
121 

Efficient RAID Disk Scheduling on Smart Disks 
 
 

Tai-Sheng Chang David H.C. Du 
tchang@cs.umn.edu 

Tel: +1-847-856-8074 
Department of Computer Science and 

Engineering, 
University of Minnesota 

200 Union Street SE #4-192 
Minneapolis MN 55455 

du@cs.umn.edu 
Tel: +1-612-625-2560 

Department of Computer Science and 
Engineering, 

University of Minnesota 
200 Union Street SE #4-192 

Minneapolis MN 55455 
 

 
1. Introduction 
 
With the emerging high-performance storage systems as well as the availability of faster 
processors and high-speed networks, many applications that were only dreams a few 
years ago, have become reality. For example, Digital Libraries and Digital Medical 
Imaging Archive Systems have become available today. Many of these new applications 
are making great impacts on the way we work and the way we live. Among the 
supporting technologies, a high-performance storage system is one of the most critical 
factors in these systems. 
 
RAID (Redundant Array of Independent Disks) has been playing a very important role in 
supporting high performance storage systems. It exists in storage systems ranging from 
one with a couple disks to those with several terabytes capacity. RAID uses data striping 
and parity information to provide higher I/O throughput on large data access and fault 
tolerance against disk failure. The implementation of RAID systems can be categorized 
into two different groups. The first category is the hardware RAID that uses additional 
RAID controllers to manage and process most of the required tasks in a RAID system. 
Those tasks include data parity computation and volume management. The other category 
of RAID uses the existing CPU(s) and memory on the system instead for all the 
necessary tasks (as opposed to the hardware RAID solution, we call it software RAID). 
From a user’s point of view, hardware RAID solutions require RAID controllers and 
increase the costs of a system; On the other hand, Software RAID solutions consume 
CPU and memory resource when performing RAID operations. Therefore, the 
applications running on the same hosts where the software RAID resides will suffer 
performance degradation. 
 
Fortunately, there is a new technology that provides an alternative solution between the 
expensive Hardware RAID solutions and the poorer performing Software RAID 
solutions. This new technology is called Disk-Based XOR. Disk-Based XOR is a 
technology utilizing the capability of computation on disks. By calculating the XOR 
results on disks, the CPU resource is no longer required for the computation-intensive 
XOR computation in RAID systems. Another big advantage of the Disk-Based XOR 
approaches is that the data amount needs to be transferred on storage channel can be 
greatly reduced by as much as 50%. With traditional RAID’s, both old data and old parity 
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data have to be sent to the host or a RAID controller for new parity construction. The new 
data and the new parity will be then transferred back to the target data disk and parity 
disk, respectively.  On the contrary, in a Disk-Based XOR RAID, only the new data and 
the XOR results of the new and old data will be transferred. Therefore, with Disk-Based 
XOR, up to twice as many disks could be connected to a storage channel without 
saturation under the similar load. This advantage has been proved with simulation results 
in an earlier study. 
 
However, there are challenges in implementing a Disk-Based XOR RAID system. 
Because XOR calculations of the new and old data will be executed on the data disk and 
the results need to be transferred to the parity disk, the results have to be saved on data 
disk before the results have been transferred successfully to the parity disk. It may have a 
big impact on performance. Researchers have found a potential deadlock situation with 
traditional single-threaded executions of SCSI commands in Disk-Based XOR RAID’s. 
Some researchers proposed a different RAID parity placement on disks to avoid such a 
problem. Another research showed the deadlock could be avoided with a small change on 
the FC-AL protocol. A multi-threaded SCSI command execution approach has been 
proposed not only to resolve the deadlock problem but also improve disk efficiency. The 
approach uses a conditionally prioritized disk command queue to resolve the deadlock 
problem. Simulation results were shown that such an approach outperformed a host-based 
RAID. 
 
While the proposed multi-threaded XOR approach seems promising, it does raise another 
issue: The proposed conditionally prioritized disk command queue execution may 
conflict with disk scheduling discipline designed to optimize disk efficiency. The conflict 
is due to the fact that free cache segments may not be always available for the next new 
read-modify-write command. In such a case, one of the other commands will be executed 
next instead. As a result, a disk may not execute commands as efficiently as it could have 
been. In this paper, we will investigate the performance impact of such scheduling 
conflict and propose two new disk scheduling algorithms. 
 
We choose a popular disk scheduling, Shortest Service Time First (or SSTF) as the base 
line for comparison. This method has been widely used and shown as having good 
performance in a dynamic environment where commands are arriving over time. In this 
paper, we call the SSTF scheduling a Greedy Algorithm. In this scheduling, each disk 
chooses the command with the shortest service time (seek time plus latency time) to be 
the next command. In the case when available cache segments are not enough for next 
read-modify-write operation, the command with the shortest service time among the other 
commands will be chosen. This is the same as in the proposed multi-threaded approach 
by other researchers in their study. The only difference is that in this paper, SSTF 
scheduling discipline will be used to choose from the list of executable commands. When 
no other commands are in the disk queue, a disk will be forced idle.  
 

Two reasons may cause disk cache to build-up. The first is due to congested data links. 
When the disks are putting data to cache faster than cache can transfer data to the storage 
channel, the cache will be filled. This could happen when too many disks are connected 
to a single storage channel. This situation can be easily avoided with proper sizing when 
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configuring a system if the traffic load can be realized. In Disk-Based XOR, there is 
another possible cause. Disk cache segments filled with XOR results need to be protected 
until the associated parity update is completed. Depending on the disk scheduling 
discipline, a parity update command may take a long time waiting in disk queue before it 
has been executed. The longer the waiting time is, the longer time the associated cache 
segments on the target disk remains to be saved and protected from being used by other 
commands. Our proposed approaches will intend to reduce the waiting time of the parity 
updates. 
 
The rest of this paper is organized as the following. In Section 2, we will provide a more 
detailed description of Disk-Based XOR operations. In Section 3, we will also describe in 
details the Greedy disk scheduling discipline and those two new enhancements. In 
Section 4, we will present our simulation results to show the performance of those three 
disk scheduling disciplines following an overview of our simulation model. Finally in 
Section 5, we will summarize what we found in this study and conclude the paper. 
 
2. Disk-Based XOR and Its Operations 
 
Three new SCSI commands (see [1]) have been created for supporting the Disk-Based 
XOR implementation. They are XD-write (or XDW), XP-write (or XPW), and XD-write 
extend (or XDW-ext). Each XDW is always associated with one XPW command. An 
XDW command consists of four operations. To begin, data (old data) will be read from 
target disk to its disk buffer (disk cache). At the same time, new data will be sending 
from the host to the target data disk. When both new and old data become available on 
disk buffer, exclusive-or operations will be executed on the new and old data. The new 
data will be written onto the disk. The results of the XOR operations, on the other hand, 
will remain on the disk buffer for later use by the associated XPW. The results need to be 
saved and protected on the disk buffer from being overwritten by other operations. Figure 
1 shows an XDW operation. 
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Figure 1: XDW Operation 
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After an XDW command is completed, the associated XPW command will be sent to the 
associated parity disk. The old parity will be read from the disk medium. At the same 
time, the XOR results of the associated XDW command stored earlier on the target data 
disk will be sent to the parity disk. When the XOR results and old parity information 
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become available, XOR operations will be executed. The newly derived XOR results will 
be written onto the parity disk. After the XPW has completed, the disk buffer storing the 
XOR results saved on the target data disk by the associated XDW will be freed. Figure 2 
shows the operations of an XPW command. 
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An XDW-ext command is a macro command that consists of one or more XDW 
commands followed by the associated XPW command(s). A read-modify-write operation 
on a data block can be fulfilled by an XDW-ext command. 
 
One big advantage of the Disk-Based XOR approach is that the data amount being 
transferred on storage channel can be greatly reduced by as much as 50%. With the 
traditional RAID's (either hardware or software RAID's), both old data and old parity 
data have to be firstly sent to the host or a RAID controller to construct the new parity 
data. The new data and the newly derived parity data will be transferred back to the target 
data disk and parity disk, respectively. In other words, if we need to update a block of 
data, there will be four blocks of data that are required to be transferred from and to the 
disks. As opposed to the traditional RAID’s, in a Disk-Based XOR RAID it only needs to 
transfer the new data and the XOR results of the XDW on the storage channel. Therefore, 
with Disk-Based XOR, a larger number of disks can be connected to a storage channel 
before saturating it with the same disk load. 
 
3. Two XPW-Enhanced Disk Scheduling Disciplines 
 
Many disk scheduling disciplines have been proposed to improve disk efficiency. For 
example, SCAN and C-SCAN ([2]) were proposed to reduce the seek time without 
moving back and forth from one request to another. Some other approaches considered to 
reduce both seek time and rotation latency (i.e. disk service time). Shortest Service Time 
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First (SSTF) is one of those approaches and has been widely used as the disk scheduling 
discipline. 
 
Before RAID was first introduced, disks operated individually and independently. There 
was no correlation between any two operations on different disks in terms of their access 
location on disks. RAID changed such independency. Updating a data block on one disk 
in a RAID will result in updating the associated parity block that has the same Logical 
Block Address (LBA) as the data blocks but resides on a different disk (parity disk). 
However, most disks in a RAID (except RAID-3) are still operating independently 
without coordination between disks. That is, reading the old data from a disk is 
performed independently with the reading of the associated old parity data from another 
disk. Because the new parity data is constructed by the old data, old parity data and the 
new data, intermediate results must be saved before both the old data and old parity are 
available. Without collaboration, the retrievals of the old data and old parity will be 
scheduled independently on two disks. As a result, the intermediate results may have to 
be saved for a long period of time. That is why most of the RAID systems require a large 
amount of memory either on the RAID controller or on the host. 
 
Such a big memory requirement is impractical in a Disk-Based XOR RAID. With a very 
limited buffer space on most disks, disk buffer can be filled quickly with Disk-Based 
XOR operations. When the disk buffer is full, no more commands will be executed until 
some buffer becomes available. A more severe condition is that a deadlock may happen 
when the buffer is full in Disk-Based XOR. That is why in [3], the proposed conditional 
prioritized disk scheduling forced a disk to choose a command other than XDW-ext after 
the occupancy of the disk buffer is higher than a predefined threshold. However, such an 
alternation on the disk scheduling will have an impact on the disk efficiency. The disk 
efficiency could be much lower when choosing a sub-optimal command.  
 
In the following, we will introduce two XDW-enhanced algorithms. Both of them are 
intended to reduce the probability of being required to make a dramatic change on disk 
scheduling. As for a baseline comparison, we use a greedy algorithm with the SSTF 
scheduling. The discussion of this Greedy scheduling approach is also included in the 
following sections. 
 
3.1 Greedy Disk Scheduling 
 
The Greedy algorithm chooses the command with the shortest service time (seek time 
plus latency time) to be the next command to be executed. This method has been widely 
used and performs well in dynamic environment where commands are arriving over time. 
We use this method as a baseline for comparison purpose. 
 
Because cache may be filled in Disk-Base XOR as discussed in the previous section, 
some modification is needed when applying the Greedy method to Disk-Based XOR 
RAID’s.  Each XDW-ext command requires at least two segments of cache to store data; 
one for the old data from disk and another for the new data from the host (assuming 
request data size is less than or equal to the segment size).  Hence, we need at least two 
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segments of free cache space in order to start execution of an XDW-ext command. When 
the number of available cache segments is small enough for the next XPW-ext command, 
we change the Greedy Algorithm and choose the command with the shortest service time 
from commands other than XDW-ext commands. The modified greedy method is used in 
this paper as a performance baseline to compare with the proposed (two) enhancements. 
 
As discussed in the previous section, one drawback of the Greedy method in Disk-Based 
XOR is that when it is running out of free cache space, it has to pick a sub-optimal 
command, or even worse, stay idle. In a case when there is no command other than 
XDW-ext in the disk queue, the disk has to stay idle until either a new non-XDW-ext 
command arrives or some cache space is freed.  
 
One straight forward way to reduce such inefficiency is to prevent it from happening. 
There are two reasons causing the cache to back up. The first is due to a congested link. 
When the disks are putting data to cache faster than cache can transfer data to the storage 
channel, the cache will be filled. This could happen when too many disks are connected 
to a single storage channel. This problem may be eliminated with proper system sizing 
when configuring a system.  
 
In Disk-Base XOR, there is another possibility. That is when the number of outstanding 
XDW-ext commands on a disk is close to the number of cache segments. An outstanding 
XDW-ext command is an XDW-ext command finishing its XDW part but waiting for its 
XPW part to be complete on another disk. Depending on the disk scheduling discipline, 
an XPW command may take a long time waiting in disk queue before it is executed. The 
longer the wait time, the longer  the cache segment on the data disk needs to be saved and 
protected from being used by other commands. 
 
After understanding the cause of a long-waiting outstanding XDW-ext command, we 
proposed two approaches to reduce the possibility of filled cache in Disk-Based XOR 
RAID’s. The details are in the next two subsections. 
 
3.2 An XPW Service Time Based Promotion Scheme (XPWT) 
 
The first approach is to selectively give an XPW the higher priority. By giving XPW 
commands higher priority, it helps to reduce its wait time in disk queue and as a result, 
the associated XDW-ext command can be completed and release the cache space it used 
earlier. However, selecting XPW should be made with caution such that the disk 
efficiency will not be over-compromised. We use a relative difference in disk service 
time as the criteria to give an XPW the higher priority. When an XPW has less than 
smallest service time plus the predetermined time δ available, the XPW with the smallest 
service time will be given the highest priority and will be executed next.  
 
We formulate the approach proposed above in the following. 
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Let CAll

min be the command with the shortest service time TAll
min 

Let CXPW
min be the XPW command with the shortest service time

among XPW commands TXPW
min.  

 
If TXPW

min - TAll
min <= δ then choose CXPW

min to be the next 
command. 
Otherwise choose CAll

min. 

 
Note that when δ equal to zero, this approach degenerates to the Greedy Algorithm. On 
the other hand, when δ becomes a large number, XPW commands will be given the 
higher priority all the time. For example, when δ is greater than or equal to the largest 
possible disk service time, the above method will always give the higher priority to XPW 
commands. 
 
3.3 An XPW Queue Length Based Promotion Scheme (XPWQ) 
 
The performance of the previous approach highly depends on the value of δ. Choosing a 
large δ may result in lower disk efficiency but reduce the number of XPW’s in disk 
queue; while choosing a small δ makes it closer to the Greedy Algorithm. Therefore, the 
optimal value of δ is difficult to determine in a dynamic situation. The second approach 
we are proposing in this paper is to give XPW commands the higher priority when the 
number of XPW commands on a disk reaches a certain threshold. The idea is based on 
the fact that with a uniformly distributed access among disks in a RAID and a large 
number of XPW commands in one disk queue, the more occupied disk cache will be on 
the other disks. Therefore, choosing an XPW to execute will likely help in releasing the 
disk cache buffer on another disk. Furthermore, when the threshold is chosen properly, 
there will be a set of XPW commands in disk queue to choose from when the number of 
occupied cache segments reaches the threshold. The larger the number of XPW 
commands to choose from, the closer the chosen XPW command to the optimal 
command. The detailed formulation of this approach is provided in the following. 

Let MaxNxpw be the threshold value of the number of XPW
commands.
Let Nxpw be the number of XPW commands in a disk command
queue.

If Nxpw <= maxNxpw then follow the Greedy Algorithm.
Otherwise, pick the XPW command with the shortest service time
of all XPW's.

 
Note that when the value of maxNxpw is set to zero, this approach will always choose an 
XPW if one exists. On the other hand, when the value of maxNxpw is set to infinity, then 
this approach will not give XPW a special higher priority at any case. Therefore it will 
degenerate to the Greedy Method. 
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4. Simulation Model and Results 
 
In this section, we will use simulation results to demonstrate the performance difference 
of the three disk-scheduling disciplines discussed in the previous section. For better 
understanding of the simulation results, we first provide an overview of our simulation 
models in the following subsection. 
 
4.1 Simulation Model 
 
We used a storage subsystem simulation model to simulate operations of a storage 
subsystem based on the Fibre Channel - Arbitration Loop (FC-AL) ([5]) protocol. The 
model consists of three major components: A disk and its disk cache component; A 
storage interface component that follows FC-AL protocol and controls data transfers 
to/from the storage channel; And a command generator component that simulates a host 
generating data requests. 
 
4.1.1 Disk and Disk Cache Model 
 
The disk model is based on an IBM Ultrastar XP 4.51GB disk. The implementation of 
this disk model employs zone bit recording and non-linear seek time functions for read 
and write operations using information from the disk manufacture in [6]. Table 1 shows a 
summary of disk parameters used in the simulation. 
 

Table 1: Disk Parameters 
Disk Parameters Value 

Capacity 4.51 GB 
Rotation Speed 7202.7 RPM 

Average rotation latency 4.17 ms 
Seek times 0.5 – 16.5 ms 

Transfer rate 5.53 – 7.48 MB/sec 
 
Disk cache is the buffer for temporarily storing data sent to/from the storage interface. It 
is partitioned into segments. Each segment consists of many 512-byte blocks. In our 
simulation model, each segment will be used by one command. The cache component 
also employs an LRU (Least Recently Used) cache segment replacement scheme. The 
parameters that the disk cache used in the model are summarized in Table 2. In our 
simulation, the number of segments is a controlled parameter. We used different numbers 
of segments in order to understand the impact of cache size and disk scheduling schemes 
on the system performance. 
 

Table 2: Disk cache parameters 
Disk Cache Parameter Values 

Block Size 512 bytes 
Number of segments Varied 

Segment size 64 KB 
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4.1.2 FC-AL Model 
 
We follow the FC-AL standard to model our disk interface. FC-AL is a protocol allowing 
Fibre Channel to operate in a loop topology. It is logically located between FC-1 and FC-
2. The FC-AL component in our model consists of both Loop Port State Machine 
(LPSM) and Fibre Channel Protocol for SCSI (FCP). LPSM defines the behavior of the 
FC-AL loop port. It includes an arbitration protocol which determines who can access the 
loop. It also includes a fairness protocol that enforces fair sharing of loop among all the 
nodes. FCP is one of the Fibre Channel mapping protocols (FC-4) which uses the service 
provided by FC-PH to transmit SCSI commands and data. It also transmits status 
information between a SCSI initiator and a SCSI target. More details about FC-AL can 
be found in [5] and [7]. Table 3 summarizes the parameters we used in the FC-AL model. 
 

Table 3: FC-AL Simulation parameters 
FC-AL Simulation Parameters Values Descriptions 
Link Speed 100 MB/Sec Bandwidth of an FC-AL loop 
Propagation Delay 3.5 ns Propagation delay between two nodes 
Per Node delay 6 word time The delay of forwarding a frame by 

interface 
Fairness algorithm Enabled The fairness protocol in its arbitration 

scheme 
 
4.1.3 Command Generator 
 
Command Generator is responsible for generating commands in our model. At the 
beginning of each simulation run, it will generate the number of commands indicated by 
the value of the maximum outstanding command parameter. When a command finishes, 
it will generate another command immediately to maintain the maximum outstanding 
commands in the system. The target disk of each command and the command’s access 
location (LBA) on the disk will be randomly assigned by the command generator. The 
Command generator is also responsible for sending the SCSI command response to the 
target disk and generating data to be written on disks. 
 
4.2 Simulation Results 
 
To better understand the impact of disk scheduling on Disk-Based XOR, we conducted 
simulations in many different scenarios. We compared three disk scheduling disciplines 
under different system loads with different data request sizes. We also compared them in 
small and large-scale storage systems. To predict the impact of the three different disk 
scheduling algorithms on the Disk-Based XOR RAID performance with the high-end 
disks, we further conducted simulations using a disk model with a two times 
improvement in the disk rotation and seek times. By conducting these different 
simulations, we hope to provide a better view of the impact of the disk scheduling on 
Disk-Based XOR RAID performance and therefore, to demonstrate its importance. 
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To better present our results, we will use an eight-disk FC-AL model as a base model. 
We will compare the performance by changing the system parameters such as system 
load, data request size, and number of disks while keeping the other parameters the same. 
As the base model, We will show the average command response time for 4KB read-
modify-write requests in the eight-disk FC-AL system. The total number of outstanding 
commands was 768. That is, the number of outstanding commands was maintained at 768 
after the simulation started. A new command was generated immediately after a previous 
command had completed. For the XPWT scheduling, the value δ was set to 3 
milliseconds. That is, an XPW command was given the higher priority over XDW 
commands if its disk service time is less than the smallest service time among all the 
XDW commands plus 3 milli-seconds. The maxNxpw value was set to the number of 
segments minus four. That is, the XPW commands in disk command queue will be given  
a higher priority when the total number of XPW commands in that disk command queue 
is greater than the number of cache segments minus four. For example, if the number of 
cache segments is twelve and there are more than eight XPW commands in disk queue, 
the next command will be chosen from those XPW commands in the queue. In such a 
case, the XPW with the shortest service time among the XPW commands will be chosen 
as the next command. 

 
The simulation result of the base model is shown in Figure 3. The XPWT Algorithm has 
the least average command response time among the three on all the cache segment sizes 
used in this study. It was 7% better than the Greedy algorithm when the number of 
segments is eight. The results of the XPWQ Algorithm varied with the number of 
segments. When the number of segments was eight, it performed closely to the XPWT 
Algorithm. When the number of segments increases, the response time fell between those 
of the Greedy Algorithm and the XPWT Algorithm. 
 

Average command latency time 
for 4KB request with 768 

commands

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

 
Figure 3:Average command latency with 4KB requests and 768 outstanding commands. 

 
Figure 4 shows the system throughput achieved by the three scheduling algorithms on the 
base model. Since the system was loaded with a fixed number of outstanding commands 
(768 commands), the throughput was highly dependent on disk efficiency. The more 
efficient the disk is, the higher throughput it will generate. In Figure 4, we see that the 
XPWT Scheduling had the highest throughput among the three methods and had about 
7% higher throughput than that of the Greedy Method in certain cases. 
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Figure 4:Average system throughput with 4KB requests and 768 outstanding commands. 

 
Different System Loads 
 
To understand the impact of the three different scheduling methods under different levels 
of the system loads, we also investigated the performance difference with a different 
number of outstanding commands in the system. As opposed to 768 outstanding 
commands, we conducted simulations with 512 outstanding commands on the 8-disk 
model. Figure 5 shows the results with both 768 and 512 outstanding commands. With 
512 outstanding commands, the average command latency time was about two thirds of 
the time with 768 commands. The XPWT method outperformed the other two with 512 
outstanding commands in all the three numbers of segments.  The difference between the 
Greedy Method and XPWT Method was reduced from about 7% with 768 outstanding 
commands to about 5.4% with 512 outstanding commands. From the results, we found 
that the larger the number of outstanding commands, the higher the performance gap is 
between the XPWT method and Greedy Method. The major reason is that with more 
outstanding commands, it is more likely to execute an XDW command than an XPW 
command. When the cache segments are all filled, the disk will be forced to execute an 
XPW command. In such a case, the efficiency of the disk will be compromised. 
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Figure 5: Average command latency with and 512 vs. 768 outstanding commands with 4KB requests. 
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Another observation from the results is that the XPWQ method tended to be close to the 
performance of the XPWT Method when the number of segments is small. On the other 
hand, it tended to be close to the Greedy Method's performance when the number of 
segments is large. This is because when the number of segments is large, more XPW 
commands are allowed in a disk queue before they are given the higher priority. 
Therefore, most of the time, the XPWQ method may perform as the Greedy Method. 
While with a smaller number of segments, it is more likely to reach the maxNxpw 
threshold. Therefore, it performs closer to the XPWT Method. 
 
Large Scale Disk System 
 
We conducted simulations on a 32-disk FC-AL model to show the performance in a 
system with a larger number of disks. In order to eliminate the performance difference 
resulted from disk queuing time between the eight-disk and 32-disk model, we used the 
same system load on both systems. We used an average of 64 commands per disk. That 
is, we used 512 outstanding commands on the eight-disk model and 2048 commands on 
the 32-disk model. The results showed a similar trend to what we have observed in the 
eight-disk model (See Figure 6). The XPWT Method was still the best among the three. It 
is about 7% better than the Greedy Method when the number of segments was equal to 
eight. The XPWQ Method performed just as well as the XPWT Method when the number 
of segments was equal to eight. But the XPWT method outperformed the XPWQ method 
when the number of segments became larger. 
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Figure 6: Average command latency with 8 vs. 32 disks with 4KB requests. 

 
Large Request Size - 64KB:  
 
With a 4 KB request size, the actual transfer time is less significant compared to the disk 
seek time and latency time. Therefore, the disk scheduling has a greater impact on the 
disk efficiency. As the request size increases, the data transfer time becomes larger. The 
extent of the improvement with better disk scheduling may be different. To understand 
the performance of the three disk scheduling disciplines with larger requests, we also 
conducted simulations with 64 KB requests. The results are shown in Figure 7. 
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Figure 7: Average command latency with 4KB vs. 64KB. 

 
With 64 KB requests, we observed even better improvement than 4 KB requests with 
XOR-enhanced scheduling when the number of segments is small. For example, with 4 
KB requests, the improvement of the XPWT Method over the Greedy Method was about 
7% with 8-segment cache. While with 64 KB requests, the improvement was more than 
8%. Furthermore, the XPWQ Method outperformed both the other methods and had an 
improvement of close to 12% over the Greedy Method with an 8-segment cache. 
 
Performance with the Faster Disks 
 
Disk technologies have improved significantly over the past decades. Recently, disk 
density has been doubling better than every couple years. The disk rotation speed and 
seek time have also improved significantly. In this paper, we have compared the 
performance comparison of different disk scheduling disciplines with disk rotation speed 
that is used by most of the current off-the-shelf disk products (at the time this paper was 
written). To predict their performance with the faster disk speed, we also conducted 
simulation with faster disks. 
 
In order to reuse our disk model and its very detailed seed functions and zone-bit 
encoding, we modeled the next generation disks by changing the parameters in our 
existing disk model. With the targeted 15000 RPM next generation disk, we believe that 
by doubling the disk rotation speed and halving the seek time and data transfer time in the 
disk model we have, it will give us a close approximation of the model for the next high-
end disk. Figure 8 shows the performance comparison of the three scheduling methods 
with current and high-end disk models. The result is shown in Figure 8. The improvement 
of the XPWT method is almost 10% better than the Greedy method. The improvement of 
the XPWQ method fell between the Greedy method and XPWT method. It has about a 
6.7% improvement over the Greedy method at eight segments. 
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Figure 8: Average command latency with 1x vs. 2x disk speed with 4KB requests. 

 
 
Impact of δ value in XPWT method 
 
In the earlier section, we mentioned that choosing a good δ in XPWT could be difficult. 
To understand the impact of δ on the performance, we conducted more simulations with 
different δ values in different loads and cache segments. Figure 9 shows the results of the 
average latency when δ changes. The results show that when the number of outstanding 
commands is 768 and the number of segments is four, we should use a greater δ value. 
When the number of outstanding commands is 512, the optimal value falls when δ is 
around three to four. The results also demonstrate that when the number of segments is 
small, δ should be set to a greater value. In Figure 9, it seems that setting δ to 3 could 
provide a performance gain close to optimal except when the number of outstanding 
commands is 768 and the number of cache segments is four. 
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Figure 9: Average command latency with 1x vs. 2x disk speed with 4KB requests. 

 
5. Conclusion 
 
In this paper, we have discussed the uniqueness of Disk-Based XOR operations on disk 
scheduling and its impact on disk efficiency. We have proposed two XPW-enhanced disk 
scheduling disciplines that are designed to improve the disk efficiency on Disk-Based 
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XOR RAID’s. We have demonstrated their performance results by simulations. We have 
investigated the performance of the proposed XPW-enhanced disk scheduling as well as 
the SSTF approach serving as the baseline performance. We have conducted simulations 
under different scenarios such as different scales of storage system, different system 
loads, different request sizes, and even with high-end disk technologies. We have 
demonstrated using simulation results that the performance was consistently improved 
with those two XPW-enhanced approaches throughout all the cases. The results showed 
that the improvement could be as much as 12%. 
 
As the disk technologies continue to improve rapidly, it has been predicted that a one 
terabyte disk costing below one hundred dollars could be on the market in less than five 
years. With the price of disk going lower and lower, and the capacity of disks going 
higher and higher, it becomes more important to have a better RAID solution. Disk-
Based XOR provides a promising lower-cost high-performance alternative. We hope that 
the study we have presented in this paper could open a door to finding better RAID 
solutions. 
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