
Experimentally Evaluating In-Place Delta Reconstruction

Randal Burns Larry Stockmeyer Darrell D. E. Long
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

Johns Hopkins Univ. IBM Almaden Research Center Univ. of California, Santa Cruz
randal@cs.jhu.edu stock@almaden.ibm.com darrell@cs.ucsc.edu

Abstract

In-place reconstruction of delta compressed data allows information on devices with lim-
ited storage capability to be updated efficiently over low-bandwidth channels. Delta compres-
sion encodes a version of data compactly as a small set of changes from a previous version.
Transmitting updates to data as delta versions saves both time and bandwidth. In-place re-
construction rebuilds the new version of the data in the storage or memory space the current
version occupies – no additional scratch space is needed. By combining these technologies,
we support large-scale, highly-mobile applications on inexpensive hardware.

We present an experimental study of in-place reconstruction algorithms. We take a data-
driven approach to determine important performance features, classifying files distributed on
the Internet based on their in-place properties, and exploring the scaling relationship between
files and data structures used by in-place algorithms. We conclude that in-place algorithms are
I/O bound and that the performance of algorithms is most sensitive to the size of inputs and
outputs, rather than asymptotic bounds.

1 Introduction

We develop algorithms for data distribution and version management to be used for highly-mobile
and resource-limited computers over low-bandwidth networks. The software infrastructure for
Internet-scale file sharing is not suitable for this class of applications, because it makes demands
for network bandwidth and storage/memory space that many small computers and devices cannot
meet.

While file sharing is proving to be the new prominent application for the Internet, it is limited
in that data are not writable nor are versions managed. The many recent commercial and freely
available systems underscore this point, examples include Freenet [1] and GnuTella [2]. Writable
replicas greatly increase the complexity of file sharing – problems include update propagation and
version control.

Delta compression has proved a valuable tool for managing versions and propagating up-
dates in distributed systems and should provide the same benefits for Internet file sharing. Delta-
compression has been used to reduce latency and network bandwidth for Web serving [4, 20] and
backup and restore [6].

Our in-place reconstruction technology addresses one of delta compression’s major shortcom-
ings. Delta compression makes memory and storage demands that are not reasonable for low-cost,

137

low-resource devices and small computers. In-place reconstruction allows a version to be updated
by a delta in the memory or storage that it currently occupies; reconstruction needs no additional
scratch space or space for a second copy. An in-place reconstructible delta file is a permuta-
tion and modification of the original delta file. This conversion comes with a small compression
penalty. In-place reconstruction brings the latency and bandwidth benefits of delta compression
to the space-constrained, mass-produced devices that need them the most, such as personal digital
assistants, cellular phones, and wireless handhelds.

A distributed inventory management system based on mobile-handheld devices is an archetypal
application for in-place technology. Many limited-capacity devices track quantities throughout
an enterprise. To reduce latency, these devices cache portions of the database for read-only and
update queries. Each device maintains a radio link to update its cache and run a consistency
protocol. In-place reconstruction allows the devices to keep their copies of data consistent using
delta compression without requiring scratch space, thereby increasing the cache utilization at target
devices. Any available scratch space can be used to reduce compression loss, but no scratch space
is required for correct operation. We observe that in-place reconstruction applies to both structured
data (databases) and unstructured data (files), because they manipulate a delta encoding, as opposed
to the original data. While algorithms for delta compressing structured data are different [9], they
employ encodings that are suitable for in-place techniques.

1.1 Delta Compression and In-Place Reconstruction

Recent developments in portable computing and computing appliances have resulted in a prolif-
eration of small network attached computing devices. These include personal digital assistants
(PDAs), Internet set-top boxes, network computers, control devices, and cellular devices. The data
contents of these devices are often updated by transmitting the new version over a network. How-
ever, low bandwidth channels and heavy Internet traffic often makes the time to perform software
update prohibitive.

Differential or delta compression [3, 13, 9, 8], encoding a new version of a file compactly as a
set of changes from a previous version, reduces the size of the transmitted file and, consequently,
the time to perform software update. Currently, decompressing delta encoded files requires scratch
space, additional disk or memory storage, used to hold a second copy of the file. Two copies of
the file must be available concurrently, as the delta file reads data from the old file version while
materializing the new file version in another region of storage. This presents a problem because
network attached devices often cannot store two file versions at the same time. Furthermore, adding
storage to network attached devices is not viable, because keeping these devices simple limits their
production costs.

We modify delta encoded files so that they are suitable for reconstructing the new version of the
file in-place, materializing the new version in the same memory or storage space that the previous
version occupies. A delta file encodes a sequence of instructions, or commands, for a computer
to materialize a new file version in the presence of a reference version, the old version of the file.
When rebuilding a version encoded by a delta file, data are both copied from the reference version
to the new version and added explicitly when portions of the new version do not appear in the
reference version.

If we were to attempt naively to reconstruct an arbitrary delta file in-place, the resulting output

138

would often be corrupt. This occurs when the delta encoding instructs the computer to copy data
from a file region where new file data has already been written. The data the algorithms reads have
already been altered and the algorithm rebuilds an incorrect file.

We present a graph-theoretic algorithm for modifying delta files that detects situations where a
delta file attempts to read from an already written region and permutes the order that the algorithm
applies commands in a delta file to reduce the occurrence of conflicts. The algorithm eliminates
the remaining conflicts by removing commands that copy data and adding explicitly these data to
the delta file. Eliminating data copied between versions increases the size of the delta encoding
but allows the algorithm to output an in-place reconstructible delta file.

Experimental results verify the viability and efficiency of modifying delta files for in-place
reconstruction. Our findings indicate that our algorithm exchanges a small amount of compression
for in-place reconstructibility.

Experiments also reveal an interesting property of these algorithms that conflicts with algo-
rithmic analysis. We show in-place reconstruction algorithms to be I/O bound. In practice, the
most important performance factor is the output size of the delta file. This means that heuristics
for eliminating data conflicts that minimize lost compression are superior to more time efficient
heuristics that lose more compression. Any time saved in detecting and eliminating conflicts is lost
when writing a larger delta file out to storage.

2 Related Work

Encoding versions of data compactly by detecting altered regions of data is a well known problem.
The first applications of delta compression found changed lines in text data for analyzing the recent
modifications to files [11]. Considering data as lines of text fails to encode minimum sized delta
files, as it does not examine data at a fine granularity and finds only matching data that are aligned
at the beginning of a new line.

The problem of representing the changes between versions of data was formalized as string-
to-string correction with block move [24] – detecting maximally matching regions of a file at
an arbitrarily fine granularity without alignment. However, delta compression continued to rely
on the alignment of data, as in database records [23], and the grouping of data into block or line
granularity, as in source code control systems [22, 25], to simplify the combinatorial task of finding
the common and different strings between versions.

Efforts to generalize delta compression to un-aligned data and to minimize the granularity of
the smallest change resulted in algorithms for compressing data at the granularity of a byte. Early
algorithms were based upon either dynamic programming [19] or the greedy method [24, 21, 17]
and performed this task using time quadratic in the length of the input files.

Delta compression algorithms were improved to run in linear time and linear space. Algorithms
with these properties have been derived from suffix trees [27, 18, 16] and as a generalization of
Lempel-Ziv data compression [12, 13, 8]. Like algorithms based on greedy methods and dynamic
programming, these algorithms generate optimally compact delta encodings.

Recent advances produced algorithms that run in linear time and constant space [3]. These
differencing algorithms trade a small amount of compression, verified experimentally, in order to
improve performance.

Any of the linear run-time algorithms allow delta compression to scale to large input files

139

B

VC

VD

VE

VA

BR

RC

DR

RA VA VB VA,< >-

VBRA BR RA,< , - >

,< >- VVVC D C

,< >-V V VE F E

V

Delta File

Matching

Matching

String

String

Add

Copy

Add

Add

Copy

Add Data

Add Data

,< , - >R V R RC D D C

Reference File Version File

Figure 1: Encoding delta files. Common strings are encoded as copy commands hf; t; li and new
strings in the new file are encoded as add commands ht; li followed by the string of length l of
added data.

without known structure and permits the application of delta compression to file system backup
and restore [6].

Recently, applications distributing HTTP objects using delta files have emerged [20, 4]. This
permits web servers to both reduce the amount of data transmitted to a client and reduce the latency
associated with loading web pages. Efforts to standardize delta files as part of the HTTP protocol
and the trend toward making small network devices HTTP compliant indicate the need to distribute
data to network devices efficiently.

3 Encoding Delta Files

Differencing algorithms encode the changes between two file versions compactly by finding strings
common to both versions. We term these files a version file that contains the data to be encoded
and a reference file to which the version file is compared. Differencing algorithms encode a file
by partitioning the data in the version file into strings that are encoded using copies from the
reference file and strings that are added explicitly to the version file (Figure 1). Having partitioned
the version file, the algorithm outputs a delta file that encodes this version. This delta file consists
of an ordered sequence of copy commands and add commands.

An add command is an ordered pair, ht; li, where t (to) encodes the string offset in the file
version and l (length) encodes the length of the string. The l bytes of data to be added follow the
command. A copy command is an ordered triple, hf; t; li where f (from) encodes the offset in the
reference file from which data are copied, t encodes the offset in the new file where the data are to
be written, and l encodes the length of the data to be copied. The copy command moves the string
data in the interval [f; f + l� 1] in the reference file to the interval [t; t+ l� 1] in the version file.

In the presence of the reference file, a delta file rebuilds the version file with add and copy
commands. The intervals in the version file encoded by these commands are disjoint. Therefore,
any permutation of the command execution order materializes the same output version file.

140

C1 C2

(a) Delta copy

conflict corrupt

C2C1

(b) In-place copy

Figure 2: Data conflict and corruption when performing copy command C1 before C2.

4 In-Place Modification Algorithms

An in-place modification algorithm changes an existing delta file into a delta file that reconstructs
correctly a new file version in the space the current version occupies. At a high level, our technique
examines the input delta file to find copy commands that read from the write interval (file address
range to which the command writes data) of other copy commands. The algorithm represents
potential data conflicts in a digraph. The algorithm topologically sorts the digraph to produce an
ordering on copy commands that reduces data conflicts. We eliminate the remaining conflicts by
converting copy commands to add commands. The algorithm outputs the permuted and converted
commands as an in-place reconstructible delta file. Actually, as described in more detail below, the
algorithm performs permutation and conversion of commands concurrently.

4.1 Conflict Detection

Since we reconstruct files in-place, we concern ourselves with ordering commands that attempt
to read a region to which another command writes. For this, we adopt the term write before read
(WR) conflict [5]. For copy commands hfi; ti; lii and hfj; tj; lji, with i < j, a WR conflict occurs
when

[ti; ti + li � 1] \ [fj; fj + lj � 1] 6= ;: (1)

In other words, copy command i and j conflict if i writes to the interval from which j reads
data. By denoting, for each copy command hfk; tk; lki, the command’s read interval as Readk =
[fk; fk + lk � 1] and its write interval as Writek = [tk; tk + lk � 1], we write the condition (1) for
a WR conflict as Writei \ Readj 6= ;. In Figure 2, commands C1 and C2 executed in that order
generate a data conflict (blacked area) that corrupts data when a file is reconstructed in place.

This definition considers only WR conflicts between copy commands and neglects add com-
mands. Add commands write data to the version file; they do not read data from the reference
file. Consequently, an algorithm avoids all potential WR conflicts associated with adding data by
placing add commands at the end of a delta file. In this way, the algorithms completes all reads
associated with copy commands before executing the first add command.

Additionally, we define WR conflicts so that a copy command cannot conflict with itself. Yet,
a single copy command’s read and write intervals intersect sometimes and would seem to cause a
conflict. We deal with read and write intervals that overlap by performing the copy in a left-to-right
or right-to-left manner. For command hf; t; li, if f � t, we copy the string byte by byte starting at
the left-hand side when reconstructing the original file. Since, the f (from) offset always exceeds
the t (to) offset in the new file, a left-to-right copy never reads a byte over-written by a previous
byte in the string. When f < t, a symmetric argument shows that we should start our copy at the

141

right hand edge of the string and work backwards. For this example, we performed the copies in a
byte-wise fashion. However, the notion of a left-to-right or right-to-left copy applies to moving a
read/write buffer of any size.

To avoid WR conflicts and achieve the in-place reconstruction of delta files, we employ the
following three techniques.

1. Place all add commands at the end of the delta file to avoid data conflicts with copy com-
mands.

2. Permute the order of application of the copy commands to reduce the number of write before
read conflicts.

3. For remaining WR conflicts, remove the conflicting operation by converting a copy command
to an add command and place it at the end of the delta file.

For many delta files, no possible permutation eliminates all WR conflicts. Consequently, we require
the conversion of copy commands to add commands to create correct in-place reconstructible files
for all inputs.

Having processed a delta file for in-place reconstruction, the modified delta file obeys the prop-
erty

(8j)

"
Readj \

j�1[
i=1

Writei

!
= ;

#
; (2)

indicating the absence of WR conflicts. Equivalently, it guarantees that a copy command reads and
transfers data from the original file.

4.2 CRWI Digraphs

To find a permutation that reduces WR conflicts, we represent potential conflicts between the copy
commands in a digraph and topologically sort this digraph. A topological sort on digraph G =
(V;E) produces a linear order on all vertices so that if G contains edge

!

uv then vertex u precedes
vertex v in topological order.

Our technique constructs a digraph so that each copy command in the delta file has a cor-
responding vertex in the digraph. On this set of vertices, we construct an edge relation with a
directed edge

!

uv from vertex u to vertex v when copy command u’s read interval intersects copy
command v’s write interval. Edge

!

uv indicates that by performing command u before command v,
the delta file avoids a WR conflict. We call a digraph obtained from a delta file in this way a con-
flicting read write interval (CRWI) digraph. A topologically sorted version of this graph adheres
to the requirement for in-place reconstruction (Equation 2).

4.3 Strategies for Breaking Cycles

As total topological orderings are possible only on acyclic digraphs and CRWI digraphs may con-
tain cycles, we enhance a standard topological sort to break cycles and output a total topological
order on a subgraph. Depth-first search implementations of topological sort [10] are modified
easily to detect cycles. Upon detecting a cycle, our modified sort breaks the cycle by removing a
vertex. When completing this enhanced sort, the sort outputs a digraph containing a subset of all

142

vertices in topological order and a set of vertices that were removed. This algorithm re-encodes
the data contained in the copy commands of the removed vertices as add commands in the output.

As the string that contains the encoded data follows converted add, this replacement reduces
compression in the delta file. We define the amount of compression lost upon deleting a vertex
to be the cost of deletion. Based on this cost function, we formulate the optimization problem of
finding the minimum cost set of vertices to delete to make a digraph acyclic. A copy command is
an ordered triple hf; t; li. An add command is an ordered double ht; li followed by the l bytes of
data to be added to the new version of the file. Replacing a copy command with an add command
increases the delta file size by l � kfk, where kfk denotes the size of the encoding of offset f .
Thus, the vertex that corresponds to the copy command hf; t; li is assigned cost l � kfk.

When converting a digraph into an acyclic digraph by deleting vertices, an in-place conversion
algorithm minimizes the amount of compression lost by selecting a set of vertices with the smallest
total cost. This problem, called the FEEDBACK VERTEX SET problem, was shown by Karp [14]
to be NP-hard for general digraphs. We have shown previously [7] that it remains NP-hard even
when restricted to CRWI digraphs. Thus, we do not expect an efficient algorithm to minimize the
cost in general.

For our implementation of in-place conversion, we examine two efficient, but not optimal,
policies for breaking cycles. The constant-time policy picks the “easiest” vertex to remove, based
on the execution order of the topological sort, and deletes this vertex. This policy performs no
extra work when breaking cycles. The local-minimum policy detects a cycle and loops through all
vertices in the cycle to determine and then delete the minimum cost vertex. The local-minimum
policy may perform as much additional work as the total length of cycles found by the algorithm:
O(n2). Although these policies perform well in our experiments, we have shown previously [7]
that they do not guarantee that the total cost of deletion is within a constant factor of the optimum.

4.4 Generating Conflict Free Permutations

Our algorithm for converting delta files into in-place reconstructible delta files takes the follow-
ing steps to find and eliminate WR conflicts between a reference file and the new version to be
materialized.

Algorithm

1. Given an input delta file, we partition the commands in the file into a setC of copy commands
and a set A of add commands.

2. Sort the copy commands by increasing write offset, Csorted = fc1; c2; :::; cng. For ci and cj,
this set obeys: i < j ! ti < tj . Sorting the copy commands allows us to perform binary
search when looking for a copy command at a given write offset.

3. Construct a digraph from the copy commands. For the copy commands c1; c2; :::; cn, we
create a vertex set V = fv1; v2; :::; vng. Build the edge set E by adding an edge from vertex
vi to vertex vj when copy command ci reads from the interval to which cj writes:

�!

vivj ! Readi \Writej 6= ; ! [fi; fi + li � 1] \ [tj; tj + lj � 1] 6= ;:

143

0

5000

10000

15000

20000

25000

30000

35000

40000

Figure 3: File counts and data size.

4. Perform a topological sort on the vertices of the digraph. This sort also detects cycles in the
digraph and breaks them. When breaking a cycle, select one vertex on the cycle, using either
the local-minimum or constant-time cycle breaking policy, and remove it. We replace the
data encoded in its copy command with an equivalent add command, which is put into set
A. The output of the topological sort orders the remaining copy commands so that they obey
the property in Equation 2.

5. Output all add commands in the set A to the delta file.

The resulting delta file reconstructs the new version out of order, both out of write order in the
version file and out of the order that the commands appeared in the original delta file.

5 Experimental Results

As we are interested in using in-place reconstruction to distribute software, we extracted a large
body of Internet available software and examined the compression and execution time performance
of our algorithm on these files. Sample files include multiple versions of the GNU tools and the
BSD operating system distributions, among other data, with both binary and source files being
compressed and permuted for in-place reconstruction. These data were examined with the goals
of:

� determining the compression loss due to making delta files in-place reconstructible;

� comparing the the constant-time and local-minimum policies for breaking cycles;

� showing in-place conversion algorithms to be efficient when compared with delta compres-
sion algorithms on the same data; and

� characterizing the graphs created by the algorithm.

In all cases, we obtained the original delta files using the correcting 1.5-pass delta compression
algorithm [3].

We categorize the delta files in our experiments into 3 groups that describe what operations
were require to make files in-place reconstructible. Experiments were conducted over more than

144

(a) Delta size (b) Delta compression

Figure 4: Compression performance

34,000 delta files totaling 6.5MB (Megabytes). Of these files (Figure 3), 63% of the files contained
cycles that needed to be broken. 29% did not have cycles, but needed to have copy commands
reordered. The remaining 8% of files were trivially in-place reconstructible; i.e., none of the copy
commands conflicted. For trivial files, performing copies before adds creates an in-place delta.

The amount of data in files is distributed differently across the three categories than are the file
counts. Files with cycles contain over 4MB of data with an average file size of 31.4KB. Files that
need copy commands reordered hold 1.9MB of data, with an average file size of 11.6KB. Trivially
in-place reconstructible files occupy 585KB of data with an average file size of 10.2KB.

The distribution of files and data across the three categories confirms that efficient algorithms
for cycle breaking and command reordering are needed to deliver delta compressed data in-place.
While most delta files do not contain cycles, those that do have cycles contain the majority of the
data.

We group compression results into the same categories. Figure 4(a) shows the relative size of
the delta files and Figure 4(b) shows compression (size of delta files as a fraction of the original
file size). For each category and for all files, we report data for four algorithms: the unmodi-
fied correcting 1.5-pass delta compression algorithm [3] (HPDelta); the correcting 1.5-pass delta
compression algorithm modified so that code-words are in-place reconstructible (IP-HPDelta); the
in-place modification algorithm using the local-minimum cycle breaking policy (IP-Lmin); and the
in-place modification algorithm using the constant-time cycle breaking policy (IP-Const).

The HPDelta algorithm is a linear time, constant space algorithm for generating delta com-
pressed files. It outputs copy and add commands using a code-word format similar to industry
standards [15].

The IP-HPDelta algorithm is a modification of HPDelta to output code-words that are suitable
for in-place reconstruction. Throughout this paper, we have described add commands ht; li and
copy commands hf; t; li, where both commands encode explicitly the to t or write offset in the
version file. However, delta algorithms that reconstruct data in write order need not explicitly
encode a write offset – an add command can simply be hli and a copy command hf; li. Since
commands are applied in write order, the end offset of the previous command implies the write
offset of the current command implicitly. The code-words of IP-HPDelta are modified to make
the write offset explicit. The explicit write offset allows our algorithm to reorder copy commands.
This extra field in each code-word introduces a per-command overhead in a delta file. The amount

145

(a) Overhead (b) Breakdown

Figure 5: Run-time results

of overhead varies, depending upon the number of commands and the original size of the delta file.
Encoding overhead incurs a 3% compression loss over all files.

From the IP-HPDelta algorithm, we derive the IP-Const and IP-Lmin algorithms. They run
the IP-HPDelta algorithm to generate a delta file and then permute and modify the commands
according to our technique to make the delta file in-place reconstructible. The IP-Const algorithm
implements the constant-time policy and the IP-Lmin algorithm implements the local-minimum
policy.

Experimental results indicate the amount of compression lost due to in-place reconstruction and
divides the loss into encoding overhead and cycle breaking. Over all files, HPDelta compresses
data to 12.9% its original size. IP-HPDelta compresses data to 15.9%, losing 3% compression
to encoding overhead. IP-Const loses an additional 3.4% compression by breaking cycles for a
total compression loss of 6.4%. In contrast, IP-Lmin loses less than 0.5% compression for a total
loss of less than 3.5%. The local-minimum cycle breaking policy performs excellently in practice,
because compression losses are small when compared with encoding overheads. With IP-Lmin,
cycle breaking accounts for less than 15% of the loss. IP-Const more than doubles the compression
loss.

For reorder and trivial in-place delta files, no cycles are present and no compression lost. En-
coding overhead makes up all lost compression – 0.5% for trivial delta files and 1.8% for reordered
files.

Files with cycles exhibit an encoding overhead of 3.8% and lose 5.4% and 0.7% to cycle break-
ing for the IP-Const and IP-Lmin respectively. Because files with cycles contain the majority of
the data, the results for files with cycles dominate the results for all files.

In-place algorithms incur execution time overheads when performing additional I/O and when
permuting the commands in a delta file. An in-place algorithm must generate a delta file and then
modify the file to have the in-place property. Since a delta file does not necessarily fit in memory,
in-place algorithms create an intermediate file that contains the output of the delta compression
algorithm. This intermediate output serves as the input for the algorithm that modifies/permutes
commands. We present execution-time results in Figure 5(a) for both in-place algorithms – IP-
Const and IP-Lmin. IP-Lmin and IP-Const perform all of the steps of the base algorithm (IP-
HPDelta) before manipulating the intermediate file. Results show that the extra work incurs an

146

0 2000 4000 6000 8000 1000012000140001600018000
0

0.5

1

1.5

2

2.5

3

3.5

4x 10
5

File Size (bytes)

D
at

a
ra

te
 (

by
te

s/
se

c)
IP−HPDelta
IP−LMin
IP−Const

(a) File Size

0 100 200 300 400 500
0

0.5

1

1.5

2

x 10
5

Number of vertices

D
at

a
ra

te
 (

by
te

s/
se

c)

IP−HPDelta
IP−LMin
IP−Const

(b) Vertices

0 100 200 300 400 500
0

0.5

1

1.5

2

x 10
5

Number of Edges

D
at

a
ra

te
 (

by
te

s/
se

c)

IP−HPDelta
IP−LMin
IP−Const

(c) Edges

Figure 6: Run-time results

overhead of about 75%. However, figure 5(b) shows that almost all of this overhead comes from
additional I/O. We conclude that the algorithmic tasks for in-place reconstruction are small when
compared with the effort compressing data (about 10% the run-time) and miniscule compared to
the costs of performing file I/O.

Despite inferior worst-case run-time bounds, the local-minimum cycle breaking policy runs
faster than the constant-time policy in practice. Because file I/O dominates the run-time costs and
because IP-Lmin creates a smaller delta file, it takes less total time than the theoretically superior
IP-Const. In fact, IP-Const spends 2.2% more time performing I/O as a direct result of the files
being 2.9% larger. IP-Lmin even uses slightly less time performing computation than IP-Const,
which has to manipulate more data in memory.

Examining run-time results in more detail continues to show that IP-Lmin outperforms IP-
Const, even for the largest and most complex input files. In Figure 6, we see how run-time perfor-
mance varies with the input file size and with the size of the graph the algorithm creates (number
of edges and vertices); these plots measure run time by data rate – file size (bytes) divided by run
time (seconds).

Owing to start-up costs, data rates increase with file size up to a point, past which rates tend
to stabilize. The algorithms must load and initialize data structures. For small files, these costs
dominate, and data rates are lower and increase linearly with the file size (Figure 6(a)). For files
larger than 2000 bytes, rates tend to stabilize, exhibiting some variance, but neither increasing or
decreasing as a trend. These results indicate that for inputs that amortize start-up costs, in-place
algorithms exhibit a data rate that does not vary with the size of the input – a known property of
the HPDelta algorithm [3]. IP-Lmin performs slightly better than IP-Const always.

The performance of all algorithms degrades as the size of the CRWI graphs increase. Figure
6(b) shows the relative performance of the algorithms as a function of the number of vertices, and
Figure 6(c) shows this for the number of edges. For smaller graphs, performance degrades quickly
as the graph size increases. For larger graphs, performance degrades more slowly. The graph size
corresponds directly to the number of copy commands in a delta file. The more commands, the
more I/O operations the algorithm must execute. Often more vertices means more small I/O rather
than fewer large I/O, resulting in lower data rates.

Surprisingly, IP-Lmin continues to out-perform IP-Const even for the largest graphs. Analysis
would indicate that the performance of IP-Lmin and IP-Const should diverge as the number of

147

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Vertices

E
dg

es

(a) Edges versus Vertices

10
0

10
2

10
4

10
610

0

10
1

10
2

10
3

10
4

10
5

10
6

File Size (bytes)

E
dg

es

(b) Edges versus File Size

Figure 7: Edges in delta files that contain cycles.

edges increase. But no evidence of divergent performance exists. We attribute this to two factors:
(1) graphs are relatively small and (2) all algorithms are I/O bound.

In Figure 7, we look at some statistical measures of graphs constructed when creating in-
place delta files, restricted to those graphs that contain cycles. While graphs can be quite large, a
maximum of 11503 vertices and 16694 edges, the number of edges scales linearly with the number
of vertices and less than linearly with input file size. The constructed graphs do not exhibit edge
relations that approach the O(jV j2) upper bound. Therefore, data rate performance should not
degrade as the number of edges increases. For example consider two files as inputs to the IP-Lmin
algorithm – one with a graph that contains twice the edges of the other. Based on our result, we
expect the larger graph to have twice as many vertices and encode twice as much data. While the
larger instance does twice the work breaking cycles, it benefits from reorganizing twice as much
data, realizing the same data rate.

The linear scaling of edges with vertices and file size matches our intuition about the nature
of delta compressed data. Delta compression encodes multiple versions of the same data. There-
fore, we expect matching regions between these files (encoded as edges in a CRWI graph) to have
spatial locality; i.e., the same string often appears in the same portion of a file. These input data
do not exhibit correlation between all regions of a file which would result in dense edge relations.
Additionally, delta compression algorithms localize matching between files, correlating or syn-
chronizing regions of file data [3]. All of these factors result in the linear scaling that we observe.

6 Conclusions

We have presented algorithms that modify delta files so that the encoded version may be recon-
structed in the absence of scratch memory or storage space. Such an algorithm facilitates the dis-
tribution of software to network attached devices over low bandwidth channels. Delta compression
lessens the time required to transmit files over a network by encoding the data to be transmitted
compactly. In-place reconstruction exchanges a small amount of compression in order to do so
without scratch space.

Experimental results indicate that converting a delta file into an in-place reconstructible delta
file has limited impact on compression, less than 4% in total with the majority of compression

148

loss from encoding overheads rather than modifications to the delta file. We also find that for
bottom line performance keeping delta files small to reduce I/O matters more than execution time
differences in cycles breaking heuristics, because in-place reconstruction is I/O bound. For overall
performance, the algorithm to convert a delta file to an in-place reconstructible delta file requires
less time than generating the delta file in the first place.

In-place reconstructible delta file compression provides the benefits of delta compression for
data distribution to an important class of applications – devices with limited storage and memory.
In the current network computing environment, this technology decreases greatly the time to dis-
tribute content without increasing the development cost or complexity of the receiving devices.
Delta compression provides Internet-scale file sharing with improved version management and up-
date propagation, and in-place reconstruction delivers the technology to the resource constrained
computers that need it most.

7 Future Directions

Detecting and breaking conflicts at a finer granularity can reduce lost compression when breaking
cycles. In our current algorithms, we eliminate cycles by converting copy commands into add
commands. However, typically only a portion of the offending copy command actually conflicts
with another command; only the overlapping range of bytes. We propose, as a simple extension,
to break a cycle by converting part of a copy command to an add command, eliminating the graph
edge (rather than a whole vertex as we do today), and leaving the remaining portion of the copy
command (and its vertex) in the graph. This extension does not fundamentally change any of our
algorithms, only the cost function for cycle breaking.

As a more radical departure from our current model, we are exploring reconstructing delta files
with bounded scratch space, as opposed to zero scratch space as with in-place reconstruction. This
formulation, suggested by Martı́n Abadi, allows an algorithm to avoid WR conflicts by moving
regions of the reference file into a fixed size buffer, which preserves reference file data after that
region has been written. The technique avoids compression loss by resolving data conflicts without
eliminating copy commands.

Reconstruction in bounded space is logical, as target devices often have a small amount of
available space that can be used advantageously. However, in-place reconstruction is more gen-
erally applicable. For bounded space reconstruction, the target device must contain enough space
to rebuild the file. Equivalently, an algorithm constructs a delta file for a specific space bound.
Systems benefit from using the same delta file to update software on many devices. For exam-
ple, distributing an updated product list to many PDAs in the same sales force. In such cases,
in-place reconstruction offers a lowest common denominator solution in exchange for a little lost
compression.

We also are developing algorithms that can perform peer-to-peer style delta compression [26]
in an in-place fashion. This allows delta compression to be used between two versions of a file
stored on separate machines and is often a more natural formulation, because it does not require a
computer to maintain the original version of data to employ delta compression. This works well
for file systems, most of which do not handle multiple versions.

Our ultimate goal is to use in-place algorithms as a basis for a data distribution system. The
system will operate both in hierarchical (client/server) and peer-to-peer modes. It will also conform

149

to Internet standards [15] and, therefore, work seamlessly with future versions of HTTP.

References

[1] The free network project – rewiring the Internet. Technical Report http://freenet.sourceforge.net/,
2001.

[2] The gnutella protocol specification. Technical Report http://www.gnutelladev.com/protocol/gnutella-
protocol.html, 2001.

[3] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stockmeyer. Compactly encoding unstructured in-
put with differential compression. www.almaden.ibm.com/cs/people/stock/diff7.ps,
IBM Research Report RJ 10187, April 2000 (revised Aug. 2001).

[4] G. Banga, F. Douglis, and M. Rabinovich. Optimistic deltas for WWW latency reduction. In Proceed-
ings of the 1998 Usenix Technical Conference, 1998.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison–Wesley Publishing Co., 1987.

[6] R. C. Burns and D. D. E. Long. Efficient distributed backup and restore with delta compression. In
Proceedings of the Fifth Workship on I/O in Parallel and Distributed Systems, San Jose, CA, November
1997.

[7] R. C. Burns and D. D. E. Long. In-place reconstruction of delta compressed files. In Proceedings of
the Seventeenth ACM Symposium on Principles of Distributed Computing, 1998.

[8] M. Chan and T. Woo. Cache-based compaction: A new technique for optimizing web transfer. In
Proceedings of the IEEE Infocom ’99 Conference, New York, NY, March 1999.

[9] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In Proceedings
of the ACM SIGMOD International Conference on the Management of Data, May 1997.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[11] S. P. de Jong. Combining of changes to a source file. IBM Technical Disclosure Bulletin, 15(4):1186–
1188, September 1972.

[12] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical study of delta algorithms. In Proceedings of the
6th Workshop on Software Configuration Management, March 1996.

[13] J. J. Hunt, K.-P. Vo, and W. F. Tichy. Delta algorithms: An empirical analysis. ACM Transactions on
Software Engineering and Methodology, 7(2):192–214, 1998.

[14] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–104. Plenum Press, 1972.

[15] D. G. Korn and K.-P. Vo. The VCDIFF generic differencing and compression format. Technical Report
Internet-Draft draft-vo-vcdiff-00, Internet Engineering Task Force (IETF), 1999.

[16] S. Kurtz. Reducing the space requirements of suffix trees. Software – Practice and Experience,
29(13):1149–1171, 1999.

150

[17] J. P. MacDonald, P. N. Hilfinger, and L. Semenzato. PRCS: The project revision control system. In
Proceedings System Configuration Management, 1998.

[18] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM, 23(2),
April 1978.

[19] W. Miller and E. W. Myers. A file comparison program. Software – Practice and Experience,
15(11):1025–1040, November 1985.

[20] J. C. Mogul, F. Douglis, A. Feldman, and B. Krishnamurthy. Potential benefits of delta encoding and
data compression for HTTP. In Proceedings of ACM SIGCOMM ’97, September 1997.

[21] C. Reichenberger. Delta storage for arbitrary non-text files. In Proceedings of the 3rd International
Workshop on Software Configuration Management, Trondheim, Norway, 12-14 June 1991, pages 144–
152. ACM, June 1991.

[22] M. J. Rochkind. The source code control system. IEEE Transactions on Software Engineering, SE-
1(4):364–370, December 1975.

[23] D. G. Severance and G. M. Lohman. Differential files: Their application to the maintenance of large
databases. ACM Transactions on Database Systems, 1(2):256–267, September 1976.

[24] W. F. Tichy. The string-to-string correction problem with block move. ACM Transactions on Computer
Systems, 2(4), November 1984.

[25] W. F. Tichy. RCS – A system for version control. Software – Practice and Experience, 15(7):637–654,
July 1985.

[26] A. Tridgell and P. Mackerras. The RSync algorithm. Technical Report TR-CS-96-05, The Australian
National University, 1996.

[27] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

151

152

