High-density Holographic Data Storage with Random Encoded Reference Beam

Vladimir B. Markov

MetroLaser, Inc.

18010 Skypark Circle, Irvine, CA 92614

vmarkov@metrolaserinc.com

1/

Outline

- Motivation
- Outline of Theory
- System Design
- Results from a Shift Selectivity
- Conclusions

MetroLaser

Irvine, California

1/

Motivation

Holographic memory offers: bit storage density of the order of 10¹²/cm³ parallel access and parallel data processing high retrieval rate solid-state configuration

Principles

Selective properties of volume hologram
 Volume holograms with amplitude-phase modulated reference beam and their selective properties
 Solid-state configuration with random reference beam

Angular Bragg Selectivity

Angular-spectral selectivity of volume hologram and random encoding of reference beam are used as basic mechanisms for data multiplexing

Angular and Spectral Bragg selectivity results in:

- ✓ non-isotropic diffraction at off-Bragg tuning
 ✓ incremental noise
- ✓ insecure data access

1/

MetroLaser

Irvine, California

✓ require moving parts.

Reference Beam Random Amplitude-Phase Encoding:

 ✓ new type of <u>Spatial & Angular</u> (isotropic) selectivity;
 ✓ solid-state architecture - no moving parts

✓ secure data access

Random APM volume hologram - Recording

Random APM volume hologram - Reconstruction

Random APM volume hologram - Reconstruction

Basic results of the analysis
The diffracted field amplitude:

$$\begin{split} & \int_{\mathbf{C}_{\perp}(\vec{q},z')=exp[\,i\mathbf{k}_{\circ}\sin\theta_{s}\,] \bigoplus_{s=0}^{T} R_{\circ}^{*}(\vec{q},z')R(\vec{q},z')dz'dq\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')R(\vec{q},z')dz'dq\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')R(\vec{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')dz'dz\\ & S_{\circ}(\mathbf{q},z')dz'dz \\ & S_{\circ}(\mathbf{q},z')dz'dz\\ & S_{\circ}(\mathbf{$$

10MSST-2002, April 15-18

Laboratory setup for APM hologram

SPECKLE SHIFT SELECTIVITY

X-Y Speckle-Shift Selectivity

Speckle-Shift Selectivity is perfectly symmetric in both X and Y directions and the retrieved signal intensity decreases with Δ_{\perp} in almost 3 orders of the magnitude with no side-lobes. This promises low cross-talk and a high level of security.

Realization of Solid-State Data Storage Configuration

Decorrelation with:

- Pre-encoder spatial variation (shift or rotation)
- Reference beam spatial steering
- Beam angular steering with deflector
- Encoder (or pre-encoder) rotation

Page encoding and data recall

Irvine, California

MetroLaser

10MSST-2002, April 15-18

Data Recall Sequence

Conclusion

- High- density holographic data storage is demonstrated with random encoded reference beam
- Parallel recording and retrieval

MetroLaser Irvine, California

• Optical memory in solid-state configuring

Acknowledgment

This work was supported in part through the SBIR projects with NASA and DOE