LHC-B detector Point-8

Indexing and Selection of Data Items Using Tag Collections

Sebastien Ponce

CERN – LHCb Experiment EPFL – Computer Science Dpt

Pere Mato Vila

CERN – LHCb Experiment

Roger D. Hersch

EPFL – Computer Science Dpt

March 27, 2002

LHC-B detecto LHCb THCP

Sebastien Ponce

Overview

- The context : LHCb problems
- A new indexing Schema
- Selection Process
- Theoretical Performance
- First measurements

Context

- Work developed as part of the LHCb experiment at CERN (European Organization for Nuclear Research)
- Final aim is high energy particle physics, to study the behavior of the B-Meson and the CP-violation.
- Tool: the LHCb detector, being built on the future CERN accelerator: the LHC (Large Hadron Collider)
- The principle is to look at billions of particle collisions every second and understand what's happening

The LHC

Near Geneva On the French-Swiss border

length: 27 km

depth: 50-150 m

LHCb

Width: 18m

Length: 12m

Height: 12m

Weight: 4.3t

Some Figures

- Particle collision every 25 ns (40 millions per second).
- 950 000 channels → 1 MB of data for each collision
- Net result of 40 TB/s of output data
- 24h a day, 6 months per year (15 millions seconds each year)
- + simulations & reconstructed data → * 3

BUT

- Interesting physics phenomena are really seldom
- A very efficient three levels trigger system removes 99.999% of the collisions (keeps 200 events per second)
- Only 100 KB are kept for each event
- ► "Only" 20 MB/s or ~ .3 PB/year are stored for real data
- Still ~ 1PB/year in total

Data Content Point-8

- The basic item is an event
- Events are independent one from the other
- A "per event" indexing is needed in order to make a selection among the 10¹⁰ events (real + simulated + reconstructed)
- The content of an event is a mix of booleans, strings, numbers
- Size and content of an event may vary

Data Selection Needs

- Typical physics analysis :
 - selection of interesting events
 - download these events
 - compute some histogram
 - modify the criteria and restart
- Selection is highly important
- Selection characteristics :
 - many variables (up to 30, typically 10-15)
 - mixture of types (boolean, numbers, strings)
 - complicated rules, that may need a structured language

Previous Solution

- Sequential scan of the whole database.
- Every item was converted to a C⁺⁺ structure and the selection was carried out in the code
- Weber et al⁽¹⁾ demonstrated that this approach was the best one in high dimension
- The goal is to optimize this sequential scan

(1) R. Weber, H.-J. Schek, and S. Blott.

A Quantitative Analysis and Performance Study for SimilaritySearch Methods in High-Dimensional Spaces.

VLDB'98

Tags

A tag contains :

- a subset of the data item it represents
- a "pointer" to this item
- The subset of the item contains few values that will be available for fast selection criteria
- A tag is a small, wellstructured entity that can be easily stored in a relational database

Event

float	Energy
int	NbOfTracks
int	InteractionType
float	MuonChamberDeposit
string	Pointer to Event

Tag Types Point-8

Several types of tags can be defined for a single event

 Their content depends on the type of analysis

Event

float	Energy
float	CaloEfficiency
float	CaloDeposit
float	CaloNoiceLevel
string	Pointer to Event

•	
float	Energy
int	NbOfTracks
int	InteractionType
float	MuonChamberDeposit
string	Pointer to Event

Tag Collections

- A Tag Collection is a list of tags of the same type.
- There may be many collections with the same type.

Selection Process

- The selection process is very flexible :
 - Selection of the tag collection implies a reduction of the number of data items of interest
 - Server-side preselection on tags using SQLlike criteria
 - Client-side refinement on tags using a high level programming language to maximize the preselection efficiency
 - Carry out the final refinement by reading selected full data items (high level programming language)

Selection Process (2)

Performance Point-8

- The performance of the new retrieval schema can be evaluated by comparing it with a sequential scan
- Approximations:
 - data contains only integers
 - no optimizations at all (no pipelining, sequential scans...)
 - no local refinement step
- Performances are given under the form of ratios :

$$ratio = \frac{selection\ with\ proposed\ indexing\ schema}{selection\ with\ sequential\ scan} < 1$$

Processing Time Ratio

proportion of items present in tag collection.

size of values tested but not in the tag (last local refinement step)

- Slightly better than α
- Main improvement : use of reduced size tag collection

Network Load Ratio 8

$$r_{NET} \leq 2 \alpha \gamma$$

proportion of items present in tag collection.

proportion of tags fulfilling SQL criteria

- α is due to the use of a tag collection (subset of events).
- γ is the tag selection ratio
- 2 is a maximum. Depending on the latency, it can go down to 1 + β, β being the tag size versus the data item size
- In practice, $\gamma << 1$ (~1% in LHCb) and $r_{NET} << \alpha$

Retrieval Ratio (From Disk)

- β is due to loading small tags instead of larger items
- γ is the tag selection ratio
- α is due to the use of a tag collection (subset of events).
- usually β << 1 and γ << 1 (10⁻⁴ and 10⁻² in LHCb) thus r_{DR} << α
- Tag size versus selection efficiency can be optimized

Net Gain for LHCb

Typical values for are :

- Proportion of items in a collection : $\alpha \sim 10^{-4}$
- Tag size versus item size : $\beta \sim 10^{-4}$
- Proportion of tags fulfilling SQL criteria : $\gamma \sim 10^{-2}$

Typical gains are

- CPU time: r_{CPU}~10-4
- Network load : r_{NFT} ~2.10⁻⁶
- Retrieval time : r_{DR} ~10⁻⁶

First Measurements

- The proposed schema is implemented within Gaudi (C⁺⁺ LHCb event computation framework)
- Measurement conditions :
 - MySQL as a database.
 - Items of 160 KB, tags reduced to 15 B ($\beta \sim 10^{-4}$)
 - Only 5000 events in total (~800 MB)
 - No network, few CPU needed
 - Bottleneck is the retrieval from hard disk
- Overall ratio essentially equal to $\alpha \gamma$:
 - α proportion of items present in tag collection
 - γ proportion of tags fulfilling SQL criteria

Dependence on α

(Tag Collection Size)

- N = 5000
 - No SQL selection
 - Measured dependency on α is linear as expected

Dependence on γ (Selectivity of the SQL query)

- N = 5000
- Tag Collection containing all data items
- Dependency on γ is linear as expected

Measured Time versus γ

Conclusions Point-8

- Tag collections based indexing allows :
 - various and powerful preselections (tag collection, SQL, high level programming language)
 - optimized network load (of the order of loading only matching items)
 - Large global gains (at least 10⁴ for LHCb)
- Although developed as solution to a specific problem, the method is generic:
 - adapted to data selection problems with highly selective multidimensional criteria, making use of a small subset of the data items
- Tag collections may be accessed more efficiently by using existing indexing techniques on tags.

Future Work

- The data selection schema will be parallelized :
 - retrieving of tags/data items in parallel
 - carrying out I/O and local refinement as a pipeline
- Interface with Grid software is foreseen:
 - storage of data items in world-wide distributed databases
 - replication of the tag collections on different sites