
Data Placement on Tertiary
Storage

Sunil Prabhakar
Joint work with Jiangtao Li

Purdue University

May 24, 2009 Sunil Prabhakar 2

Introduction
With current hardware, performance for data-
intensive applications is constrained by I/O
Random I/O performance is largely
determined by the latency.
For tertiary storage the latency is even more
critical than for secondary storage.
Given the current trends this problem will be
aggravated in the foreseeable future.

May 24, 2009 Sunil Prabhakar 3

Reducing Latency

Caching
Prefetching
Scheduling
Parallel I/O
Compression
Placement
…

Caching
Prefetching
Scheduling
Parallel I/O
Compression
Placement (replication & prefetching)

…

May 24, 2009 Sunil Prabhakar 4

Tertiary Storage Placement

Goal:
Reduce switching of media
Reduce seek latency

Two sub-problems:
Medium allocation
Intra-medium placement

May 24, 2009 Sunil Prabhakar 5

Related Work

Specific domains (arrays, RDBMS, Images)
Most placement work has focused on intra-medium
placement.
Recent work for tertiary storage has addressed the
allocation problem, but under the assumption of
independent access probabilities.
This is not always a valid assumption (e.g. web
pages, online manuals, multimedia databases)

May 24, 2009 Sunil Prabhakar 6

Problem addressed
Design of placement schemes with non-independent
access patterns.
Initially assume that the access pattern is known
Focus on the allocation problem -- existing techniques
for intra-medium placement
Additional issues addressed:

Replication
Impact of secondary storage
prefetching

May 24, 2009 Sunil Prabhakar 7

Access Patterns

Use the notion of a browsing graph
Nodes represent objects
Node labels give the probability that an object
is independently accessed
Directed edges between nodes have labels
giving the probability that the edge will be
traversed. E.g. edge with probability pab
represents the fact that object b will be accessed
following an access for object a with
probability pab

.

a → b

May 24, 2009 Sunil Prabhakar 8

Browsing Graph
Birth Probability

0.1

0.3 0.1

0.3
0.2

0.4

0.1

0.1
0.4

Edge Probability
Death Probability

May 24, 2009 Sunil Prabhakar 9

Data Placement Schemes

1. Birth Probability Scheme
Place objects in decreasing order of birth
probability (independent placement)
This is known to be optimal if we ignore
relationships between objects [2].

2. Static Probability Scheme
Same as above, except that we use the static
probability for determining placement (cf
Google).

May 24, 2009 Sunil Prabhakar 10

Data Placement Schemes

3. Edge Merge Scheme
Place strongly connected neighbors on the same
medium
Edges are merged in decreasing order of probability.
Birth probability and edge probabilities of merged
object are calculated.
Merge edges as long as the total size of the merged
objects is smaller than medium capacity.
Merged objects are now allocated to media in
decreasing order of the cumulative static probability.

May 24, 2009 Sunil Prabhakar 11

Data Placement Schemes

5. Hot Edge Merge Scheme
Identical to Edge Merge, except that only edges that
have more than a threshold probability are merged.
Objective is to produce media with very high
probability of being loaded permanently.

May 24, 2009 Sunil Prabhakar 12

Data Placement Schemes

6. Birth Hop Scheme
Initially, place highest birth probability object on an
empty medium.
Repeatedly add the object with the highest birth
probability or edge probability from objects already on
that medium.
Once the medium is full, repeat the above steps for the
remaining objects.

7. Static Hop Scheme
Identical to above scheme, except that we use static
probability instead of birth probability.

May 24, 2009 Sunil Prabhakar 13

Other Issues

Adaptive Placement
Use observed pattern of access to periodically
reorganize data placement.

Impact of Secondary Storage
Handle as above -- “observe” pattern at tertiary level.

Replication
No cost replication when objects belong to multiple
clusters -- use available free space.

Prefetching
Once a medium is loaded on a drive, some high
probability objects are prefetched.

May 24, 2009 Sunil Prabhakar 14

Experimental Results
Simulation (CSIM) of Ampex DST drives.
10,000, objects (100MB each)
2000 tapes of 2GB each -- 4TB total
4, 5GB disks -- 20 GB total
Birth probability follows a Zipf distribution
Objects divided into clusters (5 and 20 per cluster)
5% of objects are outliers
Death probability uniformly chosen (0.05 -- 0.2)
Edge probabilities are uniformly distributed.
Average response time for 1000 requests.

May 24, 2009 Sunil Prabhakar 15

Performance

0
5

10
15
20
25
30
35
40

1 2 3 4
Number of Driv

Birth
Static
Edge Merge
Hot Edge Mer
Birth Hop
Static Hop

May 24, 2009 Sunil Prabhakar 16

Sensitivity to Access Pattern
Study the impact of variations in the access
pattern.
Consider variations in:

Node probabilities
Edge probabilities
Cluster compositions

Test with original placement and also with
modified placement (based upon observed
pattern).

May 24, 2009 Sunil Prabhakar 17

Variations in Edge Probabilities

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50
Percentage Change

Org. Edge Merge
Org. Static Hop
Org. Static
Mod. Static Hop
Mod. Static

May 24, 2009 Sunil Prabhakar 18

Variations in Node Probabilities

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50
Percentage Chang

Org. Edge Merg
Org. Static Hop
Org. Static
Mod. Static Hop
Mod. Static

May 24, 2009 Sunil Prabhakar 19

Variations in Node Clusters

0

5

10

15

20

25

30

35

40

0 5 10 15 20
Percentage Chan

Org. Edge Merg
Org. Static Hop
Org. Static
Mod. Edge Merg
Mod. Static Hop
Mod. Static

May 24, 2009 Sunil Prabhakar 20

Access Pattern Variations

The node and edge probabilities are less
critical than the cluster composition!
Therefore, it is important to be able to
recognize the related objects.
Changes in node and edge probabilities
should not trigger re-organization -- Edge
Merge is especially insensitive to these.

May 24, 2009 Sunil Prabhakar 21

Impact of Secondary Storage

The presence of a secondary storage buffer
can have a significant impact on placement.
High probability objects are likely to be
cached on disk.
We handle this situation by simply placing
objects based upon the “effective” access
pattern at the tertiary level.
Experiment with various cache sizes.

May 24, 2009 Sunil Prabhakar 22

Secondary Storage

0

5

10

15

20

25

30

35

0.4 4 8 12 16 20
Percentage Chang

Org. Edge Merg
Org. Static
Mod. Edge Merg
Mod. Static

May 24, 2009 Sunil Prabhakar 23

Replication

Objects that belong to more than one cluster cause
problems.
We propose to make replicas of objects (one for
each cluster that the object belongs to).
Since large clusters of related objects are placed
placed together, it is quite likely that extra space is
left over.
Storage overhead is also likely to be small.

May 24, 2009 Sunil Prabhakar 24

Replication

6.9
7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8

1 2 3 4
Number of Driv

No Replication
With Replicatio

May 24, 2009 Sunil Prabhakar 25

Prefetching

Since related objects are clustered on the
same medium -- prefetching is very
promising.
Trade-off.
Experiment 1:

Always prefetch data not on disk
Vary max prefetch size per medium

May 24, 2009 Sunil Prabhakar 26

Prefetching

0

5

10

15

20

25

30

0 100 200 300
Number of Driv

Birth
Static
Edge Merge
Hot Edge Merg
Birth Hop
Static Hop

May 24, 2009 Sunil Prabhakar 27

Prefetching (contd.)

Edge merge is best suited for prefetching.
Experiment 2:

Prefetch only if suitable object exists
Object has strong edge from current object, or
Object has high static
Set bounds for each:

ME - minimum edge probabilty
MS - minimum static probability

May 24, 2009 Sunil Prabhakar 28

Prefetching

9.5
9.7
9.9

10.1
10.3
10.5
10.7
10.9
11.1
11.3

0 100 200 300
Number of Driv

ME=0.5;MS=0.005

ME=0.3;MS=0.000

ME=0.05;MS=0.00

ME=0.05;MS=0.00
3

May 24, 2009 Sunil Prabhakar 29

Conclusion

If objects are accessed in a related fashion -- this
information is valuable for placement.
Proposed schemes (esp. Edge Merge) significantly
outperform “optimal” schemes based upon
independent access assumptions (77% better)
Exact knowledge of access pattern is not critical --

only the relationship information is important.
Adapting to changes in access patterns and
handling unknown access patterns is easily
achieved.

May 24, 2009 Sunil Prabhakar 30

Conclusion (contd).

Incorporating disk cache effects is handled
in the same manner as adapting to changes
in access patterns.
Selective replication and prefetching are
effective for the proposed schemes,
resulting in significantly improve
performance.

