Efficient RAID Disk Scheduling on Smart Disks

Tai-Sheng Chang & David H.C. Du

Department of Computer Science and Engineering, University of Minnesota

RAID and Smart Disks

- RAID Redundant Array of Independent Disks
 - RAID Controllers (cost)
 - Software RAID's (performance)
- Smart Disks
 - Exclusive-Or (XOR) computation on a disk

Disk-Based XOR

RAIDs with Smart Disks

- Opportunities
 - Less data transfer on storage networks (up to 50% reduction)
 - Scalable
 - No RAID controller required
 - CPU load greatly reduced compared to s/w RAIDs
- Challenges
 - Deadlock with single-threaded command executions
 - Out-of-buffer problem with multi-threaded commands
 - Data protection on disks
 - Disk buffer resource requirement
 - Impact on disk efficiency

Disk Buffer Builds Up !

Disk Buffer

Free buffer segment Locked buffer segment

No More XDW-ext can be executed !

How to avoid disk buffer buildup?

- To avoid buffer running out:
 - Can we slowdown the buffer build-up?
 - Can we free-up the buffer sooner?
- Alternative Approaches
 - Let XPW executed earlier without over-compromising performance -*XPWT*
 - Execute XPW's when they are too many in disk queue (some other disks are waiting) - XPWQ

Scheduling baseline - Greedy Method

- Greedy (shortest time first)
 - Execution order based on disk service time ONLY
 - Exception: When no more buffer space for next XPW-ext, the next non-XPW-ext command in the list will be picked

Scheduling Alternative I – XPWT

- Let C_{All}^{min} be the command with the shortest service time T_{All}^{min}
- Let C_{XPW}^{min} be the XPW command with the shortest service time among XPW commands T_{XPW}^{min} .
- If T_{XPW}^{min} $T_{All}^{min} \le \delta$ then choose C_{XPW}^{min} to be the next command.
- Otherwise choose C_{All}^{min} .

Scheduling Alternative II -XPWQ

- Let MaxNxpw be the threshold value of the number of XPW commands.
- Let Nxpw be the number of XPW commands in a disk command queue.
- If Nxpw <= maxNxpw then follow the Greedy Algorithm.
- Otherwise, pick the XPW command with the shortest service time among the those of all XPW's.

Performance Studies – Simulation Model

- Simulation model based on an 8-disk FC-AL model
- Disk, Disk buffer and FC-AL parameters are listed below

Disk Parameters	Value
Capacity	4.51 GB
Rotation Speed	7202.7 RPM
Average rotation latency	4.17 ms
Seek times	0.5 – 16.5 ms
Transfer rate	5.53 - 7.48 MB/sec

Disk Cache Parameter	Values
Block Size	512 bytes
Number of segments	Varied
Segment size	64 KB

FC-AL Simulation Parameters	Values	Descriptions
Link Speed	100 MB/Sec	Bandwidth of an FC-AL loop
Propagation Delay	3.5 ns	Propagation delay between two nodes
Per Node delay	6 word time	The delay of forwarding a frame by interface
Fairness algorithm	Enabled	The fairness protocol in its arbitration scheme

• Average Latency Time with 768 outstanding 4KB commands

XPWT outperforms the other two. When cache # of the segments =8, it's 8% better

•Average Latency Time with 768 vs. 512 outstanding 4KB commands

XPWT still performs as much as 5% better than the Greedy in 512 outstanding commands

•Average Latency Time with 8 vs. 32 disks

•Average Latency Time with 4KB vs. 64KB commands

•Average Latency Time with 768 outstanding 4KB commands

Average latency time with 768

outstanding commands

Average latency time with 512 outstanding commands

Conclusion

- Disk-Based XOR provides a promising low cost alternative to the existing hardware and software RAID solutions
- We have demonstrated both XPWT and XPWQ improved as much as 12% in our test scenarios.
- Rooms for optimization