

Intra-file Security for a Distributed File System

Zachary Peterson Scott Banachowski Ethan Miller Scott Brandt

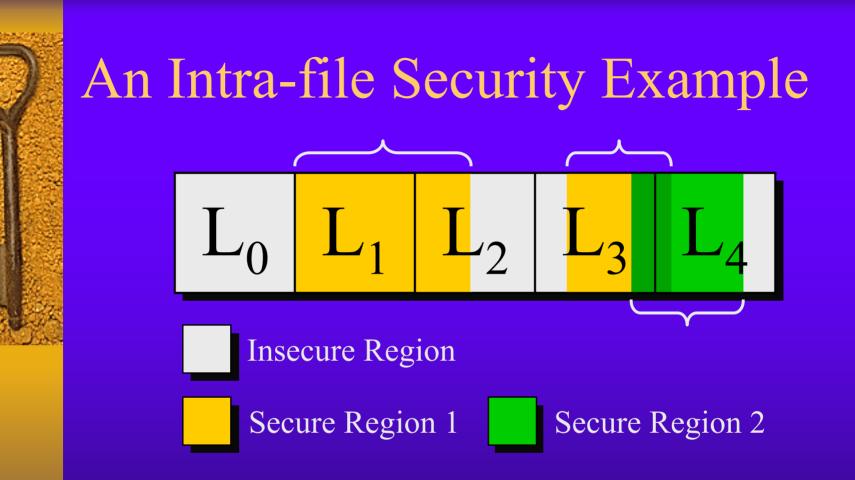
Storage Systems Research Center University of California, Santa Cruz

State of the Art in FS Security

 Today, cryptographic file systems take an "all-or-nothing" approach.

 Files are encrypted on a per-file or perdirectory basis, or not at all.

• This is sufficient only for files that must be accessed in their entirety for coherency.


 Counter example: large shared scientific data, flat file database or a recipe with a secret ingredient.

Intra-file Security

- We present *intra-file security* (IFS), an endto-end file system encryption technology.
 - Provides the ability to encrypt independent file extents.
 - Flexibility in encryption region size.
 - A single file may contain one or more isolated or overlapping secure regions.
 - Transparent to the user.
 - Supports strong encryption.

Secure Segment: A single encrypted portion of a file.

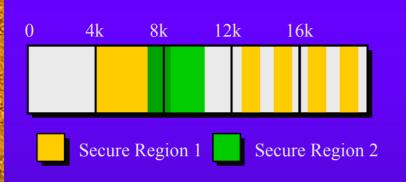
Secure Region: A set of secure segments encrypted with the same key.

Cipher Techniques

Because secure regions are not restricted to a block size, IFS is well-suited for stream ciphers, but block ciphers are still

- ♦ Block Cipher
 - DES/AES or Blowfish
 - Combine noncontiguous secure segments into a temporary contiguous buffer.
 - Cipher block chaining with initialization vectors (IVs).
 - Employ cipher-text stealing to ensure correct secure segment size.

- possible.
- Stream Cipher
 - RC4 or SEAL.
 - Data is encrypted in place.
 - Employ feedback chaining and IVs to hide data patterns.
 - No need for block copying or cipher-text stealing.



IFS Metadata: The S-Node

- We must keep information to locate secure regions in a file. We introduce the security node, or *s-node*.
- An s-node contains:
- Start offset and length of a secure region.
 - Offset is relative to the last secure region.
 - Count
 - Regions may be in a repeating pattern. Count provides a shorthand way to represent this.
- S-group
 - An identifier for the key used in encryption.
- Initialization vectors (optional)
 - IVs have the option of being generated on the fly.

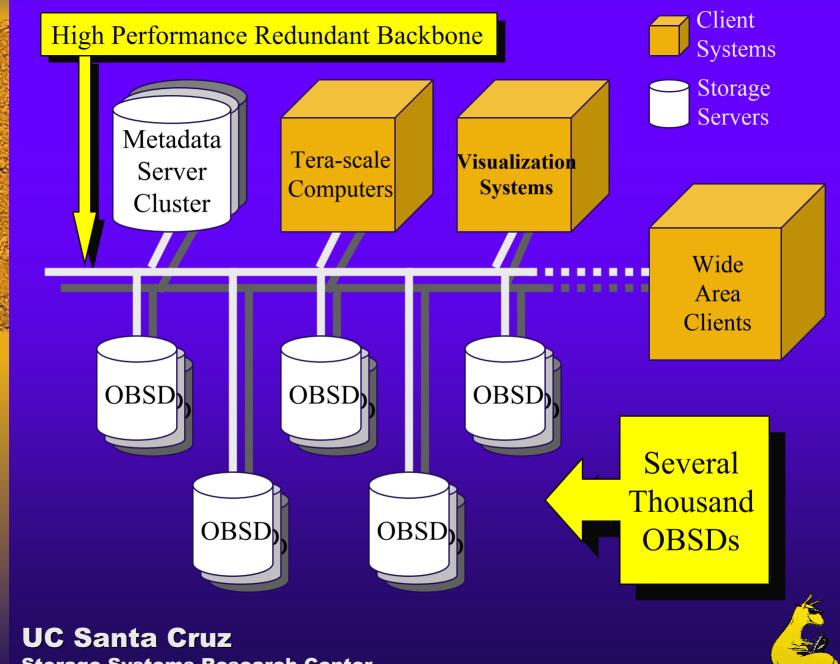
An S-Node Example

Start	Length	Count	S-group
4096	5000	1	Α
3000	3995	1	В
6144	128	1	Α
256	128	3	Α

 S-nodes are stored similarly to i-nodes.

- Groups of s-nodes can be combined, and stored together.
- Stored on disk with other metadata.
- Future s-nodes might:
 - Utilize gamma compression.
 - Use more complex encryption patterns.
 - Include a bit for relative or absolute offsets.

Integration of Intra-file Security


- IFS can be simply integrated into any type of file system.
- IFS is also very powerful and useful in a distributed environment.
 - Distributed environments benefit from good end-to-end encryption and often deal with large, shared data sets.
- With distribution comes complication.
 - Authentication
 - Key management and distribution
 - Metadata management

Object-based Storage Device

- Storage element in a storage area network.
- High performance:
 - Large bandwidth
 - Low latency
 - Massively parallel
- Decentralized data. Centralized metadata.
- Network of OBSDs seen by a user as a single device.
- High-level allocation (striping) managed by metadata server (MS). Low-level allocation delegated to OBSDs.

Storage Systems Research Center

Authentication

- Regardless of end-to-end encryption technology, some form of authentication system is required.
 - Many techniques already exist, and a new authentication scheme is not the focus of this work.
- Metadata Server (MS) performs all authentication, permissions and access control.
- MS then generates *tokens* to be presented to an OBSD for access data.
 - Tokens contain s-nodes.
- Tokens are similar to *capabilities* in NASD.

We require the existence of a key server (KS) that manages s-groups and keys.

- KS tightly coupled with MS.
- Possibly same machine.
- Creates a key for each
 s-group and for each file.
 Keeps them secret.
- CLIQUES protocol suite.[Steiner,ICDCS,98]

S-group Management

- Independent of UNIX groups.
- S-groups are created by:
 - Users dynamically
 - System administrator
- S-group specifications are lists of existing user and group names. Can be created on the fly.
- Translation function included in the interface that converts s-groups to a key identifier.

Interface- Reads

- ♦ IFS conforms to POSIX file semantics.
- Users each have a key ring containing keys for each s-group to which they belong.
- Read interface is unchanged and decryption is transparent:
 - If client has appropriate key, data is decrypted by client.
 - Otherwise, data is unreadable.

Interface- Writes

- Normal write calls are only allowed to unencrypted segments.
 - Writes that span secure regions are copy-on-written by OBSD to protect the integrity of the encrypted data.
 - Unauthorized changes are discarded.
 - During OBSD inactivity, writes may be merged into original file.
- Secure writes use an explicit system call.
 - Generates s-node information.

Performance & Applications

- IFS eliminates the need to fragment data into multiple files.
 - Ensures high-performance sequential and random access.
- Single-file semantics important for
 - Flat-file databases
 - Extremely large files.
 - Simplifying data management.
- Could be used in combination with the Low-Bandwidth File System (LBFS) [Muthitacharoen, SOSP, 01] used for transferring partial files to slow clients.

Related Work

- Secure File Systems
 - CFS [Blaze, ACM, 93]
 - Cryptfs [Zadok, Tech Report, 98]
 - Self Securing Storage [Strunk, OSDI, 00]
- Architectures for networked attached disks.
 - Network-Attached Secure Disks (NASD) [Gibson, ASPLOS, 98]
 - Secure Network-Attached Disks (SNAD) [Miller, FAST, 02]
 - Secure Authentication for Remotely Encrypted Devices (SCARED) [Reed, IEEE Micro, 00]

Related Work

Encryption Technology

- Feedback chaining
- Initialization Vectors [Schneier, Book, 96]
- Cipher-text stealing [Daeman, PhD Thesis, 95]
- Authentication
 - Kerberos [Neumann, USENIX, 88]
 - Cryptographic hashes [Miller, FAST, 02][Reed, IEEE Micro, 00]

Key Management

- CLIQUES [Steiner, ICDCS, 98]

Conclusions

- IFS increases the granularity and ease with which users may encrypt data with little change to the file system interface.
 - Especially useful in an high-performance distributed environment.
- Able to separate secure keys from insecure metadata.
- Predicted performance to be similar to other cryptographic file systems.
- An IFS implementation is in progress, as well as other exciting work on OBSDs.

Thank you. Questions?

zachary@cse.ucsc.edu http://csl.cse.ucsc.edu

