Efficient Storage and Management of Environmental Information

Vijay Atluri

atluri@andromeda.rutgers.edu

Rutgers University

joint work with

Nabil Adam, Songmei Yu (Rutgers)

Yelena Yesha (UMBC)

Outline

- Environmental Data warehouse
- Traditional Data warehouse
- Challenges and Proposed Solutions
- System Architecture and preliminary results
- Summary and Ongoing Work

Environmental Data Warehouse

- Assimilation, cataloging and dissemination of a vast array of environmental data
- Various data sources and data types
 - various types of satellite images with different resolutions captured by different sensors
 - AVHRR: direct downloads from polar orbiting satellites(NOAA 12, NOAA 14 and NOAA 15)
 - LANDSAT and RADAR: obtained from NASA archives
 - Hyper-spectral images: from AISA (Airborne Imaging Spectrometer for Applications) sensor
 - Aerial ortho-photographs
 - Spot images

Environmental Data Warehouse

- Value-added products:
 - vegetation
 - water
 - temperature
 - true colors (composites)
- models of the topography and spatial attributes of the landscape
 - roads, rivers, parcels, schools, zip code areas, city streets and administrative boundaries
 - Maps, reports, data sets from government agencies
- census information that describes the socio-economic
 and health characteristics of the population
- real-time data from ground monitoring stations

5

–

At CIMIC

Images

- AVHRR
- Landsat
- Radar
- Orthophoto
- Etc.

Users

- HMDC scientists and urban planners
- Rutgers scientists and students
- General public

Satellite Imagery

Water Quality in Hackensack River at the Meadowlands Marina

Diverse User Groups with specific data requirements

Policy Makers:

- query various critical parameters such as ambient air and water
 quality and visualize the results in a graphical form
- gain help in the evaluation and formulation of environmental policies

• Scientists:

 make scientific observations such as the changes in vegetation pattern and its effect on temperature over the years, ...

• Citizens:

learn information about their county, community, home on such issues as environment, health, and infrastructure

Can we adopt traditional Data warehouse models?

Traditional Warehouse Models

Star schema

 A single object (fact table) in the middle connected to a number of objects (dimension tables)

Snowflake schema

- A refinement of star schema where the dimensional hierarchy is represented explicitly by normalizing the dimension tables.
- Fact constellation schema
 - Multiple fact tables share dimension tables.
- Are best suited for traditional data such as banking, insurance, retail sales

A Multidimensional fact table scheme

The Star Schema

Sales

Store_id	Product_id	Period_id	Unit_sold	Sales_amount
str123	pro001	per02	10	900
str123	pro024	per02	15	1000
sta404	pro001	per02	300	45000
			••••	

Store dimension

Store_id	Name	City	State	Region	Level
str123	John's store	Newark	New Jersey	East	1
str130	River store	Montclair	New Jersey	East	1
str234	Market Center	Piscataway	New Jersey	East	1
sta404	ALL	ALL	New Jersey	East	2

The Snowflake Schema

The Fact Constellation Schema

The Star Schema

Challenges

1. Nature of the Environmental data

- Each dimension in itself is multi-dimensional in nature
- raster images such as satellite downloads
 - used to generate various images of different types including land-use, water, temperature, NDVI
 - each of them have multiple dimensions
 - the geographic extent and coordinates
 - the time and date of its capture
 - resolution, ...
- similar with aerial photographs

Challenges

- regional maps represented as vector data
 - temporal and spatial
- streaming data collected from various sensors
 - temperature
 - air quality
 - atmospheric pressure
 - water quality: dissolved oxygen, mineral contents, salinity
 - geographic location (spatial dimension)
 - temporal dimension

Nature of the Environmental data

Nature of the Environmental data

- each dimensional table is itself multidimensional by nature
- Traditional data warehouse models are not suitable for a spatial data warehouse
- Our Proposal: cascaded star schema

The Cascaded Star Schema

A is the fact table, and b, c, d, e and f are dimensions that are also multidimensional themselves

Challenges

2. Complex Nature of the queries

- (a) Retrieve the changes in the vegetation pattern over a certain region during last 10 years, and their effect on the regional maps over that time period
 - requires
 - layering of the images representing the vegetation patterns with those of the maps whose time intervals of validity overlap
 - traverse along this temporal dimension with the overlaid image
 - In the traditional data warehouse sense,
 - first construct two data cubes along the time dimensions for each of the vegetation images and maps
 - then fuse these two cubes into one

Challenges

- (b) observe the changes in the surface water and
 population due to the changes in the vegetation pattern
 - fusion of multiple cubes is required
- (c) simulate a fly-by over a region starting with a specific point and elevation, and traverse the region on a specific path with reducing elevation levels at a certain speed, and reaching a destination (a 3dimensional trajectory)
 - requires
 - retrieving images that span adjacent regions that overlap the spatial trajectory, but with increasing resolution levels to simulate the effect of reduced elevation level
 - display them at a speed that matches the desired velocity of the fly by.

How is it done now?

- Such requests are served by first identifying the sequence of images and manually composing them
- This is time consuming and labor intensive
- cannot handle ad-hoc queries

System Architecture

Flyby Video

Demo

http://cimic.rutgers.edu/~songmei/dw.html

Summary

- Recognized that traditional data
 warehouse models are not suitable for
 managing data in complex domains such
 as environmental and scientific
- proposed a cascaded star model

Ongoing Work

- Formulating the necessary primitives for the specification and execution of queries
- Extending the OLAP operations for the cascaded star
 - roll-up: aggregating on a specific dimension, I.e., summarize data
 - drill-down: from higher level summary to lower level detailed
 - slicing: projecting data along a subset of dimensions with an equality selection of other dimensions
 - dicing: similar to slicing except that instead of equality selection of other dimensions, a range selection is used
 - pivoting: reorient the multidimensional cube
 - zoom-in, zoom-out, aggregation of views using the above OLAP operations

Ongoing Work

slicing

dicing

Pivot