Efficient Storage and M anagement of Environmental I nfor mation

Nabil R. Adam, Vijayalakshmi Atluri, and Songme Yu
MSIS Department and CIMIC, Rutgers University
Newark, New Jersey 07102
{adam, atluri, songmei} @cimic.rutgers.edu

Yelena Yesha
Department of Computer Science and Electrical Engineering, UMBC
Batimore, MD 21250
yeyesha@cs.umbc.edu

Abstract

Spatid Data warehouses pose many chalenging requirements with respect to the design of the
data modd due to the nature of andytica operations and the nature of the views to be
maintained by the spatid warehouse. The firgt chalenge is due to the multi-dimensiond nature of
each dimengion itsdf. In atraditiond data warehouse the various dimensions contributing to the
warehouse data are Smple in nature, each having different atributes. Data models such as the
dar schema, fact congtdlation schema, snowflake schema or the multi-dimensiona model, can
therefore, be used to represent the traditional data warehouse. On the other hand, the different
dimensions in a gpatid data warehouse comprise of different types of data, each of which is
multi-dimensond in naure. The current available data models are not adequate for such
domains. In this paper, we propose a data mode that iswell suited for such domains, called the
cascaded star model that is capable of representing multiple dimensions of a spatid data
warehouse, where each dimendon is multi-dimensond. The nature of the queries in such
domains is different from that of traditiona data warehouses (such as fly-by of aregion), and
therefore we propose a suitable architecture that alows specification of the queries and their
visua presentation.

1. Introduction

In the area of Environmental and Earth sciences, we are concerned with collection, assmilation,
cadoging and dissemination or retrieva of a vast aray of environmental data. Environmenta
and Earth science computer systems receive their input from various types of satellite images
with different resolutions captured by different sensors, models of the topography and spatid
attributes of the landscape such as roads, rivers, parcds, schools, zip code aress, city Streets
and adminigtrative boundaries (dl exist in topographic maps), census information that describes
the socio-economic and hedth characteristics of the population, processed digita terrain models
into a new information product in the form of three-dimensond visudizations of digitd terrain
models projected as video fly-bys', and findly information tranamitted (dmogt in red-time)
from ground monitoring Sations.

The system needs to provide flexible image extraction functiondities, such as hyper-spectra
channd extraction, overlaying, and ad-hoc thematic coloring [4]. Such systems are intended to
sarve the evduation and formulaion of environmental policies by enabling users, including
management and researchers to query various critica parameters such as ambient air and water
qudity and visudize the results in a graphica form. In addition to serving decison makers and
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researchers, these systems are intended to dso serve the citizens, thus, enabling any citizen of
any given didrict or a dtate to look at hisher county, community, home and be able to obtain
relevant information on such issues as environment, hedth, and infrastructure, among others.
Such systems should facilitate effective knowledge discovery in a manner talored to changing
needs and abilities of users, both intellectua and technologicdl.

Consider for example the NASA Regional Application Center (RAC) at Rutgers Center for
Information Management, Integration and Connectivity (CIMIC), which is a joint project
between Rutgers CIMIC, NASA Goddard Space Flight Center (GSFC) and the New Jersey
Meadowlands Commission (NIMC). AsaRAC, CIMIC maintains alarge collection of satellite
images acquired through various sources. Specificaly, the CIMIC-RAC currently stores and
manages satdlite imagery from various sources, including:

=« Direct downloads of AVHRR datafrom polar orbiting satellites, such as NOAA
12, NOAA 14 and NOAA 15, over the Northeast region of the US including New
York and New Jersey;

== LANDSAT and RADAR data obtained from NASA archives,

=« Hyper-spectra images from the Airborne Imaging Spectrometer for Applications
(AISA) sensor;

=« Vadue-added products, such as AVHRR NDVI biweekly composites from the
NASA EROS data center; Aeria ortho-photographs provided by various private
companies, and

=« Vdue-added products generated by various experts.

In addition to the images from a variety of space borne sadlites, other data includes ground
data from continuous monitoring weather stations, and maps, reports, data sets from federd,
date and loca government agencies. The problem is how to efficiently manage and store this
diverse type of information and how to effectively serve the diverse st of end usars. In
traditiond domains such as banking, insurance, and retall industries data warehousing has been
successfully implemented to address this problem (inmon96). In such industries, the problem of
how to design and implement data warehousing has been well researched over the years and is
well understood. In nontraditional domains such as the Environmenta and Earth sciences, the
problem of gpplying data warehousing technology is complex and needs further study.

2. Challenges

Environmenta data warehouse is an example of a spatid data warehouse. “Spatia Data
Warehouse is defined as an integrated, subject-oriented, time-variant, and nonvolatile spatid
data repoditory for data analyss and decison making [8].” A data warehouse may use one of
the data modds such as the star schema, fact congtdllation schema, snowflake schema or the
muiti-dimensiond modd. For example, in a sar schema, the data warehouse contains a centra
table cdled the fact table, comprising of the keys of each dimension, and a table for each
dimension. In aspatid data warehouse, the dimensions may include both spatia and non-spatial.
Spatid Data warehouses pose many chalenging requirements with respect to the design of the
data modd due to the nature of andyticad operations and the nature of the views to be
maintained by the spatial warehouse.
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The firg chdlenge is due to the multi-dimengona nature of each dimension itself. In atraditiona

data warehouse the various dimensions contributing to the warehouse data are Smple in nature,
each having different atributes. On the other hand, the different dimensions in a spatid data
warehouse comprise of different types of data, each of which is multi-dimensond. The various
rader images such as satdlite downloads, images generated from these satellite images
describing various parameters including land-use, water, temperature have multiple dimensions
incdluding the geographic extent and coordinates of the image, the time and date of its capture,
and resolution. Other such examples include agrid photographs. The regional maps represented
as vector data dso have a tempord dimenson as they change over time. The streaming data
collected from various sensors placed at different geographic locations that sense temperature,

ar quaity, amospheric pressure, water qudity, dissolved oxygen, minera contents, sdinity,

agan have both spatid and tempora dimensons. Other dimensions include demographic data,
census data, traffic patterns, and many such asthese.

The second chdlenge is due to the nature of the queries posed to the scientific warehouses. As
the queries typicdly involve accessng multiple dimensions, each of which in itsdf is multi-
dimendgond. We illudrate this with the following examples

Example 1: A user may want to look at the changes in the vegetation pattern over a certain
region during the past 10 years, and see their effect on the regiona maps over that time period.
This involves layering the images representing the vegetation paiterns with those of the maps
whose timeintervas of vaidity overlgp, and then traverse aong this tempord dimension with the
overlad image. In the traditional data warehouse sense, this amount to first congtructing two
data cubes adong the time dimensions for each of the vegetation images and maps, and then
fusng these two cubes into one. One may envison fusing of multiple cubes. For example, if the
user aso wants to observe the changesin the surface water, population, etc., due the changesin
the vegetation pattern over the years, fuson of such multiple cubesis needed.

Example 2: Ancther user may want to smulate a fly-by over a certain region saring with a
specific point and eevation, and traverse the region on a specific path with reducing eevation
levels & a certain speed, and reaching a destination, effectively traversng a 3dimensond
trgectory. This query involves retrieving images that span adjacert regions that overlap the
gpatid trgjectory, but with increasing resolution levels to smulate the effect of reduced devation
level. Another important aspect of serving such queries additiondly requires controlling the
gpeed at which they are displayed to maich the desired velocity of the fly-by.

3. Spatial Database System Architecture

The ingestion, processing and storing of satellite imagesin CIMIC is done as shown in Figure 1.
Images are downloaded from NOAA satdllites with the Quorum HRPT antenna and receiver
systems. Once a day the new raw image files are moved to oversized hard drives on a UNIX
HP platform. At the same time, a new dements.dat file with ephemeris data is captured through
the web and placed in the PC running the QTrack ingest software, which assures that images
ingested later on will have updated orbitd eements information and require less navigationa

correction.
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Figure 1. Preprocessing and I ngesting of Satellite | mages

On the HP. platform, raw files are fist classfied by sze. Files less than 20mb are automaticaly
eliminated, and the remaining raw files are converted to leve-1b by a quick-ingest routine, and
then compressed. Leve-1b files then go through the remap routine where images are clipped to
a specific area of interest (New Jersey and surroundings) and projected to the Mercator

projection. The resulting remap files are saved in an interna format (RAT format) and as bitmap
files. These bitmap files are then classfied using normdized regression routine, which employs a
tool developed by NEC. Specificdly, images with high regression coefficient (0.80 or grester)

are classfied as cloud free for the region of interest and flagged as so in the database. The RAT
format files that emerge from the remap tool are used to creste NDVI's. These NDVI's

populate the database and become available to users through the web, and bi-weekly collection
of NDVI's are made into a sngle NDVI images composite and are also available through the
web. Due to the limited use of DBMS extenders for handling spatid data, we have
implemented the database in two separate modules. One the rdationd DBM S to store metadata
and thumbnail of images, and another a spatid datalflat file for images. Image files are tied with
the DBMS by linking the image-id in the database with individud image files. The metadata of

the images is maintained by an Oracle database through which image thumbnail images can be
obtained. These images are indexed using an SS-Tree for enhancing the response time for the
queries and insertions.

Interfaces are provided to querying the database based on time of capture, particular satellite or
sensor indrument, type of image such as raw, composites, NDVI, water, temperature, etc.

Essentidly, users are provided with the image-ids, and the actud image is retrieved by clicking

on the relevant image-id. Currently, it does not provide powerful capabilities to let users
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perform complex queries for advanced data analyss, such as trend or pattern andysis. In
addition, no visua display tools are available to dlow usersto view image pattern changes over
certain period of the range queries displayed with a speed specified by the users, nor
cgpabilities to handle queries that Smulate a fly-by over certain region as described in Examples
land2.

Currently it uses ArclMS from ESRI to process the image files (in .shp format), including
layering the images, populating the metadata associated with the images, coloring, and
compaosing fly-bys. These are then published on the web o that users can view them, zoom-
infout, move in different directions (north, south, east, west), or get associated metadata by
clicking on a specific place. However, this is accomplished manualy only for a pre-specified set
of queries. Our god is to accommodate ad-hoc queries by employing a data warehouse. As a
result, for example, the above-mentioned fly-bys can be automaticaly generated upon users
request.

4. The Spatial Data War ehouse System Ar chitecture

Our system comprises of a friendly geographic user interface, a powerful query processing
engine that is capable of supporting various OLAP operations, an output rendering engine, and
an spatial data warehouse, as shown in figure 2. Our data warehouse is based on the cascaded

star model, described in section 6.
Query Environmental
Processing Data Warehouse
Data integrator

Image M etadata

Figure 2. System Architecture

Web Based User Interface

Output
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The data from different repositories, such as metadata databases, image database, databases of
rea-time dreaming daa from environmentd sensors, etc., ae firsd extracted, vaidated,
transformed and then findly integrated, before loading into the warehouse. The data in the
warehouse is periodicaly refreshed to reflect updates at the sources and purged from the
warehouse, perhaps onto dower archival storage [10].

In genera, the reason one builds a data warehouse is to construct data in a structured way and
to dlow pre-processing so that users can turn the data into useful knowledge quickly.
Operationa databases maintain state information, while data warehouses typicdly mantain
higorica information, and as a result, data warehouses tend to be very large and grow over
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time. Hence, the sze of the data warehouse and the complexity of queries can cause queries
process to take very long to complete, which is unacceptable in most decison support system
environments. Also, a mgor performance chdlenge for implementing query processng and
output representation is how we congtruct data warehouse in an efficient way.

4.1 Congtructing an Efficient Data War ehouse

There are many ways to achieve data warehouse performance goas. Query optimizations and
query evauation technique can be enhanced to handle aggregations better, or using different
indexing grategies like bit-mapped indexes and join indexes, etc. We consider implementing our
GIS warehouse in the following two specific aspects to facilitate congruction of the efficient
data warehouse.

One commonly used technique is to sdlectively materidize/pre-compute frequently used queries.
If we can do this pre-computation effectively and efficiently, then we can store many frequently
accessed higtoricdl results in the data warehouse combined with different time periods, different
resolutions, different aggregations, and different views, etc, a users interests. In this way, the
output processng can be achieved very fast, and sometimes automaticaly without any more
computation efforts.

Firdly, let us look at the pre-computation for non-spatia data that are sored in RDBMS and
are associated with spatial data. Picking the right set of queries to materidize isanontrivid task.
For example, we may want to materidize a query thet is rdatively infrequently used if it heps us
answver many other queries quickly. We adopt the linear cost model from [8], where the data
are stored in multi-dimensiona data cubes, and each cdll of the data cube is aview conssting of
an aggregation of interest. The values of many of these cells are dependent on the vaues of

other cells in the data cube. One common and powerful query optimization technique is to
materidize some or dl of these cdls rather than compute them from raw data each time. A

lattice framework is used to express dependencies among different cdlls in the totd or partid

order, and a greedy algorithm that works df this lattice determines a good set of cdls to
materidize [9]. We dl know that dimensons of a data cube consst of more than one attribute,
and the dimensions are organized as hierarchies of these attributes. For a smple example, the
timedimengon can be organized into the hierarchy: day, week, month, and year asfollows:

/ o \

W eek M o|nth
\ / Y ear
None

Figure 3: Sample Time Hierarchy

In the presence of above hierarchy, the dependency relaionship is obvioudy seen. Condder a
query that groups on the time dimenson only, and we can have the following three queries
possble: (day), (month), (year), eech of which groups a a different granularity of the time
dimension, dso if we have totd avalable for by month, we can use the results to compute the
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total grouped by year. Generdly we sdectivdly materidize the data cube based on query
dependencies introduced by the conception of hierarchies.

Secondly, it is dso essentid to pre-process patid data efficiently, which are more complicated
than computing non-spatia data. For example, we may pre-process digital maps at different
resolution levels and store them in the data warehouse, and users can combine them randomly
to gimulate a fly-by, or pre-overlay the images representing the vegetation patterns with those
of the maps having the same time intervas of vdidity, or pre-group a multi-color coded map to
emphasize a particular category, or pre-interpolate spatial data over alarge areawhich refersto
the process of deriving eevation data for points where no data samples have been taken, etc.
There is a big chdlenge for our project since our pre-processing is based on users most
frequent access interests that have to be updated frequently to meet changes.

Ancther chdlenge is that the above partia or tota order reationship may not be suitable for
gpatial data dependency. For example, there is no dependency relationship among resolutions,
and we can’'t compute high-level resolution based on low-leve resolution or vice versa, or we
can't overlay two images based on another overlad image. Finding a dependency reationship
among spatid data to avoid processing every raw image from scratch is our next step.

Another technique is to congtruct our data warehouse modd in a different way thet is an
extenson of the gar schema, in which each dimengion itsdf has a sar schema of its own. We
will explore thisin detail in the following section.

4.2 The User Interface, Query Processing and Output Rendering Engines

A web based high-level user interface to a GIS must provide users with the necessary tools to
dore, retrieve, and andlyze data so that they can perform their applicationspecific functions.
More importantly, it is used to perform complex data andyss from the data warehouse without
writing programs and should be comprehensive enough to let users get detailed analysis results
and knowledge.

Moreover, after the trandated SQL queries are processed in the data warehouse, an output will
present multi-dimensional views of data to various front-end tools through different output
processing engines. For example, OLAP servers can execute al OLAP operations, such as
roll-up, drill-down, dicing and dicing, and generate results for data anayss and reporting,
decision making strategies and advanced data mining. At the same time, users could require the
data representation as the generation of afly-by video with atrgectory, devation and velocity.

When a spatid database is to be used interactively, graphica presentation of spetid data types
(SDT) vauesin query resultsis essentid. It is aso important to enter SDT valuesto be used as
“congants’ in queries viaagrgphica input interface. The god of querying isin generd to obtain
a“talored” picture of the space represented in the database, which means that the information
to be retrieved is often not the result of a sngle query but rather a combination of severd

queries. For example, in GIS gpplication, the user may want to see a map built by graphicaly
overlaying the results of severa queries. Therefore, a user interface for output presentation

should have a least two sub-windows (1) a text window for displaying the textud
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representation of a collection of objects, containing the metadata or dphanumeric attributes of
eech gpatid object, (2) a grgphicd window containing the overlay of the graphica
representations of spatid data of severd object classes or query results, which could be a
generation of a fly-by video. We will consder implementing our system in this way in the near
future.

The query engine trandates the user inputs as SQL queries that will be inserted into data
warehouses for further processng. The output representation engine is deding with data
representation using existing software such as PIT and IDRISI or newly devel oped applications.
This part is mainly complicated by users requirements because there are a lot of decison
support queries that are much more complex than OLTP queries and make heavy use of
aggregation, and thisis bascaly OLAP operations. Besdes this, most users need some specific
visudization results such as fly-by over a certain region saring with a specific point and
elevation, and traverse the region on a specific path with reducing eevation levels a a certain
gpeed, and reaching a dedtination, effectively traversing a 3-dimensond trgectory, or a fly-by
over a certain time period for vegetation pattern change within New Jersey area, which is a
process of image manipulation and representation.

5. Traditional Data Warehouse M odels

A number of data models have been proposed to conceptually mode the multi-dimensiond data
maintained in the warehouse. These include the star schema, the snowflake schema, and the fact
congelation schema. Since our data modd, the cascaded star model, is an extension of the star
mode, in the following, we present these three modds with examples, and bring out the
limitations of these modelsin representing the datain our spatid data warehouse.

5.1 The Star Schema

Perhaps, star schema, firgt introduced by Ralph Kimball, is the earliest schema used to model
the data warehouse implemented as a reationa databases. In this schema, the data warehouse
contains a large centrd table (fact table) containing the buk of data (dimensons) with no
redundancy, and a set of smdler atendant tables (dimenson tables) with one for each
dimengon. The schema graph resembles a sarburdt, with the dimension tables displayed in a
radia pattern around the centrd fact table, as shown in Figure 4, where A isthe fact table, and
b, ¢, d, eand f are dimensions and represented by dimensiond tables.

b@ C

d. e
f

Figure 4: The Star Model

Note that in the star schema, only one dimension table represents each dimension, and each
dimengion table contains a set of atributes and joins with fact table by common keys when
implemented as a relational database. Moreover, the atributes within a dimension table may
form either a hierarchy (tota order) or a lattice (partid order). Currently, mogt traditiona data
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warehouses use a dar schema to represent the multi-dimensonal data modd as it provides
strong support for OLAP operations.

To illugrate, in the following, we provide an example of the implementation in star schema [8].
Suppose the multi-dimensiond data for the weether in northeast region in USA congdts of four
dimensons. temperature, precipitation, time, and region name, and three measures
region_map, area, and count, where region_map is a spatid measure which represents a
collection of spatia pointers pointing to corresponding regions, area is a numerical measure
which represents the sum of the tota areas of the corresponding spatial objects, and count is a
numerical measure which represents the tota number of base regions accumulated in the
corresponding cell.

The following figure illudtrates the implementation for astar modd in this case:

The following tables show some sample data set that maybe collected from a number of

Temperature Regio_n_name——b @w
Range '\\ Time i
Description Temperature Ly
Precipitation Region
Precipitation A// State
Range Region_map \ Time
Description Area Day
Count Month
Year
Season

Figure5: A sample star model

wesather digricts tested in northeast of USA.
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Region_name Time Temperature Precipitatio
n

Alll 02/23/01 33 1.4

B111 02/24/01 41 1.5

Region_name District City Region State
Alll A Flushing 111 NY
B111 B Edison 111 NJ
Time Day Month Y ear Season
02/23/01 23 February 2001 Winter
02/24/01 24 February 2001 Winter
Temperature Range Description

33 11 Chilly

41 12 Mild cold




Precipitation Range Description
14 21 Middle
1.5 22 Middle

From this sample, we can see that a tar model consigts of a fact table with multiple dimenson
tables, and the fact table joins the dimenson tables with different keys. In this example, all

attributes in each dimenson table are only one-dimensiona and can be expressed completely in
one table. Our quegtion is: if some or dl of the attributes in the dimengion tables are dso multi-
dimensiond, i.e., one atribute in one dimension table has multiple atributes associated with it,
how can we implement it in this modd? The answer isimpossible.

5.2 The Snowflake Schema

Snowflake schemas provide a refinement of star schemas where the dimensona hierarchy is
explicitly represented by normalizing the dimension tables, and therefore further splitting the deta
into additional tables (see Figure 6). Such a table is easy to maintain and saves storage space
because a large dimension table can become enormous when the dimensond dructure is

included as columns.
e
[ )

e

Figure 6: The Snowflake Model

However, only some dimensond tables are normdized and this normdization reduces the
effectiveness of browsing since more joins will be needed to execute a query. When applied to
gpatid attributes for each dimension tablein our casg, it is obvioudy not well suited.

5.3 The Fact Congtellation Schema

Sophigticated gpplications may require multiple fact tables to share dimenson tables. The
dimensons of this expanded star schema can be normdized into a snowflake schema These
multiple fact tables can separate the detail and the aggregated vaues insead of maintaining a
sngle and huge fact table, which may speed the queries processing. See Figure 7 for this
schema, where fact table A and B share the dimensonsh and i.

Figure 7: The Fact Constellation Model
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However, there are some disadvantages of using the fact congtellation schema. For example, for
data warehouse with high cardindity, i.e. high number of hierarchy, numerous fact tables must
be created, which increase the complexity of the design. Furthermore, for spatid oriented
atributes for each dimenson table, only one dimenson table is not enough for holding the
properties of each attribute.

6. The Cascaded Star Model
In this section, we present an outline of our spatial data warehouse modd, called the cascaded

star schema, which is an extenson of the star schema, where each dimension itself has a star
schema of its own. There are a number of research sudies in the area of spatid data
warehouses (see the reference list). The work proposed by Han et d. is closely related to our
work. Han et . [8,9] study the problems associated with the design and construction of spatial
data cubes. It digtinguishes the various dimensions in the spatid data warehouse as non-spatid,
Spatid-to-non-patid, spatia-to-gpatia, based on how they transform when that dimension is
generdized. They provide how the various operations such as roll-up, drill-down, dicing and
dicing, and pivot can be carried out. While we recognize that each spatid dimension in a data
warehouse in itsdf is multi-dimensional and argue that the data warehouse modd need to be
enhanced to handle this. The cascades star schema is shown in Figure 8, where A is the fact
table, and b, ¢, d, eand f are dimensions that are also multi-dimensond.

Figure 8: The Cascaded Star Model

The multi-dimensond nature of each dimengon isillusirated with an examplein figure 9. In here,
the fact table comprises of the various dimensions of the spatid data, which include land-use,
temperature, water and vector maps. As can be seen, each of these dimengions in turn is multi-
dimensond, represented as a dar. To illudrate, the land-use dimenson comprises of a fact
table of its own with dimensons time, spatid and atributes, where the time dimengon is
comprised of attributes year, date and time of capture of the image; the spatid dimension is
comprised of the x, y coordinates of the lower left hand and corner and the upper right hand
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corner of the region covered by the image, and the resolution; the attributes dimengion is
comprised of the amount of vegetation, developed, barren, forested upland, etc. in the image.
Smilar to land-use, as can be seen from the figure, themes and water dimensions are dso multi-
dimensiond in nature.

In the paper, we will present our detailed data modd, and introduce the necessary primitives
that enable the evauation of different queries. We will dso discuss what the different warehouse
operations such as drill-down, rall-up, mean in the semantic sense in the cascaded star schema,
and show how they can be carried out. We will present the architecture of our prototype and

the guiddines for implementation. —_—
Year
Land-use Date
T\ Timestam
Category Y 4 (LX, LY)\
Vector Map Time (UX, UY)
Year ) / Spatial /
Dat Themes Land-use Resolution
ate ] \ )
I~ Time Temperature \AMTOUES N o
Timestamp Vegetation
~— Spatial Water Developed
Types Barren
Vector M
@ Water Forested
— 1 - Etc.
(LX,LY) Dot Image ID . J
(UX, UY) . Time
Line .
. ear atial VR
Resolution Polygon s ™~ (LX,LY)
Dae Attributes
. (UX, UY)
Timestam,
- .
- ~ Resolution
NDWT Index
Chlorophy
Temperature
N

Figure 9: A Sample Cascaded Star Model

The following tables show some examples of these dimensons:

Fact table:
Land use Temperature Water Vector Map
Abc 44 221 111
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One dimension table: “Vector Map”

Vector_map Themes Time Spatial Types
111 New Jersey 01 A
Another dimension table for an attribute“Time” in “Vector Map”:
Time Y ear Date Timestamp
01 2000 3/23/00 12:00am

In the above example, we can see that a fact table is joined with severa dimension tables asin
the star modd, and each éttribute in the dimension tables is self multi-dimengona with another
dimension table joined with it. In this easy way, we implement a cascaded star modd for each
multi-dimengiond attribute in the dimension tables, which explicitly provides support for attribute
hierarchies. However, the previous star schema cannot accomplish such multi-dimensiond
attribute Sructuresin asingle way.

We want to address the difference between a cascaded star model and a snowflake moddl.
Someone may get the false impression at first sght that there is no big difference between these
two models since they both have multiple extensions for some spatid dimensions. However, a
snowflake modd just normaizes some dimensions to reduce a big dimension table for easy
maintenance and storage saving, whereas a cascaded star modd claims each dimension itsdf is
multi-dimensiond by the nature.

6.1 OLAP Operations on the Cascaded Star M odéel

Now let us examine some popular OLAP operations, i.e., roll-up, and drill-down, dicing and
dicing, and pivoting, and andyze how they are peformed in the spaia data cube we
congtructed in a cascaded star model. OLAP are traditiona data warehouse operations that
provide users to view data from different perspectives, hence, OLAP support user-friendy
environment for data andysis and prepare for advanced data mining process. In the system
architecture we proposed, it is part of the output rendering engine.

These operations have been discussed intensively in the traditiond data warehouse and spatia
data cube in star mode [7]. Our concentration is that how they can be efficiently operated in the
dar cascaded mode with sdlectively materidization, which means aggregating and generdizing
data from multi-dimensiond attribute tables. Consider the example 1 we mentioned above. A
user may want to look a the changes in the vegetation pattern over a certain region during the
past 10 years, and see their effect on the regiona maps over that time period. This query
involves two very commonly used querying operations of OLAP: “drill-down” and “roll-up’.
We condructed the time hierarchy with a partid order in the above and they underlie these two
operations. Drill-down is the process of viewing data at progressvely more detailed levels, for
example, a user drills down by first looking at the vegetation pattern per year and then
comparing the vegetation pattern by specific month within different years. Roll-up is just the
opposite, which is the process of viewing data in progressvely less detall. In roll-up, a user
darts with the vegetation pattern on a given month, then looks at the tota pattern in that year,
and finally, compares the patterns among 10 years. With sdective pre-computation of certain
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data cdls in the multi-dimensiona data cube, such as vegetation pattern for each month within
each year, we can easly process this query.

7. Related Work

Research in data warehousing is a relatively new area. In the following we review the research
contributions as well as the prototypes that are most relevant to our work. Han et d. [8,9]
proposes a spatial data warehouse model in which both spatial and non-spatia dimensions and
measures exi<. It proposes spatia data cube congtruction based on gpproximation and selective
pre-computation spatid OLAP operations, such as merge of a number of spatidly connected
regions. The pre-computation involves spdia region merge, spatid map overlay, spatid join,
and intersection between lines and regions.

Microsoft TerraServer [2] dtores aerid, sadlite, and topographic images of the earth in a
database available via the Internet, where the users are provided intuitive spatid and text
interfaces to the data. Basically terabytes of “Internet unfriendly” geo-spatid images are
scrubbed and edited into hundreds of millions of “Internet friendly” image tiles and loaded into a
data warehouse. The TerraServer adopts a “thin-cdlient and fat- server” model, which conssts of
three tiers: the client tier, the application logic tier, and the database system tier. Users can
search the data warehouse by coordinates and place names, and can easily view the images
with different resolutions by smply dlicking on it. The gpplication logic responds to the HTTP
requests and interacts with the back end database to fetch the results. The database is a SQL
sarver 7.0 RDBMS containing al images and meta-data of images that are pre-processed and
dored, for example, dl levels of the image pyramid (7 is maximum) are pre-computed and
gored. However, this sysem does not provide powerful and comprehensve image pre-
processing tools such as spatial OLAP for advanced spatid data analysis. Moreover, the
RDBMS integration with image repository has inherert problems, as SQL server 7 stores
imagery in JPEG or GIF forma which does not have much flexibility in handling spatia data.

However, none of the prior researchers recognize that each dimension in a data warehouse in
itsdf is multi-dimengond. As a result, much of the work in spatid data warehousing is based on
the star model. However, this work does not address the issue of the nature of spatial data
warehouse.

8. Conclusions and Future Research

In this paper we focused on the problem of applying data warehousing technology in order to
efficiently manage, store as well as effectively serve users of environmental and earth science
information centers. An example of such centers is the Regiond Application Center, which is
collaboration between NASA, Rutgers CIMIC and New Jersey Meadowlands Commission
(NIMCQC). In this paper, we recognize that environmental data warehouse differs from that of a
traditiona data warehouse in that, each dimengion in itsdf is multi-dimensond in naure. We
have proposed a new data model, called the cascaded star model to accommodate this. In this
paper, we have provided alimited trestment to the OLAP operations. Our future work includes
formdizing the necessary primitives that enable the specification and execution of queries, and
the semantics of various warehouse operations including, drill-down and roll-up and the
evauation of these operations.
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