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Abstract

We present here a new way of indexing and retrieving data in huge datasets having a high
dimensionality. The proposed method speeds up the selecting process by replacing scans
of the whole data by scans of matching data. It makes use of two levels of catalogs that
allow efficient data preselections. First level catalogs only contain a small subset of the
data items selected according to given criteria. The first level catalogs allow to carry out
queries and to preselect items. Then, a refined query can be carried out on the preselected
data items within the full dataset. A second level catalog maintains the list of existing first
level catalogs and the type and kind of data items they are storing.

We established a mathematical model of our indexing technique and show that it consider-
ably speeds up the access to LHCb experiment event data at CERN (European Laboratory
for Particle Physics).

1 Introduction

Indexing and data selection in a huge data set having a high index dimensionality is one of
the key issue in the domain of data management. Recent papers on the subject address this
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problem in specific cases such as spatial databases [6, 5, 7], similarity searches [5, 1, 8]
or string matching [4] but do not offer global solutions. Moreover, existing methods are
outperformed on average by a simple sequential scan when the number of dimensions is
larger than approximately ten[13].

On the other hand, the variety of useful selection criteria on a given set of data is far from
being infinite. They can usually be reduced to a small number of indexes, say 20 to 30
maximum (which is already a very high dimension). Thus, from all values contained in
a data item (tens of thousands in some cases), only this very reduced subset of 20 to 30
values is relevant for the selection criteria.

This property is used to define a new indexing method based on two levels of catalogs. This
method greatly speeds up the linear selecting process by replacing scans of the whole data
by scans of matching data. Data is efficiently selected using both server side and client side
preselections and the power of the SQL language.

Section 2 presents the context of this work, i.e. the LHCb experiment at CERN and its
requirements in terms of data indexing and retrieval. Section 3 presents search results in the
domain of data indexing and emphasizes their respective strengths and weaknesses. Section
4 presents the proposed indexing schema and shows how it can be used efficiently for data
retrieval. Section 5 evaluates the performance of the new indexing method compared to
sequential scan1. Section 6 draws the conclusions.

2 Context

The work presented here is based on studies made at CERN (European Laboratory for
Particle Physics) in the context of the LHCb [10] experiment. We present here briefly the
problem and the requirements we had.

2.1 The LHCb experiment

LHCb [10] is the name of one of the future Large Hadron Collider (LHC) experiments. Its
primary goal is the study of the so called CP Violation [11]. This physical theory suggests
that, in the world of subatomic particles, the image of a particle in a mirror does not behave
like the particle itself [9]. One of the fundamental grounds of this effect is the existence of
the bottom-quark and its cousin the top-quark. This is precisely this bottom-quark, under
the form of the B-meson that the LHCb experiment intends to study. The only way to pro-
duce particles like this meson is to collide other high energy particles (accelerated protons
in the case of LHC). This collision will produce hundreds of new particles among which
the physicists will try to detect B-mesons and to measure their parameters and behavior
(especially the way they decay).

1Sequential scan is besides our method the only method which, to our knowledge, fulfills our requirements
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2.2 Some figures

LHC will let bunches of protons collide every 25 ns, i.e. at a frequency of 40 MHz. Such
a collision is called an event and creates lots of particles (some hundreds). The different
detectors constituting LHCb are able to detect all created particles and to specify their
energy and momentum. The global output is about 1 MB of data per event across 950000
channels. This yields 40 TB of data every second !

Most of this data will not be stored since more than 99,9999% of it is not interesting.
Actually, the detector has a four level trigger system that allows a reduction of the data rate
from 40 TB/s to 20 MB/s per second, which is two million times less. This factor is due
to both a reduction of the event size to the order of 100 KB and to a reduction of the event
rate to 200 Hz. Assuming that the LHC will run 24 hours a day and 7 days a week, LHCb
will produce an order of 1010 events per year, which is one petabyte (1 PB = 1015 bytes) in
term of data size.

Table 1 summarizes the figures concerning the data being saved, indexed and later retrieved
by physicists for analysis.

Size of a data item 100 to 200 KB

Nb of items 109 to 1010 per year

Global size of the database� 1015 bytes = 1 PB per year

Data items input rate 200 Hz

Data input rate 20 to 40 MB/s

Table 1: Figures concerning LHCb data

2.3 Data selections

The analysis by physicists of the LHCb data is rather specific. It is mainly based on an
iterative process consisting in selecting some data items (typically in the order of 106) with
rather complicated selection criteria, downloading the items, running some computation on
them and modifying the selection criteria. A criterion may for example make use of the
energy of the event, of the types of particles involved or of the number of decays. The
number of iterations is rather small (in the order of 10) but the selection of the data still
appears to be the key of the physics analysis.

Another issue is the number of indexes that a given criterion uses. This is typically in the
range of 10 to 30 parameters with a mixture of numeric, boolean and strings. These indexes
are not always the same for all criteria but a few number of criterion types can be defined
(less than 10) for which the set of parameters is fixed. Due to the high dimensionality of
the event data (10 to 30 indexes), up to now, at CERN, the only data selection algorithm
was a linear scan of the whole dataset.
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3 Related Work

There are not many research approaches addressing the issue of indexing generic data in a
high dimension space. Weber et al [13] show that there exists a dimension over which any
algorithm is outperformed by a sequential scan. Experimentations show that the sequential
scan outperforms the best known algorithms such as X-trees[2] and SR-Trees[5] for even a
moderate dimensionality (i.e.� 10).

These two algorithms are based on data partitioning methods. The ancestor of the data
partitioning method is the R-tree method [3] which was further developed under the form of
R�-Trees [6]. However, these data partitioning methods perform poorly as dimensionality
increases due to large overlaps in the partitions they define. This is due to exponential
increase of the volume of a partition when the number of dimensions grows.

The SR-Tree method tries to overcome this problem by defining a new partition schema,
where regions are defined as an intersection of a sphere and a rectangle. The X-Tree
method, on the other side tries to introduce a new organization of the partition tree which
uses a split-algorithm minimizing overlaps. The results are good at low and moderate di-
mensions but are outperformed by a sequential scan for dimensions larger than 10.

4 A two level indexing schema

The aim of our proposed schema is to allow most of the selection to be carried out using
catalogs (tag collections) that contain only a part of the data items and, for each item, only
a subset of its values (a tag). Several catalogs are built, each for a different type of query.
This allows to perform a very efficient preselection of the items before accessing the real
data items.

4.1 Tags

A tag is a subset of a data item comprising several parameters plus a pointer on this data
item. A pointer is simply the information needed to find and retrieve the data item, be it a
regular pointer (memory address), a file name, an URL or something else.

A tag contains the few values (also called parameters) of the data item that are used as
selection criteria. For a given criterion, or even a given type of criterion, the number of tag
values is small (10 to 30) which results in a tag size of 10 to 200 bytes. For example, in the
case of some physics events, one may want to include in the tag the energy, the nature of
the event and the number of particles involved.

Several types of tags can be defined, with different sizes and contents, even for the same
data item. Different tags will point to different subsets of the data items and correspond to
different criteria.

Tags are small, well structured objects that can be easily stored in a relational database.
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Thus, they can be searched using the power of SQL-like languages. The storage of tags in
a relational database is trivial : each type of tag is stored in a different table, whose columns
are the different values included in the tag plus one for the pointer to the real data item. The
data item itself does not need to be part of a database.

Tags will be used to make preselections without loading the data items, which reduces the
amount of loaded data by a factor of 103 in the case of LHCb.

item 202

...

item n2

item 201 ptr ...y1 yp

...

Tag typesTag Collection "TCn"

Tag Collection "TC1"
Data items

Data items

item 101

item 102

...

item n1

ptr ...x1 xn

TCn

TC1

locationname type ...

type1

typek

x1, ..., xn

y1, ..., yp

name description

...

...

...

List of Tag Collections

Figure 1: Structure of the tag collections

4.2 Tag collections

As explained above, tags are subsets of data items. A tag collection is a set of tags, all of
the same type. It corresponds to a set of data items but with only a subset of the data items
values. The values themselves fulfill some criteria, such as being in the interval between a
minimal and a maximal value. Thus, two different tag collections may correspond to two
different subsets of data items, even if they use the same set of values (type of tags). These
subsets may of course overlap.

Tag collections are stored in a relational database as a table, where each line is a tag and
columns correspond to the values contained in the tags (Fig. 1). The tag collections form a
list of tag collections, each with each associated tag type.

Since tag collections only contain tags for a given subset of the data items, they act as a
first preselection on data. For example, in the LHCb experiment, a collection of tags is in
the order of 105 smaller than the database, i.e. around 10 GB. A factor 103 is due to the
tag size (section 4.1) and another 102 factor comes from the fact that, on average, less than
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1% of the data items have a tag in a given collection, i.e. tags whose values are within the
predefined ranges associated to that collection. Thus, a collection has typically 107 to 108

entries.

Collections can be defined by any user or group of users who wants to be able to use a
new selection criterion. The creation of a new collection may either require a scan of the
full set of data items or is extracted as a subset from another collection. Scanning the full
set of data items is time consuming but will be far less frequent than the selection of data
items. We expect that there will only be 10 to 20 “base” tag collections in LHCb. All other
collections will be subsets of base tag collections.

4.3 Selection process

By selecting tags in tag collections instead of selecting directly data items, there is an
immediate gain. Only data items of interest are loaded instead of loading all items for each
selection.

This is specially interesting in the case that data items are not located in a database but in
regular files and loading a data item requires accessing a file containing many items. With
a pointer to the data item within the file, the item of interest is directly accessed and loaded.
Such a strategy of storing the actual data in regular files may actually be applied to many
problems since database management systems cannot handle petabytes of data easily.

Client

A
ccess T

ags
A

ccess D
ata

Data Server

Tag Server
1

3

5

7

2

6

8

data

tags

> 1 PB

10−100 GB

4

Figure 2: Data selection process

Furthermore, the 2-level indexing schema presented here offers a very powerful and flexible
way of applying various preselections allowing to reduce both the amount of accessed data
and the network traffic. The complete selection process is shown in Figure 2.

The steps involved in the selection process are the following :

1. The client selects a tag collection and sends a SQL query to be applied on tags from
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this collection. The usage of a specific collection is actually a first preselection made
by the physicist.

2. The query is processed on the server side.
3. Only matching tags are sent back. This minimizes the network load.
4. A second selection may be applied on the client side, for example for queries that

cannot be formulated in SQL and which require a procedural language such asC++.
5. Once the selection on tags is complete, requests for the corresponding data items are

sent to the data server.
6. Data items are retrieved (from files, in the LHCb experiment).
7. Retrieved data items are sent to the client.
8. A last selection may be performed on the full data items, in the case that some in-

formation was missing in the tags which did not allow to perform this more narrow
selection in a previous step.

Note that the separation between client and servers (a tag server and a data item server) on
Figure 2 allows for example to replicate the tag server while keeping the data item server
at a single location .

5 Performance evaluation

Let us evaluate the performance of our indexing schema. It is hard to compare our proposed
schema to existing indexing techniques since we don’t know of other indexing techniques
except linear scanning which are able to meet our requirements.

Two of the main high-dimensionality indexing schemas are X-trees[2] and VA-file[12].
The X-Tree method is outperformed by a sequential scan for a dimension exceeding 6 (see
[13]) and VA-files are only applicable to similarity-search queries. Thus, we only compare
our performances with the performances of the sequential scan method.

5.1 Some approximations

Let us make some simplifications and approximations in order to create a model of the
proposed indexing schema.

Type of data : We only consider one data type (integers). The cost of a comparison
between two values is therefore always the same. This is not the case in real life, where
data typically consist of numbers, booleans and strings. However, it is always possible to
express the comparison cost of a data item type as a factor of a single integer comparison.

Optimizations : No optimization of the query processing on tag collections are taken
into account. This means that tag collections are searched sequentially. Thus, the gain
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obtained by querying tag collections is really the minimum we can expect from the new
schema.

Data transfers : No optimization of data transfers are taken into account. Especially, we
do not consider pipelined schema where the data transfer of a given item could be realized
during the computation of the previous one.

Size of tag collections : For the performance analysis we consider only a single tag col-
lection with a fixed number of tags. The number of tags and the size of the tags may be
considered as an average among the different values of a real life example.

Complex queries : We do not take into account complex queries that could only be
processed by a dedicated program. In other words, step 4 of the selection process (Figure
2) does not occur here.

5.2 Theoretical model

Let us adopt the following notations :

N is the number of items in the whole database;
n is the average number of items in a given tag collection;
D is the number of values in a data item i.e. its dimension;
d is the number of values in a tag i.e. the dimension of the tag; we assume that all these

values are tested;
d0 is the number of values that are not contained in the tag but still need to be tested

(step 8 in Figure 2);
Tlat is the latency of the network which is used to transfer the data;
Ttr is the time used to transfer one value through the network; in second per value;

TIO is the time needed to load one value from disk into the memory;
TCPU is the time to compute one value, i.e. to compare it with another value;

q is the number of matching tags for the query we are dealing with;
tseq is the duration of the query using a sequential scan;
ttag is the duration of the query using the new indexing schema.

In the case of a sequential scan, the time needed to process a query is simply the time
needed for querying one data item multiplied byN. Each data item is read from disk,
transfered through the network and processed.

tseq= N (Tlat +D (Ttr +TIO)+(d+d0)TCPU)

It is independent of the size of the result.
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The time needed to process a query using the new indexing schema is slightly more com-
plicated to compute. Using the architecture depicted in Figure 2, we can divide it into two
parts : the durationt1 of the query on tags and the durationt2 of the query on data items.
The query on tags is carried out on the server. Matching tags are transfered to the client.
The query on data items is similar to the sequential scan method.

ttag= t1+ t2

t1 = n(d TIO+d TCPU)+q(Tlat +d Ttr)

t2 = q(Tlat +D (TIO+Ttr)+d0 TCPU)

Finally :
tseq= N Tlat +N D(TIO+Ttr)+N (d+d0)TCPU (1)

ttag= 2q Tlat +(n d+q D)TIO+q(d+D)Ttr +(n d+q d0)TCPU (2)

The query duration is dependent on the numberq of matching tags. Note that the assump-
tion that tags are transfered one by one to the client corresponds to the worst case. This
could be improved by sending tags by groups.

5.3 Interpretation

The terms in equations (1) and (2) can be divided into three parts : processing time (TCPU),
network transfer time (Tlat andTtr ) and data retrieval time (TIO). Let us consider them
separately here.

Processing time : the processing time ratio between tag collection access and the default
sequential scan is :

rCPU =
n d+q d0

N (d+d0)
= α

d+ γd0

d+d0
(3)

where α =
n
N

γ =
q
n

Sinceγ� 1 (comes fromq� n), we can be sure thatrCPU � α. This demonstrates that the
CPU time ratio is less than (but of the order of) the ratio between the number of tags in a
collection and the number of data items.

Network transfer time : the network transfer time ratio between tag collection access
and the default sequential scan is :

rNET =
2q Tlat +q(d+D)Ttr

N Tlat +N D Ttr

=
q
N

2Tlat +(d+D)Ttr

Tlat +D Ttr
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Sinced� D, we finally have :

rNET � 2
q
N

rNET � 2 α γ (4)

where α =
n
N

γ =
q
n

Sinceγ� 1, the network transfer ratio is at least of the order of the ratio between the number
of tags in a collection and the number of data items. In practice, we even haveγ� 1 (we
foreseeγ� 10�2 for LHCb) and thusridle� α.

Data retrieval time : the data retrieval time ratio between tag collection access and the
default sequential scan is :

rDR=
n d+q D

N D
= α (β+ γ) (5)

where α =
n
N

β =
d
D

and γ =
q
n

Usually,β� 1 andγ� 1. ThusrDR� α. This means that, in respect to data retrieval time,
we gain far more than just the gain obtained by the preselection on data items.

Let us estimateγ. By definition, γ is the proportion of matching tags in a tag collection
for a given query. Let us consider a very simple case where every part of the query is a
comparison and is fulfilled by half of the items. In addition, let us suppose that the data is
uniformly distributed. This leads to :

γ =
1
2d and

rDR

α
=

d
D
+

1
2d

Figure 3 gives the behavior of this ratio against the dimensiond for different values of D.

Roughly, rDR
α goes down from 1 to a minimum for dimensions between 0 anddm� 8 and

linearly goes up afterwards until it reaches 1 again for dimensionD. Clearly, we can
approximaterDR by α d

D if d � dm. This is exactly our goal since the data retrieval time
becomes proportional to the loading time of the tags.

For the LHCb experiment, the dimension of a data item isD � 20000. The minimum I/O
time is reached ford� 18 andrDR<

α
1000.

6 Conclusions

We presented a new way of indexing and selecting data in huge datasets having a high index
dimensionality. The method avoids linear scanning of the whole data set. Only a minimal
set of data is scanned, namely the values stored in tag collections. The selected tags point
to the data items that are then retrieved for applying a more narrow selection.
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Figure 3: Evolution of a majoration of the data retrieval ratio divided byα in function of
the dimension of the tag

By scanning tags in tag collections instead of a flat scan of all data items, the minimal gain
is proportional to the ratio between the number of data items and the number of tags within
the selected tag collections. In many cases, the effective gain is the minimal gain multiplied
by the ratio of the dimension of data items and the dimension of tags.

The proposed data items selection and retrieval schema was implemented at CERN, in the
context of the LHCb experiment and seems very promising. No enhancements have been
tested at this time but an implementation of a computer assisted parallelization is planned.
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