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70 kbit/s
IBM RAMAC 1955
2 kbits/in2

50x24” dia disks

32 Mbit/s
IBM Microdrive 2001
15.2 Gbits/in2

1 x 1” dia disk

1 GB

4.4 MB 

From RAMAC to MicrodriveFrom RAMAC to Microdrive
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Progress in Magnetic Data Storage Progress in Magnetic Data Storage 
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Scaling: Primary Technology ApproachScaling: Primary Technology Approach

S             N N            S N            SS           N S             NN            S

Inductive
“Ring” Writer

MR Reader
Magnetizing
Coil

Write field Recording Media

Longitudinal recording has been the underlying technology 
in the disk drive industry for the past several decades
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Scaling
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Scaling: Smaller heads, thinner media, lower fly heightsScaling: Smaller heads, thinner media, lower fly heights

Flying Height 5 nm

Head Smoke Particle

Fingerprint

Human Hair 75,000nm

Media 10-100nm Disk Substrate
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Superparamagnetic limitSuperparamagnetic limit
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Media Microstructure, Scaling, and SNRMedia Microstructure, Scaling, and SNR
Magnetic
grains

Bit transition
SNR ~ log(N), N - number of grains per bit
While scaling, need to preserve number of grains per bit to preserve 
SNR
Grain size is reduced for higher areal densities: 

DensityAreal
a

 
1~
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SuperparamagnetismSuperparamagnetism
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If a<aminimum, medium becomes thermally unstable leading to severe 
deterioration of recorded data over time.

Approaches to avoid superparamagnetic instabilities:
Decrease aminimum by increasing KU

Increase a by decreasing the number of grains per bit
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Media Writability LimitMedia Writability Limit
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Highest 4πMS (=BS) available today is ~26 kGauss (2.6Tesla)

In longitudinal recording, the highest write field 
possible to generate is ~2πMS !!!

Higher areal density media requires higher write fields !!!
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Additional challenges: Grain Size DistributionAdditional challenges: Grain Size Distribution

Too small grains are thermally unstable ⇒ Unstable data
Too large grains cannot be switched ⇒ Noise

Grains in polycrystalline media are not 
uniform in size. The grain sizes are log-
normally distributed
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Advantages of Perpendicular RecordingAdvantages of Perpendicular Recording
Overview of magnetic recording
Superparamagnetic limit and the need for a new technology
Dodging the Superparamagnetic limit … The advantages of 
perpendicular recording?
A new system component: soft underlayer challenges and 
design considerations
Skew Angle Sensitivity
Playback: new signal processing schemes
New materials challenges
How far perpendicular recording will take us and what will 
come next?
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Longitudinal Recording Perpendicular Recording

Origins of Perpendicular RecordingOrigins of Perpendicular Recording
1878: Magnetic Recording: Oberlin Smith

1960: G.Fan, Ampex Corporation
1977: S. Iwasaki, Magnetic Disk Perpendicular Recording Demo
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Closest Alternative TechnologyClosest Alternative Technology

S             N N            S N            SS           N S             NN            S

Inductive
“Ring” Writer

MR Reader
Magnetizing
Coil

Write field Recording Media

Inductive
“SPH” Writer

MR Reader

Magnetizing
Coil

Recording
layer

SUL

Write
field

Longitudinal

Perpendicular
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Perpendicular versus LongitudinalPerpendicular versus Longitudinal

Storage
Layer

Longitudinal System

Coil

Recording
fieldsSoft Underlayer

Perpendicular System

Coil

Notice: Soft Underlayer (SUL) - a new system component
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Soft Underlayer: Magnetic ImagingSoft Underlayer: Magnetic Imaging

Soft underlayer acts as a magnetic mirror:
Real head + Soft Underlayer = Real head + Image head

Recording layer is sandwitched between real and ‘image’ write poles - writing in the 
gap (in longitudinal recording writing is done with fringing fields)

Soft Underlayer

real head

‘image’ head SU
L 

bo
un

da
ry

SUL-to-ABS spacing
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Gap versus Fringing Field Writing Gap versus Fringing Field Writing 
Coil Yoke

Fringing
fields

Recording
medium

Transition
Written moment
 in media

In perpendicular recording the write process effectively occurs in the 
gap (Write Field < 4πMS)
In longitudinal recording the write process is done with the fringing 
fields (Write Field < 2πMS)

“Gap” fields

Real head

Image head

Coil

SUL
boundary

Physical Gap Effective Gap
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Write Field ComparisonWrite Field Comparison

Twice as high write field amplitude: can write on higher 
anisotropy media ⇒ better thermal stability
Substantially sharper field gradients: less sensitive to 
grain anisotropy distribution ⇒ sharper bit transitions ⇒
higher areal density
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Well-Aligned Recording LayersWell-Aligned Recording Layers
In a typical longitudinal recording layer the 
magnetic anisotropy axes of individual grains 
are randomly oriented in the plane of the film

In perpendicular recording layer the anisotropy 
axis is relatively well aligned (<2-4 degrees) 
perpendicular to the plane of the film

Magnetic
grains

2D random 
medium

oriented medium

Substantially relaxes the requirements for write field gradients
Can use thicker recording layer - better thermal stability !!!

(increased V in KUV/kBT ratio)
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Demag Fields at Bit TransitionsDemag Fields at Bit Transitions
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Demagnetizing fields destabilize recorded 
magnetization:

- Increased transition width
- Contribute to thermal instabilities

Perpendicular recording promotes higher areal densities !!!
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Reduced Demag Field at high BARReduced Demag Field at high BAR
center of the bit surface of the bit

In contrast to longitudinal recording, in perpendicular recording higher 
bit aspect ratios (BAR) lead to reduce demagnetizing field - one of the 
major destabilizing factors leading to thermal instabilities
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Enhanced Playback due to SULEnhanced Playback due to SUL
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Summary of AdvantagesSummary of Advantages

Higher write field amplitude - can use higher anisotropy 
media, better thermal stability
Higher write field gradients and well aligned recording 
layers - thicker media, better thermal stability
Zero demag at transitions - sharp bit transitions, more 
stable recorded data
Decrease of demag with areal density increase - improved 
media stability at higher areal densities
Higher playback amplitude - improved playback 
performance at higher areal densities
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Narrow track recordingNarrow track recording

Track Profile

Waveform (200nm trackwidth)

1um track .2um track
D50 (kfci) 200 190
acsn (1bit/pw50, dB) 21 19.5
Overwrite (dB) 40 40

Bathtub curve
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Narrow Track RecordingNarrow Track Recording

130 nm

~400 ktpiCoB/Pd multilayer

CoCrPtTa alloy
~190 ktpi

Current “state-of-the-art” longitudinal recording is <100ktpi

400 nm

Writer

Reader
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Overview of magnetic recording
Superparamagnetic limit and the need for a new technology
Dodging the Superparamagnetic limit … The advantages of 
perpendicular recording?
A new system component: soft underlayer challenges 
and design considerations
Skew Angle Sensitivity
Playback: new signal processing schemes
New materials challenges
How far perpendicular recording will take us and what will 
come next?

Soft Underlayer ChallengesSoft Underlayer Challenges
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soft underlayer

Soft Underlayer as a Flux ConductorSoft Underlayer as a Flux Conductor

 0div ⇒=B

 tip poleABS tip poleSeffectivelayer soft underlayersoft under S AM4AM4 ×≥× ππ

Pole tip

soft underlayer

Magnetic flux

 tip poleABS tip polefrom the emanatingeffectivelayer soft underlayersoft under into AA ×=× BB

In the limiting case, when the pole tip saturates (during writing):

Magnetic flux should be conserved

Writer
Pole tip

track width
wpole tip tsoft underlayer
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Soft Underlayer MomentSoft Underlayer Moment

Pole
tip

                   Soft underlayer
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region
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                    Soft underlayer
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SUL 4πMS < Head 4πMS
(saturated region under the pole tip

deteriorates gradients)
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Usage of lower moment soft underlayers can lead to the 
deterioration of the write field gradients

 tip poleABS tip poleSeffectivelayer soft underlayersoft under S AM4AM4 ×≥× ππ

 tip poleSlayersoft under S tip poleABSeffectivelayer soft under M4M4AA ππ ≥⇒≅
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Soft Underlayer ThicknessSoft Underlayer Thickness

Both the write field amplitude and the write field gradient can 
deteriorate is too thin soft underlayer is used
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Soft Underlayer and Playback ResolutionSoft Underlayer and Playback Resolution

Soft underlayer introduces asymmetry into the playback system. 
If not designed properly, can deteriorate system’s resolution
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Soft Underlayer MicromagneticsSoft Underlayer Micromagnetics
CoCrPtTa alloy based recording 
layer is capable of recording 
densities well in excess of 600kfci.

Further development is necessary 
to minimize noise and/or distortions 
caused by the presence of the soft 
underlayer
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Micromagnetics and Playback ResolutionMicromagnetics and Playback Resolution
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Soft Underlayer NoiseSoft Underlayer Noise
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Overview of magnetic recording
Superparamagnetic limit and the need for a new technology
Dodging the Superparamagnetic limit … The advantages of 
perpendicular recording?
A new system component: soft underlayer challenges and 
design considerations
Skew Angle Sensitivity
Playback: new signal processing schemes
New materials challenges
How far perpendicular recording will take us and what will 
come next?

Skew Angle SensitivitySkew Angle Sensitivity
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Skew angleSkew angle
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Zero skew
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Trailing edge
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Track direction
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Skew Angle SensitivitySkew Angle Sensitivity
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Narrow Gap Single Pole HeadsNarrow Gap Single Pole Heads
Trailing
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In a narrow gap single pole heads, the write field is reduced towards 
the leading edge, thus, minimizing the skew angle sensitivity
Can minimize the loss in track density from 25% to less than 5%
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Overview of magnetic recording
Superparamagnetic limit and the need for a new technology
Dodging the Superparamagnetic limit … The advantages of 
perpendicular recording?
A new system component: soft underlayer challenges and 
design considerations
Skew Angle Sensitivity
Playback: new signal processing schemes
New materials challenges
How far perpendicular recording will take us and what will 
come next?

Perpendicular PlaybackPerpendicular Playback
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If a conventional reader is used, the 
channel sees the playback signal of 
different shape
Can differentiate, however, part of the 
information is lost

Perpendicular vs. Longitudinal PlaybackPerpendicular vs. Longitudinal Playback
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Overview of magnetic recording
Superparamagnetic limit and the need for a new technology
Dodging the Superparamagnetic limit … The advantages of 
perpendicular recording?
A new system component: soft underlayer challenges and 
design considerations
Skew Angle Sensitivity
Playback: new signal processing schemes
New materials challenges
How far perpendicular recording will take us and what will 
come next?

Materials ChallengesMaterials Challenges
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Perpendicular Media MaterialsPerpendicular Media Materials

SOFT UNDERLAYER :
Efficiency of the recording 
system 
Soft underlayer noise

Seed/Exchange de-coupling layer

STORAGE LAYER :
High squareness 
Exchange de-coupling
Grain size control

Overcoat

Substrate

Buffer layer

Composition 
& 

Microstructure

Magnetic 
Properties

Performance
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Alloy System Material Anisotropy Saturation Magnetization Anisotropy Field Minimum stable grain size
Ku (107erg/cc) Ms (emu/cc) Hk (kOe) a (nm)

CoCrPtX 0.20 200-300 15-20 8-10
Co-alloy Co 0.45 1400 6.4 8.0

Co3Pt 2.00 1100 36 4.8
FePd 1.8 1100 33 5.0

L10-phase FePt 6.6-10 1140 116 2.8-3.3
CoPt 4.9 800 123 3.6
MnAl 1.7 560 69 5.1

Rare Earth Nd2Fe14B 4.6 1270 73 3.7
SmCo5 11-20 910 240-400 2.2-2.7

Recording layers: Higher Ku MaterialsRecording layers: Higher Ku Materials

3
60

a
uK

TBk⋅
≅Minimum thermally stable grain size:
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Microstructure of Recording layersMicrostructure of Recording layers

Average column size ~ 
20nm
Randomly oriented

Average grain size ~ 13nm
(00_2) fiber-like texture with 
texture spread of 6.30

CoB/Pd multilayer on ITO

CoCrPtTa on Ti

0 1 0 2 0 3 0 4 0
0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

FWHM=6.30

ω

X-ray rocking curve TEM
ideal

non-ideal

Co
Pd
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Magnetics of Recording LayersMagnetics of Recording Layers

-10.00
-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00

10.00

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

Field [kGauss]

K
e

rr
 s

ig
n

a
l

S=1 ⇒ No DC noise; Thermally stable
Extremely thin ITO buffer is sufficient to promote 
high Hc
By adjusting thicknesses of Co and Pd in a bi-layer 
structure can make films with Hc > 10,000 Oe

ITO(5nm)/(Co3/Pd10)x20; Hc=6.9kOe
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Typically S=Mr/Ms < 1 ⇒ Thermal 
stability? DC noise

Al/NiP/Ti(5nm)/CoCr18Pt10Ta3(50nm); Hc=2.77 kOe
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Roll-off Curves / Media NoiseRoll-off Curves / Media Noise
CoCr-alloy recording layer / 
FeAlN/Ta/NiFe soft underlayer / 
Single pole head

Overwrite > 39dB
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Overview of magnetic recording
Superparamagnetic limit and the need for a new technology
Dodging the Superparamagnetic limit … The advantages of 
perpendicular recording?
A new system component: soft underlayer challenges and 
design considerations
Skew Angle Sensitivity
Playback: new signal processing schemes
New materials challenges
How far perpendicular recording will take us and what 
will come next?

Future of Magnetic RecordingFuture of Magnetic Recording
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10/4/0010/4/00

Perpendicular System at 1 Tbit/in2 (NSIC)Perpendicular System at 1 Tbit/in2 (NSIC)

A 1Tbit/in2 design:

Medium:
Perpendicular polycrystalline with SUL:  Hc=12,000 Oe; Ms=6360 Gauss; 
Thickness = 9nm; Grain-diameter: 8nm with σ=1nm

Read Head:
Read-width: 30 nm, Sensitivity:1 mV  peak-peak; Resistance: 50 ohms

Write Head:
Write-width:  = 37nm; Saturation: 4πMs = 20,000 Gauss

Head/Disk Interface:
Magnetic Spacing: 6.5nm to top of medium; 1nm overcoat

Superparamagnetic behavior is not avoided but delayed
It is  believed that ~1Tbit/in2 is possible to achieve with perpendicular 
magnetic recording (~ 10x gain from longitudinal recording)
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Change kB?...

Main driving force: to further delay the superparamagnetic limit

KuV
kBT

Thermally assisted writing Patterned media

Cryo-drive

What comes next?What comes next?
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MR SensorMagnetic Head

Bits

Magnetic Recording

Bits
Magnetic Field

Laser

Magneto-Optical Recording

MR SensorMagnetic Head

Bits

Laser

HAMR or Hybrid Recording

HAMR - Heat Assisted Magnetic RecordingHAMR - Heat Assisted Magnetic Recording

~ 10Tbit/in2 is conceivable with HAMR + polycrystalline medium (10x gain)
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Far Field Light Delivery System: Near Field Light Delivery System with 
Global Magnetic Field:

Near field light delivery system
defines track-width; magnetic head
defines bit length:

Near field light delivery system and 
magnetic head co-located to define 
bit and track:

Different Approaches to HAMRDifferent Approaches to HAMR
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Patterned Media/Self-Ordered Magnetic ArraysPatterned Media/Self-Ordered Magnetic Arrays

Major challenge is finding low cost means of making media
Above 50Tbit/in2 is conceivable with HAMR + Patterned Medium 
(5x gain)

Nanoparticle arrays – 9 “Tbit/in2”
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Future of Perpendicular RecordingFuture of Perpendicular Recording
It is believed that future generations of magnetic recording 
technologies are likely to be based on perpendicular recording 
due to advantageous nature of perpendicular recording with 
respect to high areal densities:

higher write fields
high trailing and side write field gradients
well aligned medium
absence of demagnetizing fields at bit transitions
higher amplitude playback signal
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Ultimate Recording Density  > 50 Tbit/in2 conceivable

Summary: Technology OptionsSummary: Technology Options

1 Tbit/in2

10 Tbit/in2

50 Tbit/in2

1. Shift to smaller grains without increasing Ho (~2x gain) 
AFC media

2. Enhance Write Efficiency (5-10x gain)
Perpendicular Magnetic Recording

3. Use smaller Grains&Deal with Write Field Problem (~10x gain)
Heat Assisted Magnetic Recording (HAMR)

4. Single Grain per Bit Recording combined with HAMR (~5x gain)
Self Ordered magnetic Array media (SOMA)

150 gbit/in2

Superparamagnetism - fundamental problem !




