v1.4 - 12 April 2002

Introduction to HyperSCSI

or "Designing a network storage protocol"

By Patrick Khoo and Wilson Wang

Why Not?

- We are building Ethernet-based storage
- Instinct says use TCP/IP because it has everything we need for networking
- "We're stuck with TCP and the higher levels because of Ethernet's inability to handle packet management and stuff." – Mass Storage Conference 2002
- Solution: Focus on solving Ethernet's inability for storage, not TCP's shortcomings (eg TOEs) and do so without "rebuilding" TCP/IP
- Can it be done? Yes, HyperSCSI demonstrates that this can be done

HyperSCSI

The transmission of SCSI commands & data across a network

- Support for various storage devices & interface technologies, and existing applications & hardware (currently includes SCSI, IDE and USB devices)
- Runs on raw Ethernet (100Mbit/s, GE and GE+Jumbo Frames) as well as IP-based infrastructure
- Supports device specific options including encryption and access controls
- Support for multiple redundant load-balancing with automatic fail-over links
- Support for plug-and-play active device discovery functions
- Provides in-band management functions
- Easy to deploy and use, but provides users with plenty of choices

Delivering SCSI

	SAR	Flow Control	Delivery	Reliability	Wide-area Connectivity	Process Complexity	Channel Efficiency
Ethernet	No	No	Out of Order	Best Effort	No	Low	Highest
IP	No	No	Out of Order	Best Effort	Yes	Medium	High
UDP/IP	No	No	Out of Order	Best Effort	Yes	High	Medium
TCP/IP	Yes	Yes	In Order	Guaranteed	Yes	Highest	Low

Problems with Ethernet include:

- No flow / congestion control
- Undeterministic transmission
- Best effort transmission / reliability
- Small frame size
- Lack of security
- No wide-area capability

Flow / Congestion Control & SAR

Deterministic Data Delivery

Network Data Stream

 Transfers must be in-order, otherwise, command completion, security will be compromised

SCSI Block Transfers

- SCSI blocks can be transferred out-of-order
- Storage protocols do not need to guarantee in-order delivery of commands

Best Effort Reliability

Encryption and Security

Built-in Encryption

Lower Networking Layers

 Security built into protocol itself provides more granularity, higher performance and is easier to deploy

🖶 Device Options - Security 📃 🗖 🔀						
Device ID: 5 💌	Encryption: 🔽	Hashing: 🔽				
Encryption Scheme: (Global Setting)	▼ None 64-bit 128-bit	Accept				

Wide-area Support

Two implementations of HyperSCSI in development

- HS/eth HyperSCSI over Ethernet. IEEE Ethernet Type Field number: #889a (3 Dec 2001)
- HS/IP HyperSCSI over IP. IANA User Port number: 5674/tcp and 5674/udp (1 Feb 2002)
- HS/IP and HS/eth can be deployed together in the same network environment, or separately. They function independently of each other, but all clients and servers have the capability to understand both. It is only an "on/off" switch for the user.

HyperSCSI Architecture

HyperSCSI Host

HyperSCSI Target (Disk Array)

Multi channel load-balancing fault-tolerant Fast / Gigabit Ethernet Network

HyperSCSI Protocol

HyperSCSI Packet Framing / Encapsulation

HyperSCSI Command and Data Block

HyperSCSI Operation Codes

Class		Туре	Name	
Command Block	0,200	0x00	HCBE_REQUEST	
Encapsulation	0,00	0x01	HCBE_REPLY	
	0x01	0x00	HCC_DEVICE_DISCOVERY	
Connection		0x01	HCC_ADN_REQUEST	
Control		0x02	HCC_ADN_REPLY	
		0x03	HCC_DISCONNECT	
Elow Control	0x02	0x00	FC_ACK_SNR	
		0x01	FC_ACK_REPLY	
	0x03	0x00	HMC_ADDR_REPORT	
		0x01	HMC_ADDR_REPLY	
Multi Channal		0x02	HMC_LOCAL_REQUEST	
Multi-Charmer		0x03	HMC_LOCAL_REPLY	
		0x04	HMC_REMOTE_REQUEST	
		0x05	HMC_REMOTE_REPLY	

HyperSCSI Command Block Example

Development Progress

Prototype Demo and Test Area

951

HyperSCSI Protoc

CSA

MCSA

Introducing HyperSCSI

HyperSCSI Documentation

HyperSCSI Block & File Access

HyperSCSI Performance Profiling

HyperSCSI Performance Profiling

HyperSCSI in Action

Conclusion

- HyperSCSI manages to provide Ethernet-based storage without rebuilding TCP/IP
- HyperSCSI proves that pure Ethernet (without TCP/IP) can be a viable alternative to building Ethernet-based network storage
- For more information about HyperSCSI and implementing it for your own use, please see our website

http://nst.dsi.nus.edu.sg/mcsa/

When fish bungee jump.

