
Data Placement for Tertiary Storage

Jiangtao Li
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907 U.S.A.

jtli@cs.purdue.edu
Phone: + 1 765 494-6008

Fax: + 1 765 494-0739

Sunil Prabhakar
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907 U.S.A.

sunil@cs.purdue.edu
Phone: + 1 765 494-6008

Fax: + 1 765 494-0739

1 Abstract

In this paper we address the important problem of data placement in tertiary storage taking
object relationships into account. This work is in contrast to earlier schemes that either
focus on specific data types or assume that data objects are accessed independently. Five
new data placement schemes are developed. The effectiveness of these schemes is shown
through simulation. The proposed schemes, in particular the Edge Merge scheme, give
superior performance over schemes optimized for independent access.

We also show that our schemes can easily adapt to variations in the access pattern.
This also allows the schemes to be employed when no prior information about the access
pattern is available. Interestingly, our results show that the probabilities of object access
do not have a big impact on performance. On the other hand, changes to the clustering of
nodes have a significant effect. This result underscores the importance of the relationships
between objects for placement of data. The use of controlled replication for “free” is also
developed and shown to be effective in further improving performance. The study also
evaluates the impact of a secondary disk layer and prefetching.

2 Introduction

The tertiary storage layer in a hierarchical storage system is characterized by very large
data volume and very high random access latency. Both attributes are directly related to
the use of numerous cheap removable media sharing a small number of expensive drives
and robot mechanisms. The high access latency is typically dominated by media switch
time (for certain tape systems, however, the seek time may exceed the media switch time).
With ever increasing demands for storing very large volumes of data for applications such
as telemedicine, online multimedia document systems, and other large multimedia repos-
itories, large amounts of live data are being stored on tertiary storage systems. Random

193



accesses to data stored on tertiary storage can suffer unacceptable delays as media are
swapped on drives. The need for swapping media is dictated by the placement of data.
Judicious placement of data on tertiary storage media is therefore critical, and can signifi-
cantly affect the overall performance of the storage system.

The placement of data for specific domains such as multi-dimensional arrays [1], re-
lational databases [15], and satellite images [21] has been addressed earlier. Research on
tertiary storage placement in a more general setting has been addressed under the assump-
tion that the data objects are accessed independently [2]. This assumption is rarely valid in
practice – data objects typically are related and this is reflected in the access of the data.
For example, online manuals contain hyperlinks to related sections and other manuals, a
browsing session in a multimedia repository is typically guided by similarity between ob-
jects, and various test results of a given patient are likely to be accessed during diagnosis
or treatment. In this paper we address the problem of placement of data on tertiary storage
in a general setting without the assumption of independent access. Our approach is to ex-
ploit the nature of the access to the data to determine an optimal placement. This work is
orthogonal to related issues of data migration and scheduling. The problem of placement
of data on tertiary storage can be broken down into two sub-problems due to the significant
cost of switching media: i) allocation of data to media; and ii) placement of data within the
assigned medium. The problem of placing data within media has received some attention
and we employ existing solutions to this problem such as [2]. The focus of our study is on
the sub-problem of allocating data to media in order to minimize switching.

We propose and evaluate several placement schemes for tertiary storage systems based
upon data access patterns. The schemes can be employed even if the access pattern is
not known a priori, and can dynamically adapt to changes in access patterns. The study
considers the impact of the secondary storage buffer and caching policy on the placement,
and effective use of prefetching based upon the placement and access pattern. In an earlier
study we demonstrated that for the case of multimedia documents replication of objects
is an effective technique for reducing switching and improving performance. We study
the use of replication of objects on multiple media for the general case in this study. The
effectiveness of the proposed schemes is evaluated using a detailed hierarchical storage
simulator. Our results show that significant improvements (as much as 80% reduction in
average waiting time) can be achieved with our placement schemes. The remainder of the
paper discusses the issues involved, our proposed approaches, and sample experimental
results. Further details and results will be given in the full version of the paper.

3 Related Work

The placement of data for specific domains such as multi-dimensional arrays [1], relational
databases [15], and satellite images [21] has been addressed earlier. Research on tertiary
storage placement in a more general setting has been addressed under the assumption that
the data objects are accessed independently. Placement schemes based upon independent

194



document access probabilities and no replication have been proposed in [2, 18]. Optimal
arrangement of cartridges and file-partitioning schemes for carousel-type systems are in-
vestigated in [17]. Placement schemes for data on optical disks are developed in [3]. To
the best of our knowledge, our work is the first to address the issues of placement of related
objects (in a general setting) and replication.

Other researchers have addressed the use of hierarchical storage systems for multimedia
data. A cache replacement technique for managing secondary storage buffers when multi-
media objects are stored on tertiary storage has been developed by Ghandeharizadeh et al
[6]. The use of a pipelining mechanism that avoids the need for complete materialization
of an object on disk before initializing playback is presented in [5]. We have developed a
prefix-caching scheme with low jitter and startup latency for storing continuous media data
[14]. Storing video on hierarchical storage has also been studied in [20, 19]. The study
addresses I/O bandwidth issues at the various levels of the storage hierarchy. Scheduling
schemes for tertiary storage libraries are discussed in [4, 13, 8, 11] – any of these tech-
niques can be applied in conjunction with our research to further improve performance. In
[10] a prefetching algorithm based upon Markov-chain prediction of access is developed.
Models of tape systems and tertiary storage system parameters can be found in [7, 9].

4 Data Placement Schemes

In this section we first explain the nature of access for related objects. This is followed
by a description of the proposed tertiary placement schemes that take into account the
relationships between objects. Then we discuss the issues of adaptive placement, impact of
secondary storage, replication and prefetching.

4.1 Access Pattern for Related Objects

For efficient storage and retrieval of data it is critical to take into account the data access
pattern. Data objects can be accessed either directly, or through a link from another object.
Independent, or direct access to an object can be captured simply by the probability of ac-
cess. In addition to direct access to objects, users may access objects based upon links from
other objects (e.g HTML pages with links to other pages, or hyperlinks between manual
pages). Such access is also very common in a browsing scenario whereby users simply fol-
low links of interest. A user would typically begin by accessing an object and then possibly
following some number of interesting links. If none of the links are interesting, the user
may directly access some other object.

A Browsing Graph (BG) can be used to capture such access patterns. The browsing
graph consists of labeled nodes and labeled edges. Each node represents an object and
the label of the node gives the probability that the node will be accessed independently of
the previous visited node. A directed edge between two nodes represents a link from one
object to the other and the edge label gives the probability that the edge would be followed.

195



The sum of the probability of all edges going out of an object is not necessarily 1.0, since
it is possible that none of the edges will be followed. We use the term birth probability to
represent the probability of independent access to objects and death probability to represent
the probability that once the node is accessed, none of its edges will be followed. The death
probability of a node is simply 1 - (sum of outgoing edge probabilities).

4.2 Data Placement Schemes

Tertiary storage suffer from high access latency. The access cost in tertiary storage is
dominated by the media exchange operation and head position delay. The goal of data
placement is to minimize the expected access cost and reduce latency. In [2] it is shown
that a placement whereby the objects are placed sequentially in decreasing order of their
access probabilities is optimal. We call this the Birth Probability Scheme. This result,
however, is based upon the assumption that the objects are accessed independently.

Static Probability Scheme: The frequency of an object being accessed is usually dif-
ferent from its birth probability. The object birth probability is the probability of the object
being accessed directly, while the static probability is the probability of being accessed di-
rectly or indirectly. In other words, static probability represents the frequency of the object
being requested. Given the user browsing graph, the static probability of an object can be
easily computed by simulation. Our static probability data placement scheme is that the
objects are placed sequentially in decreasing order of their static probabilities.

Edge Merge Scheme: This scheme explicitly takes into account the links between ob-
jects. Once an object is requested, it is very likely that objects with high probability links
from this object will be accessed next. If such neighbors are placed on the same medium,
a medium exchange can be avoided. The main idea of this scheme is therefore to place
strongly related objects on the same medium. Ideally, all related objects are placed on the
same medium. However, the medium capacity will not allow this. Therefore related objects
may have to be spread across multiple media if the “cluster” of related objects is large. On
the other hand, if there are small “clusters” then the problem is to pack as many clusters as
possible on a single medium.

The basic idea behind edge merge is the following: Not all linked objects can be placed
together; therefore, we give priority to higher probability links. To achieve this, we start
merging objects that are linked by high probability edges into a new object. We define the
new object’s birth probability to be equal to the sum of that of the merged objects. Links
into and out of the merged objects connect to the new object. Objects are merged in de-
creasing order of the link probabilities. Merging is not done if the the cumulative size of the
resultant object will be larger than the medium capacity. When no further objects can be
merged, the cumulative objects are allocated to media. This allocation follows the optimal
scheme of [2] in decreasing order of the cumulative static probability.

Note that when two objects are merged, the cumulative birth probability is simply the

196



sum of the birth probabilities of the objects. Similarly, the probability for incoming edges
from the same object are merged. For outgoing edges, a weighted sum of the probabilities
is used if both merging objects have edges to the same object. The summing is done ac-
cording to the static probability of the merging objects. The resulting static probability of
the merged objects are computed in a manner similar to that explained earlier for the Static
Probability scheme.

Hot Edge Merge Scheme: This scheme is very similar to the Edge Merge scheme. The
only difference is that only edges that have a probability greater than a preset value (i.e. the
“hot” edges) are merged. The idea is that this scheme will result in media with very high
probability of access which will remain loaded most of the time.

Birth Hop Scheme: This scheme presents an alternative technique for combining
direct and indirect access patterns. As in the hot edge merge scheme, we hope to use
both object access probability and browsing graph information. The birth hop scheme
works as follows. We begin by assigning the object with the highest birth probability to a
blank medium. Following this step, we place as many objects as possible onto the same
medium in decreasing order of either edge probability (from objects already allocated to
the medium) or birth probability. Once the medium is full, we assign the object, from those
that are unallocated, with the highest birth probability to a new medium and repeat the pro-
cess. This operation is repeated until all objects are allocated.

Static Hop Scheme: This scheme is similar to birth hop scheme, except static prob-
ability instead of birth probability. The idea of this scheme is to allocate an object to a
medium, we can either choose an object with highest static probability, or we can choose
an object that has high probability edges with objects already on that medium.

4.3 Adaptive Placement

A key component of the proposed data placement schemes is knowledge of the access
pattern. Although it is useful to know this a priori, it is not critical to the success of the
proposed approach. Such information can easily be gathered from the system by keeping
track of object requests. Based upon the observed access pattern, the data placement on
tertiary storage can be tuned. In Section 5 we show the effectiveness of this adaptive
placement in response to changes in the access pattern. In the complete absence of access
information, the placement can begin with an initial guess for the access patterns followed
by progressive refinement as user requests are serviced and the actual pattern is discovered.

4.4 Impact of Secondary Storage

In hierarchical storage systems, the secondary storage disks typically serve as a cache for
data on tertiary storage. Depending upon the size of the disk layer and the caching (or
migration) policy, some of the requests for objects are serviced directly from disk without
impacting tertiary storage. The effect of the disk cache can be translated into a change in

197



the effective access pattern observed at the tertiary level. An adaptive strategy for tertiary
storage can exploit this change in access pattern to generate a placement better suited for
the available secondary storage cache.

4.5 Replication

Data objects that have strong links to objects in different media are likely to cause excessive
swapping of media. While such situations will hopefully not arise often, it is possible that
an object may have strong links to objects in different clusters. These two clusters may
be placed on separate media due to their size. To overcome this, we propose to selectively
replicate objects on multiple media based upon their edge probabilities to objects in various
media. Furthermore, for schemes that place related collections of objects, it is possible that
there are segments of media that not filled - these can be used to replicate objects for “free”
since the extra space is not large enough for a cluster and would otherwise be empty.

4.6 Prefetching

Schemes that place collections of related objects together aim to avoid swapping of media
for a sequence of requests from a user. It is possible, however, that in order to service
the requests of other users, the media may be swapped. This could result in thrashing
between the users and expensive swapping. To avoid this situation we investigate the use of
prefetching of related objects from a medium before ejecting a loaded medium. Prefetching
further delays pending requests and also uses up disk space. It is therefore important to
make a good judgment about when and how much to prefetch.

5 Experimental Results

In this section we demonstrate the effectiveness of our new data placement schemes to-
wards reducing average response time. The results are based upon a detailed CSIM [16]
simulation model of the system. The tape library is modeled on the Ampex DST tape li-
brary configured with Ampex DST 310 drives [9]. Further details of the tape simulator can
be found in [12]. The Secondary storage is configured with four 5GB disks, totaling 20
GB of disk storage. The tertiary storage component is modeled on a robotic tape library
with four Ampex DST drives. Some of the important parameters for the tape simulation are
provided in Table 1. The experiments were conducted on a synthetic collection of 10,000
objects of size 100 Megabytes each. The tape library is configured with 2000 tapes each of
size 2GB, giving a total of 4TB of tertiary storage.

The set of objects and the access pattern is generated as follows. The birth probability of
objects follows a Zipf distribution. In order to capture the effects of links between objects,
we introduce the notion of edges between objects. To determine the edges, the objects are
divided into clusters. The number of objects in a cluster is uniformly distributed between
5 and 20. Some (5%) of the objects are considered to be outliers that do not belong to any
cluster. For each object, a death probability, ��, is picked uniformly distributed between

198



Parameter Value(s) Meaning

TAPE SIMULATION PARAMETERS
RWD OVHD 0.0006 seconds Rewind Overhead
SEEK OVHD 0.0006 seconds Seconds
SEEK SPEED 110 MB/s Tape seek rate
EJECT TIME 4 seconds Time to eject a tape
LOAD TIME 10.1 seconds Time to load a tape on a drive
PICK TIME 3.7 second Time for robot to grab a tape
PUT TIME 1 second Time for robot to drop a tape

MOVE TIME 1.9 second Time for robot to move
XFER SPEED 14.2 MB/s Tape transfer speed
NUM TAPES 2000 Total number of tapes
TAPE CAP 2 GB Tape cartridge capacity

NUM DRIVES 4 Number of Drives
DISK SIMULATION PARAMETERS

ROT SPEED 4002 Rotational speed RPM
SEC TR 72 No. of sectors per track

CYLINDERS 1962 No. of cylinders
TR CYL 19 No. of tracks per cylinder

TRKSKEW 8 Track skew in sectors
CYSKEW 18 Cylinder skew in sectors

CNTRL TIME 1.2 Controller overhead (ms)
CAPACITY 5 GB Disk storage capacity

Table 1: Table of Parameters

0.05 and 0.2. This is the probability that the user does not follow any of the links from this
object. Edges to other objects within the cluster are created and assigned probabilities that
are uniformly distributed so as to add to 1 - ��.

It is important to note that although the access pattern is an input to the placement al-
gorithm, it is not crucial that this pattern be accurate. As mentioned earlier, if the access
pattern is unknown or changes after the placement, the system can adapt by reorganizing
the data according to the new observed access pattern. Experimental evidence to support
this claim is presented in Subsection 5.2.

In each experiment, we run a stream of requests. The stream begin by requesting a
starting object identified using the birth probability for that object. As soon as this object
is retrieved, the user chooses to either follow one of the edges from this object, or to pick
another object independently. This choice is based upon the edge probabilities and the
death probability of the currently accessed object. In each test, we run 1000 requests based
upon which we compute the average response time.

199



5

10

15

20

25

30

35

40

1 2 3 4

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

)

Number of Drives

Birth
Static

Edge Merge
Hot Edge Merge

Birth + Hop
Static + Hop

Figure 1: Average Response Time for Different Data Placement Schemes

5.1 Different Data Placement Schemes and Performance

We begin by studying the relative behavior of the different schemes in reducing average re-
sponse time. Figure 1 shows the average response time by different schemes. The number
of drives was varied from 1 to 4. As can be seen from the graph, the ���� ����� scheme
gives the best performance, and the ���	
 scheme has the worst performance. The �	�	�

scheme has less average response time than ���	
 scheme. The Edge Merge scheme re-
duces the average access time by 77% compared to the Static scheme for a single drive. We
can also observe that as the number of drives increases, the average response time reduces
for all schemes. The superior performance of Edge Merge was observed in all our experi-
ments. The scheme that does not consider the relationships between objects (Birth) has the
poorest performance. Similarly, the Static scheme has poor performance since it does not
use the link information effectively.

5.2 Adapting to Variations in Access Pattern

In the preceding experiment it was assumed that the access pattern is known a priori. This
information is used to generate the placements. If the access pattern is unknown or changes
after the placement, the placement may be less beneficial. The actual access pattern can
easily be discovered by recording the requests for objects. Based upon this input, a more
effective placement can be achieved. Note that through observation, it is not possible to
distinguish between direct and indirect access to an object. When object � is requested fol-
lowing a request for object �, it is not clear whether or not � was accessed due to a link from
� to �. Consequently, the schemes based upon birth probability would not be applicable.
We now investigate the impact of these variations.

In Figures 2 (a) and (b) we study the impact of random changes in the object access
probabilities and the edge probabilities respectively. In each experiment the placement is

200



0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

) 

Pencentage chage in edge probabilities

Original Edge Merge Placement
Original Static + Hop Placement

Original Static Placement
Modified Static + Hop Placement

Modified Static Placement

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

) 

Pencentage chage in node probabilities

Original Edge Merge Placement
Original Static + Hop Placement

Original Static Placement
Modified Static + Hop Placement

Modified Static Placement

(a) (b)

Figure 2: Impact of Changes in (a) Edge; and (b) Node probabilities

generated based upon an initial access pattern. Next, a random subset of 10% of the nodes
(edges) are chosen and their probabilities are altered to varying degrees. The performance
is tested using this altered access pattern. The frequency of access to documents based upon
this altered graph is captured and a new placement is made based only upon these observed
frequencies (with no other knowledge of the changed access pattern). Using this adapted
placement, the performance is again measured. This is repeated for varying degrees of
changes from the original access pattern. From the graphs we observe that changes in edge
and node probabilities have very little impact on the data placement schemes. These ex-
periments show the impact of changes in the distribution of the node and edge probabilities
while keeping the structure of the access pattern fixed. In other words, the results showed
that if we know the groups of objects that are related, exact knowledge of the probabilities
is not critical.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

) 

Pencentage chage in node’s cluster

Original Edge Merge Placement
Original Static + Hop Placement

Original Static Placement
Modified Edge Merge Placement
Modified Static + Hop Placement

Modified Static Placement

Figure 3: Impact of Changes in Node’s cluster

In this experiment we study the impact of poor knowledge (or lack of knowledge) about

201



the grouping of related objects. In Figures 3 we study the impact of limited random changes
in the object cluster composition. The placement is generated based upon an initial access
pattern. Next, a random subset of 5%, 10%, etc of the nodes are chosen and the node’s
cluster membership is changed. The performance is tested using this altered access pat-
tern. We also measure the performance of an adapted placement based upon the observed
access pattern. As can be seen in the graph, changes to cluster composition result in an
increase in the average response time for both placement schemes. However, we see that
after adapting to the new pattern, we are able to reduce the response time. The response
time is reduced sharply in ���� ����� scheme, it drop to same level as no change to the
access pattern. We can also notice that even without adapting to the new placement, the
���� ����� scheme still performs better than �	�	�
 scheme.

From these three graphs we see an interesting result: information about the clustering or
grouping of related objects is more critical than exact information about the probabilities of
access. This is good news since these relationships are generally easy to discover statically
based upon the application semantics (e.g. urls in a given web page). The results also
underscore the importance of not making the assumption of independent access.

5.3 Impact of Secondary Storage

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

) 

Size of Secondary Storage (GB)

Modified Static Placement
Modified Edge Merge Placement

Original Static Placement
Original Edge Merge Placement

Figure 4: Impact of Secondary Storage

In this experiment, we study the impact of the size of the disk buffer. In hierarchical
storage system, the secondary storage disks typically serves as a cache for data on tertiary
storage. User requests for data cached in the buffer are served without any access to tertiary
storage. If the requested object is not in the disk cache, the object is copied from tertiary
storage to buffer, then from the buffer to the user. A buffer replacement policy is used to
create space when the buffer becomes full. In our experiments, we use the popular Least
Recently Used (LRU) cache replacement policy.

202



Figure 4 presents the performance for the various schemes for different buffer sizes.
The buffer size is varied from 400MB upto 20GB. We can observe from the graph that as
the size of the buffer increases, the average response time decreases for all schemes. We
also observe that the presence of a disk cache does not change the relative performance of
the ���� ����� scheme and the �	�	�
 scheme.

Since we have secondary storage as cache. The effect of the disk cache can be translated
into a change in the effective access pattern observed at the tertiary level. The hot objects
(objects with high static probability) may not be hot at the tertiary level since these objects
may always be cached on disk. In order to account for this change in the access pattern,
we can adapt the placement based upon the observed access pattern at the tape level as was
done in Section 5.2. In Figures 4, we study our new data placement based on observed
access pattern. As we can seen from the graph, the new adapted data placement slightly
better than original data placement.

5.4 Impact of Replication

In our original model, each object only has one copy in tertiary storage. To replicate ob-
jects on tertiary storage, there are two approaches. The first approach is to replicate some
frequently requested objects. We can use this approach with the ���	
 and �	�	�
 schemes.
However, disk caching will reduce the effectiveness of this approach because most of hot
objects will reside in cache. The second approach is to replicate related objects when free
space is available on a medium. This approach works for ���� ����� scheme and ��	

���� ����� scheme. In our experiment, we mainly study the ���� ����� scheme with
the second approach due to its superior performance. Unused segments on a medium are
filled using the following rules. First objects that have strong connections with objects al-
ready in the medium are replicated. If space still remains after considering such objects,
hot objects are replicated. The results of the experiment are shown in Figure 5. It can be
seen that the free data replication results in a noticeable improvement in performance.

5.5 Prefetching Issues

As stated in the last section, prefetching related objects can be beneficial. The disadvantage
is that prefetching delays pending requests further and uses up disk space. In this subsec-
tion, we study the impact of prefetching for the proposed schemes. In order to see the
impact of the amount of prefetching performed, we tested our six schemes with different
prefetching sizes. In this experiment prefetching is performed whenever possible. When
a new tape is loaded onto the drive, any object not in the disk cache may be prefetched.
The total amount of data prefetched from a single medium is varied from 0 to 300 MB.
The results of the experiment are shown in Figure 6. As can be seen, most schemes benefit
from prefetching when the prefetch size is 100 MB. For larger sizes, only the Edge Merge
scheme benefits – the average response time is reduced by 13%. This is explained by the
fact that the Edge Merge scheme is based on the relationship between objects. When one
object is retrieved, the most connected objects are likely to be in the same medium, so

203



7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

1 2 3 4

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

) 

Number of Drives

Edge Merge Placement without Replication
Edge Merge Placement with Replication

Figure 5: Impact of Replication on Edge Merge Scheme

10

15

20

25

30

0 100 200 300

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

)

Size of Prefetching (MB)

Birth
Static

Edge Merge
Hot Edge Merge

Birth + Hop
Static + Hop

Figure 6: Impact of Prefetching on Different Schemes

prefetching is beneficial. Prefetching is not good for the Birth Scheme because under this
scheme related objects are scattered in different media. In fact the penalty of prefetching
larger than 100MB of data is higher than the benefit.

Next we study the choice of when to prefetch with the Edge Merge scheme in order
to make prefetching most effective. In the last experiment we prefetched blindly. In this
experiment, we prefetch only if there is a suitable object. There are two kinds of candidates
for prefetching when a medium is loaded for retrieving object ��: i) objects with strong
links from��; and ii) objects with a large static probability. The experiment is controlled by
two parameters: a minimum edge probability (say �����) and a minimum static probability
(say �����). If an object in same medium has edge probability greater than ����� or static
probability greater than �����, that object will be a prefetching candidate. Since we cannot

204



prefetch all candidates the amount of data prefetched is limited. The results are shown in
Figure 7. Only Edge Merge is studied, with several prefetching policies. We study 4
policies: i) ����� = 0.5, ����� = 0.005, this is most restrictive policy; ii) ����� = 0.3,
����� = 0.0003, preference is given to high static probability objects; iii) ����� = 0.05,
����� = 0.005, preference is for high edge probability objects; and iv)����� = 0.05, �����

= 0.0003, this is the most liberal policy. As we can observed from graph the most liberal
policy gives better performance than the most strict policy. The two schemes that have a
low threshold for the edge probability give better performance for small prefetch sizes, but
their performance degrades for larger prefetch sizes.

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

0 100 200 300

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

)

Maximum Size of Prefetching (MB)

min edge 0.5, min static 0.005
min edge 0.3, min static 0.0003
min edge 0.05, min static 0.005

min edge 0.05, min static 0.0003

Figure 7: Impact of Different Prefetching Policies on Edge Merge Scheme

6 Conclusion

In this paper we address the important problem of data placement in tertiary storage taking
object relationships into account. We also study the advantage of limited replication in this
setting. This work is in contrast to earlier schemes that either focus on specific data types
or assume that data objects are independently accessed. To the best of our knowledge, this
is the first study to explore these issues. We propose five new data placement schemes. The
effectiveness of these schemes in reducing average response time is shown through exten-
sive experimentation using a detailed simulator. We find the Edge Merge scheme has best
performance. The performance of placement schemes that are known to be optimal under
the assumption of independent access is not as good as that of the proposed schemes.

We also show that our schemes can easily adapt to variations in the access pattern. In
fact this allows the schemes to be employed when no prior information about the access
pattern is available. The schemes progressively adapt to give good performance as the
access pattern is learned. Capturing the access pattern is easily achieved at the tertiary
storage level. In all cases, adjusting the placement to the new observed pattern resulted in

205



significantly improved performance. Interestingly, our results show that the probabilities
of access (node and edge) do not have a big impact on our Edge Merge scheme. Changes
to the clustering of nodes, on the other hand, has a greater effect. This goes to show the
importance of the inter-relationships between objects. The use of controlled replication for
“free” is also developed and shown to be effective in improving performance further. The
impact of disk caching is easily handled in a manner similar to that of variation in access
patterns. The effective access pattern at the tertiary layer is measured and used to place the
data, rather than the overall access pattern. The techniques are coupled with prefetching
which is found to be beneficial for the Edge Merge scheme.

Overall, we see that the proposed techniques are very effective in placing data on ter-
tiary storage. The techniques perform much better than schemes that are optimal under the
assumption of independent access. In our experiments the Edge Merge scheme achieved as
much as 77% reduction in average access time over the state-of-the-art scheme (Static).

Acknowledgment This work was supported by the National Science Foundation under
CAREER grant IIS-9985019, and Research Infrastructure Grant 9988339-CCR.

References

[1] L. T. Chen, R. Drach, M. Keating, S. Louise, D. Rotem, and A. Shoshani. Efficient
organization and access of multi-dimensional datasets on tertiary storage systems. In
Information Systems, volume 20, pages 155–83. Elsevier Science, 1995.

[2] S. Christodoulakis, P. Triantafillou, and F. Zioga. Principles of optimally placing data
in tertiary storage libraries. In VLDB’97, Proc. of Intl. Conf. on Very Large Data
Bases, 1997, Athens, Greece, pages 236–245, 1997.

[3] D. A. Ford and S. Christodoulakis. Optimizing random reterievals from clv format
optical disks. In Proceedings of the Int. Conf. on Very Large Data Bases, pages 413–
22, Barcelona, Spain, September 1991.

[4] C. Georgiadis, P. Triantafillou, and C. Faloutsos. Scheduling and performance of
robotic tape libraries in video server environments. Technical report, Multimedia
Systems Institute of Crete (MUSIC), Tech. Univ. of Crete, Crete, Greece, 1997.

[5] S. Ghandeharizadeh, A. Dashti, and C. Shahabi. Pipelining mechanism to minimize
the latency time in hierarchical multimedia storage managers. Computer Communi-
cations, 18:170–184, march 1995.

[6] S. Ghandeharizadeh and C. Shahabi. On multimedia repositories, personal computers,
and hierarchical storage systems. In Proc. of ACM Int. Conf. on Multimedia, 1994.

[7] B. K. Hillyer and A. Silberschatz. On the modeling and performance characteristics
of a serpentine tape. In SIGMETRICS, pages 170–9, Canada, 1996.

206



[8] B. K. Hillyer and A. Silberschatz. Random I/O scheduling in online tertiary storage.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, Canada, 1996.

[9] T. Johnson and E. L. Miller. Performance measurements of tertiary storage devices.
In Proc. of 24rd Intl. Conf. on Very Large Data Bases, pages 50–61, New York, 1998.

[10] A. Kraiss and G. Weikum. Vertical data migration in large near-line document
archives based on markov-chain predictions. In Proceedings of 23rd International
Conference on Very Large Data Bases, pages 246–255, Athens, Greece, August 1997.

[11] S. More, S. Muthukrishnan, and E. Shriver. Efficiently sequencing tape resident jobs.
In Proc. ACM Symp. on Principles of Database Systems, 1999.

[12] S. Prabhakar. An overview of current tertiary storage technology and research. Mas-
ter’s thesis, University of California, Santa Barbara, 1998.

[13] S. Prabhakar, D. Agrawal, A. El Abbadi, and A. Singh. Scheduling tertiary I/O in
database applications. In Proc. of the 8th International Workshop on Database and
Expert Systems Applications, pages 722–727, Toulouse, France, September 1997.

[14] S. Prabhakar and R. Chari. Minimizing latency and jitter for large scale multimedia
repositories through prefix caching. Technical Report CSD 01-018, Department of
Computer Sciences, Purdue Univeristy, September 2001.

[15] S. Sarawagi. Database systems for efficient access to tertiary memory. In Proc. of 14th
IEEE Symp. on Mass Storage Systems, pages 120–6, Monterey, California, 1995.

[16] H. D. Schwetman. CSIM: A C-based, process-oriented simulation language. In Pro-
ceedings of the 1986 Winter Simulation Conference, pages 387–396, December 1986.

[17] S. Seshadri, D. Rotem, and A. Segev. Optimal arrangements of cartridges in carousel
type mass storage systems. The Computer Journal, 37(10):873–887, 1994.

[18] P. Triantafillou, S. Christodoulakis, and C. Georgiadis. Optimal data placement on
disks: A comprehensive solution for different technologies. Technical report, Multi-
media Systems Institute of Crete (MUSIC), Tech. Univ. of Crete, Greece, 1996.

[19] P. Triantafillou and T. Papadakis. On-demand data elevation in hierarchical multi-
media storage servers. In Proc. of 23rd Intl. Conf. on Very Large Data Bases, pages
226–235, Athens, Greece, August 1997.

[20] P. Triantafillou and T. Papadakis. Exploiting tertiary storage for performance improve-
ment in video-on-demand servers. Technical report, Multimedia Systems Institute of
Crete (MUSIC), Technical University of Crete, Crete, Greece, 1998.

[21] J. Yu and D. DeWitt. Processing satellite images on tertiary storage: A study of the
impact of tile size on performance. In 5th NASA Goddard Conf. on Mass Storage
Systems and Technologies, pages 460–476, College Park, Maryland, Sept. 1996.

207



208 

 


