XPWT Method.

Large Scale Disk System

We conducted simulations on a 32-disk FC-AL model to show the performance in a
system with a larger number of disks. In order to eliminate the performance difference
resulted from disk queuing time between the eight-disk and 32-disk model, we used the
same system load on both systems. We used an average of 64 commands per disk. That
is, we used 512 outstanding commands on the eight-disk model and 2048 commands on
the 32-disk model. The results showed a similar trend to what we have observed in the
eight-disk model (See Figure 6). The XPWT Method was still the best among the three. It
is about 7% better than the Greedy Method when the number of segments was equal to
eight. The XPWQ Method performed just as well as the XPWT Method when the number
of segments was equal to eight. But the XPWT method outperformed the XPWQ method
when the number of segments became larger.

Average command latency time
for 4KB request with 8 disks and

512 commands

1650
1700
1750
1800
1850
1900
1950

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 4KB request with 32disks and

2048 commands

1650
1700
1750
1800
1850
1900
1950

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 6: Average command latency with 8 vs. 32 disks with 4KB requests.

Large Request Size - 64KB:

With a 4 KB request size, the actual transfer time is less significant compared to the disk
seek time and latency time. Therefore, the disk scheduling has a greater impact on the
disk efficiency. As the request size increases, the data transfer time becomes larger. The
extent of the improvement with better disk scheduling may be different. To understand
the performance of the three disk scheduling disciplines with larger requests, we also
conducted simulations with 64 KB requests. The results are shown in Figure 7.

133

Average command latency time
for 4KB request with 768

commands

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 64KB request with 768

commands

5400

5900

6400

6900

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 7: Average command latency with 4KB vs. 64KB.

With 64 KB requests, we observed even better improvement than 4 KB requests with
XOR-enhanced scheduling when the number of segments is small. For example, with 4
KB requests, the improvement of the XPWT Method over the Greedy Method was about
7% with 8-segment cache. While with 64 KB requests, the improvement was more than
8%. Furthermore, the XPWQ Method outperformed both the other methods and had an
improvement of close to 12% over the Greedy Method with an 8-segment cache.

Performance with the Faster Disks

Disk technologies have improved significantly over the past decades. Recently, disk
density has been doubling better than every couple years. The disk rotation speed and
seek time have also improved significantly. In this paper, we have compared the
performance comparison of different disk scheduling disciplines with disk rotation speed
that is used by most of the current off-the-shelf disk products (at the time this paper was
written). To predict their performance with the faster disk speed, we also conducted
simulation with faster disks.

In order to reuse our disk model and its very detailed seed functions and zone-bit
encoding, we modeled the next generation disks by changing the parameters in our
existing disk model. With the targeted 15000 RPM next generation disk, we believe that
by doubling the disk rotation speed and halving the seek time and data transfer time in the
disk model we have, it will give us a close approximation of the model for the next high-
end disk. Figure 8 shows the performance comparison of the three scheduling methods
with current and high-end disk models. The result is shown in Figure 8. The improvement
of the XPWT method is almost 10% better than the Greedy method. The improvement of
the XPWQ method fell between the Greedy method and XPWT method. It has about a
6.7% improvement over the Greedy method at eight segments.

134

Average command latency time
for 4KB request with 768

commands with 1x disk speed

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 4KB request with 768

commands with 2x disk speed

2050
2100
2150
2200
2250
2300
2350
2400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 8: Average command latency with 1x vs. 2x disk speed with 4KB requests.

Impact of δ value in XPWT method

In the earlier section, we mentioned that choosing a good δ in XPWT could be difficult.
To understand the impact of δ on the performance, we conducted more simulations with
different δ values in different loads and cache segments. Figure 9 shows the results of the
average latency when δ changes. The results show that when the number of outstanding
commands is 768 and the number of segments is four, we should use a greater δ value.
When the number of outstanding commands is 512, the optimal value falls when δ is
around three to four. The results also demonstrate that when the number of segments is
small, δ should be set to a greater value. In Figure 9, it seems that setting δ to 3 could
provide a performance gain close to optimal except when the number of outstanding
commands is 768 and the number of cache segments is four.

Average latency time with 768
outstanding commands

2400
2600
2800
3000
3200
3400

0 2 4 6 8

number of cache segements

4
8
16

Average latency time with 512
outstanding commands

1650
1700
1750
1800
1850
1900
1950

0 5 10

number of cache segments

8
16

Figure 9: Average command latency with 1x vs. 2x disk speed with 4KB requests.

5. Conclusion

In this paper, we have discussed the uniqueness of Disk-Based XOR operations on disk
scheduling and its impact on disk efficiency. We have proposed two XPW-enhanced disk
scheduling disciplines that are designed to improve the disk efficiency on Disk-Based

135

XOR RAID’s. We have demonstrated their performance results by simulations. We have
investigated the performance of the proposed XPW-enhanced disk scheduling as well as
the SSTF approach serving as the baseline performance. We have conducted simulations
under different scenarios such as different scales of storage system, different system
loads, different request sizes, and even with high-end disk technologies. We have
demonstrated using simulation results that the performance was consistently improved
with those two XPW-enhanced approaches throughout all the cases. The results showed
that the improvement could be as much as 12%.

As the disk technologies continue to improve rapidly, it has been predicted that a one
terabyte disk costing below one hundred dollars could be on the market in less than five
years. With the price of disk going lower and lower, and the capacity of disks going
higher and higher, it becomes more important to have a better RAID solution. Disk-
Based XOR provides a promising lower-cost high-performance alternative. We hope that
the study we have presented in this paper could open a door to finding better RAID
solutions.

References

[1] Gerry Houlder, Jay Elrod, and Mike Miller, "XOR Commands on SCSI Disk Drives",
X3T10/94-111r9.

[2] Avi Silberschatz and Peter Galvin, "Operating System Concepts", Addition-Wesley
Publishing Company, Inc. fourth Edition, 1995.

[3] Sangyup Shim, Yuewei Wang, Jenwei Hsieh, Tai-Sheng Chang, and David H.C. Du,
"Efficient Implementation of RAID-5 Using Disk Based Read Modify Writes" Technical
Report, Department of Computer Science, University of Minnesota, 1996.

[4] Tai-Sheng Chang, Sangyup Shim, and David H.C. Du, "The Designs of RAID with
XOR Engines on Disks for Mass Storage Systems", Sixth NASA Goddard Conference on
Mass Storage Systems and Technologies in Cooperation with the Fifteenth IEEE
Symposium on Mass Storage Systems, March 22- 24, 1998, College Park, Maryland.}

[5] David H.C. Du, Tai-Sheng Chang, Jenwei Hsieh, Yuewei Wang and Simon Shim.
"Emerging Serial Storage Interfaces: Serial Storage Architecture (SSA) and Fibre
Channel - Arbitrated Loop (FC-AL)", TR 96-073, Technical Report, Department of
Computer Science, University of Minnesota}

[6] IBM Corporation, "Functional Specification, Ultrastar XP Models", 1995.

[7] David H.C. Du, Jenwei Hsieh, Tai-Sheng Chang, Yuewei Wang and Simon Shim,
"Performance Study of Serial Storage Architecture (SSA) and Fibre Channel - Arbitrated
Loop (FC-AL)”, to appear in IEEE Concurrency

136

