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Abstract

Reliability and availability are increasingly important
in large-scale storage systems built from thousands of indi-
vidual storage devices. Large systems must survive the fail-
ure of individual components; in systems with thousands of
disks, even infrequent failures are likely in some device.
We focus on two types of errors: nonrecoverable read er-
rors and drive failures. We discuss mechanisms for detect-
ing and recovering from such errors, introducing improved
techniques for detecting errors in disk reads and fast re-
covery from disk failure. We show that simple RAID cannot
guarantee sufficient reliability; our analysis examines the
tradeoffs among other schemes between system availability
and storage efficiency. Based on our data, we believe that
two-way mirroring should be sufficient for most large stor-
age systems. For those that need very high reliabilty, we
recommend either three-way mirroring or mirroring com-
bined with RAID.

1. Introduction

System designers have been making computer systems
with better performance, lower cost, and larger scale over
the last 20 years, but high availability and reliability issues
have been somewhat neglected in most designs. Siewiorek
and Swarz [15] noted four reasons for an increasing con-
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cern on fault tolerance and reliability: harsher environ-
ments, novice users, increasing repair costs, and larger sys-
tems. For storage systems, increasing the number of de-
vices increases the likelihood that failure will occur in at
least one device in the system, potentially causing loss of
data.

We are primarily concerned with two types of failures:
disk failures and nonrecoverable read errors. In petabyte-
scale file systems, disk failures will be a daily (if not more
frequent) occurence—data losses with this frequency can-
not be tolerated. Moreover, disk rebuild times are becom-
ing longer as disk capacity outpaces bandwidth [7], in-
creasing the “window of vulnerability” during which a sec-
ond disk failure would cause data loss from a RAID.

Nonrecoverable read errors are also a problem of in-
creasing importance. Disk drives such as the Seagate
ST3146807LW quote nonrecoverable read error rates of
1 in 10 bits. At 100 GB/second aggregate bandwidth
(20 MB/s per disk), nonrecoverable read errors occur sev-
eral times per hour across the whole system even when a
disk has not completely failed.

It is unacceptable to lose data in large storage system
simply because a few components have failed. Our work
explores the causes of such failures and presents redun-
dancy mechanisms to reduce data loss when drives do fail.

We investigate the availability issues in a very large-
scale storage system built from object-based storage de-
vices (OBSDs) [17]. An OBSD is a network-attached
storage device [6] that presents an interface of arbitrarily-
named objects of variable size. In our OBSD storage sys-
tem, files are broken into objects, and the objects are then
distributed across many devices. The total storage capac-



ity of this OBSD system is expected to be 2 PB. In such
a large-scale distributed storage system with thousands of
nodes, there is a high likelihood that at least one node will
be down at any given time.

Data for a single file will be distributed across hundreds
of individual OBSDs. This distribution must be done in a
decentralized fashion so that there is no central bottleneck
when a single file is accessed by thousands of clients. In-
dividual OBSDs can manage low-level storage allocation
themselves, leaving the problems of allocating data to OB-
SDs and replication to the higher-level file system

If an OBSD consists of multiple drives, we can use
RAID or other redundancy mechanisms within the OBSD
to safeguard data. This approach is feasible and could in-
crease the availability of a single OBSD. However, it is ex-
pensive because of the need for custom hardware and soft-
ware to manage the redundancy and the need for a higher-
speed network to connect the collection of drives. Addi-
tionally, RAID hardware and software are often complex
and have greater chance of failures. If the non-disk hard-
ware or software in an OBSD fails, the data is unavailable,
though recovery time from such faults is often lower than
that for rebuilding a failed disk. An alternate approach
would be to put the OBSD software on each drive and at-
tach it directly to the network. This approach might be less
expensive in the long run, but would require more redun-
dancy between OBSDs to provide a comparable level of
reliability.

A guiding principle in our research is that disk failures
should not significantly affect overall system behavior by
losing data or significantly decreasing bandwidth if the file
system is expected to be in a production system. If the sys-
tem contains 4000 disks with 500 GB per disk, and each
disk has a mean time to failure (MTTF) of 10° hours, a disk
will fail every 25 hours on average. Simply using RAID is
not enough because it takes too long to rebuild a disk. As-
suming the RAID must still provide data to clients while re-
building, it would take more than a day to rebuild a 500 GB
disk at 5 MB/second. With 5 disks in a RAID, the chance
of a second failure during a one day rebuild is about 0.1%,
resulting in a mean time to data loss (MTTDL) froma 2 PB
system of less than three years.

As disk prices keep dropping, so does the cost of pro-
viding redundant storage, allowing us to adopt more reli-
able replication mechansims including RAID, mirroring, or
both. Our research is concerned with providing guidance to
find the right balance between cost and reliability.

LA petabyte (PB) is 10° bytes.

2. Redated work

There has been some research beyond RAID [4] in re-
liability and recovery for large-scale systems, though most
of it has focused on the use of storage in wide-area sys-
tems. For example, Oceanstore [9, 18] is designed to have
a very long MTTDL, but at the cost of dramatically in-
creasing the number of disk requests per block written.
Pangaea [13] allows individual servers to continue serving
most of their data even when disconnected; however, this
approach is designed for wide-area systems, and does not
permit files to be striped across dozens of servers for higher
bandwidth. Microsoft’s Farsite project [1, 5] investigated
the issue of replication for systems built from relatively un-
reliable commodity workstations. They focused on relia-
bility, investigating replica placement strategies that take
server reliability into account. However, Farsite is not de-
signed for high-bandwidth applications, and must deal with
servers that are less reliable than those in a single large-
scale file system.

Other researchers have studied the question of how
much replication is really necessary as well as techniques
to reduce that level of replication. The Recovery Ori-
ented Computing project [12] is trying to reduce the re-
covery time in order to get higher availability and lower
total cost of ownership. Castro and Liskov [3] propose
a secure replication system to tolerate Byzantine faults
and make the window of vulnerability small. Litwin and
Schwarz [10] present a family of linear hashing methods
for distributing files. The algorithms reduce the number
of messages and scale to the growth or shrink of files effi-
ciently. Schwarz [14] has built a Markov model to estimate
system availability; we will apply this model to the scalable
file system we are designing.

3. Nonrecoverableerrors

By storing vast quantities of data on commodity disks,
we will reach the point where the built-in error detection
(and correction) of the disks no longer prevents undetected
errors. For example, error rates of one undetected error
of 1 in 10 bits are common. A single drive running at
25 MB/s would experience such an error about once a year.
In a large system with 10,000 disks, however, such an error
will occur once per hour somewhere in the system. While
the rate is too small to worry about in a typical commer-
cial database where human errors far outnumber machine-
generated errors, there are applications where very large
amount of data need to be stored without any data corrup-
tion, e.g. nuclear test simulation data files for the United
States Department of Energy.

If we were to change the error control code that hard



drives deploy to detect and (hopefully) correct slight data
corruption so that internal errors are flagged instead of cor-
rected, the hard drive would have far more nonrecoverable
read errors, but the rate of an undetected read error would
decrease substantially. Obviously, this is not possible for
commaodity hard drives and would even be complicated for
specialized hard drives since the ECC and the magnetic
code are increasingly interwoven [8]. We could embed
the application data into an ECC, but the storage overhead
is high.

3.1. Signature scheme

We have designed a scheme that detects and corrects
small errors in blocks stored on disk in a large-scale sys-
tem. Our scheme consists of two components: a signature
scheme that flags corrupted data, and a RAID 5-like [4]
mechanism that creates groups of blocks spread across dif-
ferent disks and stores the parity of the block on yet an-
other disk. This redundancy allows us to reconstruct any
corrupted block of data.

To flag corrupted data, we associate a signature with
each data block. The signature is a bit string of fixed length
f that is calculated from the contents of the block. A sig-
nature resembles a hash function, and should change if the
block is only slightly changed. We calculate the signature
when we store a data block and store the signature on the
same disk separately from the data block. When we read
the data block, we recompute the signature and compare it
with the previously stored signature value. If the two sig-
nature values agree, we conclude that the block is correct;
otherwise, we flag an error. This error is likely caused by an
incorrect block, but could instead be caused by an incorrect
signature.

To correct corrupt data, we introduce redundancy into
the storage scheme. Blocks are assigned into redundancy
sets, each of which contains n or fewer blocks. In addition,
each set contains k parity blocks. The parity blocks are
calculated using a standard erasure correction code. The
parameter k is a constant of the file system. If k is one, then
the single parity block is the normal (XOR) parity of the n
blocks containing application data. If k = 2, a modern era-
sure correction code such as Even-Odd is used to calculate
the two parity blocks. Beyond this, we can use general-
ized Reed-Solomon codes or other codes [2, 14]. We might
want to use k > 1 because this also protects the data against
disk failure.

3.2. Block signatures

A good signature scheme has the following properties:

1. The probability that two random blocks have the same
signature is constant 2.

2. The signature changes for small changes in the con-
tents of the block.

3. The signature can be calculated using a simple scan of
the block.

4. The signatures of a compound object can be calcu-
lated from the signature of constituent objects, e.g. a
file signature can be calculated from the file block sig-
natures. The file signature changes if two blocks are
interchanged.

5. The signature scheme can use arbitrary f within a
wide range.

We can construct such a signature using Galois
fields [11], as follows. We break a block of length g bits
into s bit symbols just as a written word in a western lan-
guage is broken into characters. s is a constant of the
scheme, with s = 8 or s = 16 being good choices. Each
symbol is interpreted as an element of the Galois field with
25 elements. A definition of Galois fields is beyond the
scope of this paper; however, much of the complex math
can be precalculated and stored in lookup tables, allowing
signatures to be computed quickly.

We pick an element a of the Galois field such that the
powers of a make up all the non-zero elements of the field;
such an element is called primitive. Formally, we define
the o signature of a block B = (bg,b1,---,bj_1) as

-1
siga (bo,b1,---,bj_1) = _Z)a'bi

This signature condenses a block of Is bits into s bits,
but this signature is not long enough for our purposes. We
therefore use a compound signature made up of several
components:

Si9ag.ay,ar_1 (00,01, -+, bj_1) =
(siga, (bo, b1, -+, by—1),
Sigq, (bo,b1,---,bj_1),- -+,
SiguH (bo, bl, ce ,b|,1))

This signature yields ts bits, with t =4 and s = 8 being
typical values that yield a 32 bit signature. We use a single
table lookup into a table with 257 entries together with a
single zero comparison and an integer addition to avoid the
use of a logarithm and antilogarithm table.

The compound signature has several attractive proper-
ties, but is not cryptographically secure—indeed, it has
these properties precisely because it is not secure. We can



define a file signature in a completely analogous way. If the
file is stored in several blocks with possible zero-padding,
then the file signature can be quickly calculated from the
block signature. The signature is guaranteed to change if
up to t symbols are changed. We can calculate the signa-
ture of a block after the swap of two sub-strings from the
sub-string signature. Finally, we can calculate the signa-
ture of a parity block (generated by XOR parity or general
Reed-Solomon coding) from the data blocks. Obviously,
the signature can be calculated in a single sweep of the
block while using little memory. All of these properties
make this signature attractive for use in a large-scale sys-
tem where data may be distributed across multiple OBSDs.

4. Disk failures

Protecting against nonrecoverable disk errors guaran-
tees that individual disk blocks read from “working” are
correct, but does not handle the case that an entire disk
has failed. As discussed in Section 1, a 2 PB storage sys-
tem will experience about one disk failure per day. Given
the long rebuild times that current techniques require, disk
failures would hurt performance and result in unacceptably
high risk of data loss from a second disk failure. We in-
vestigated several redundancy mechanisms and developed
mechanisms for fast recovery in a large-scale storage sys-
tem, resulting in lower risk of data loss at an acceptable
storage overhead.

4.1. Redundancy mechanisms

We assume that our storage system holds 2 PB of data,
and is built from 500 GB disk drives. Such drives are not
yet available, but will be by 2004-2005, assuming that cur-
rent growth rates in disk capacity [7] continue. Note that
a storage system containing 2 PB of data will require more
capacity for redundancy. The ratio between data capac-
ity and total storage capacity is the storage efficiency. We
further assume that our disks have a mean time to fail-
ure (MTTF) of 10° hours. This is significantly shorter
than that specified by drive manufacturers, but is longer
than the 50,000 hours reported by sites such as the Internet
Archive [16]. For simplicity, we assume the failure rates
of the disks in the system are identical and independent,
though this may not be true if many disks are from the same
manufacturing batch.

We use the term redundancy set to refer to a block group
composed of data blocks and their associated replicas or
parity blocks. A single redundancy set will typically con-
tain 1 MB to 1 TB. We consider three methods to configure
the organization of a redundancy set: two-way mirroring
(Mirror-2), three-way mirroring (Mirror-3), and RAID-5

Table 1. Cost and overhead of different relia-
bility mechanisms.

Cost ($million) | Storage
Method o063 2005 | Efficiency
Mirror-2 $2 $0.2 50%
Mirror-3 $4 $0.4 33%
RAID 5+1 $3 $0.3 40%

with mirroring (RAID 5+1). In n-way mirroring, each data
block in the redundancy set is stored n times, with each
replica stored on a different OBSD. Under RAID 5+1, each
OBSD consistes of multiple disks organized as a RAID 5,
and each data block is mirrored on two OBSDs. Table 1
summarizes the cost and storage efficiency of the three re-
dundancy schemes using a current disk price of $1/GB and
an estimated disk price of $0.1/GB in 2005.

4.2. Fast recovery mechanisms

When we use any of the redundancy mechanisms de-
scribed above, there is still a small chance that the system
will lose data. For example, Mirror-3 will fail when two
of the three OBSDs in the redundancy set fail and the third
fails while the other two are being rebuilt. We can use one
of two mechanisms to deal with this situation: Fast Mirror-
ing Copy (FMC) and Lazy Parity Backup (LPB).

Fast Mirroring Copy quickly provides additional redun-
dancy for a redundancy set that has lost one copy. Rather
than attempting to immediately rebuild an entire disk, FMC
recreates the lost replicas throughout the storage system.
Since the “peer” for each replica that was on the lost disk is
on a different OBSD, this process takes time proportional to
the size of a single redundancy set. For example, it would
take only 100 seconds to create a new replica for a single
500 MB redundancy set. In a system in which a 500 GB
disk contains replicas for 1000 redundancy sets, this tech-
nique could rebuild a missing disk within 2 minutes. The
rebuilt disk is distributed across the entire storage system,
but all of the data is protected as if the original disk had not
failed.

Lazy Parity Backup has the same goal—protecting data
by replication—but works by creating parity blocks in the
background when the associated data blocks have not been
modified for some time. This method can be used to create
RAID-like structures across OBSDs. If FMC is used for
rapidly-changing data, LPB can be used for more static data
to gain the same reliability with lower storage overhead.
This technique is somewhat similar to AutoRAID [19], but
operates on a far larger storage system.



Table 2. Parameters for a 2 PB storage sys-
tem.

| Parameter | Value |
Z (total data in the system) 2 PB
y (recovery rate) 10 GB/hr
N (number of redundancy sets) Z/S
MTTF gis 10° hours
D (disks in an OBSD RAID 5) 5
S (data in one redundancy set) varies

4.3. System availability

Using Markov models, we compared the mean time to
data loss in a 2 PB of Mirror-2, Mirror-3, and RAID 5+1.
The parameters of the storage system we used in our com-
parison is listed in Table 2.

To compare the MTTDL of the three redundancy
schemes, we used the following equations which approx-
imate (to within 1%) the MTTDL for each of the redun-
dancy mechanisms?:

24 .
MTTDLuiror_2 — D disk Y 1)
2.7
MTTF3 -
MTTDLuirror3 = # 0)
~ (D-1)% MTTFSg ¥
MTTDLRaiD 511 = > D 527 3

Using Equations 1, 2, and 3 and Table 2, we calcu-
lated the MTTDL for each redundancy mechanism using
different sizes for a single redundancy set, as shown in Fig-
ure 1. For each mechanism, we show MTTDL for both
MTTDLgis = 10° hours and the manufacturers’ claims of
MTTDLgis = 108 hours.

Our first result is that MTTDL for the system does not
vary with the size of a redundancy set for Mirror-2, as ex-
pected from Equation 1. Though larger redundancy sets
require more time for recovery, there are fewer of them.
These two effects are balanced for Mirror-2, so the size of a
single redundancy set does not affect overall MTTDL. For
Mirror-3 and RAID 5+1 mechanisms, however, MTTDL
decreases as the size of a single redundancy set increases.
In both cases, the decrease in reliability due to longer re-
covery time overwhelms the increased reliability from hav-
ing fewer, larger redundancy sets.

2Due to space limitations, we omit the derivations, which will be in-
cluded in the full paper.
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Figure 1. Mean time to data loss in a 2 PB
storage system

Figure 1 seems to indicate that smaller redundancy sets
provide longer MTTDL. However, this approach has sev-
eral limitations. First, overall file system bandwidth will
decrease if redundancy sets are too small because individ-
ual disk transfers will be too small. This sets a lower limit
of 256 KB-4 MB for redundancy sets. Second, we assume
that redundancy sets fail independently. If there are too
many redundancy sets, however, many will share multi-
ple disks, causing correlated failures. Third, the bookkeep-
ing necessary for millions of small redundancy sets will be
overwhelming. For all these reasons, we believe it unlikely
that redundancy sets will be much smaller than 200 MB-
1 GB.

Disk lifetime is another important factor in calculating
MTTDL for the entire storage system. An order of mag-
nitude in MTTDLgjg from 10° hours to 10 hours can im-
prove overall MTTDL by a factor of 100 for Mirror-2, 1000
for Mirror-3, and 10,000 for RAID 5+1. The use of a con-
trolled environment to ensure longer disk lifetimes will re-
sult in a major benefit in overall system reliability.

Increasing the recovery rate y can also improve overall
system reliability. Placing a higher priority on disk transfer
rate and recovering faster will greatly improve reliability
by reducing the “window of vulnerability” during which
the system may lose data. Doubling the recovery rate will
double the reliability of Mirror-2, but will increase the reli-
ability of RAID 5+1 by a factor of 8.

For a system with 2 PB of storage, we believe that
Mirror-2 will provide sufficient redundancy at an accept-
able cost. MTTDL for such a system will be about
30 years regardless of the redundancy set size, allowing us
to use larger redundancy sets to reduce bookkeeping over-



head. Mirror-3 and RAID 5+1 can provide much longer
MTTDL—up to 2 x 10 years for Mirror-3, and 10 years
for RAID 5+1. Although other schemes provide much
greater MTTDL, Mirror-2 is considerably simpler to im-
plement than Mirror-3 and RAID 5+1, and provides good
reliability at relatively low cost.

5. Conclusions

We have discussed two major sources of data loss in
large-scale storage systems—nonrecoverable read errors
and disk failures—and have presented mechanisms for
dealing with each. By using signatures on individual disk
blocks and redundancy across multiple storage devices, we
can reduce the risk of data loss. Techniques such as fast
mirror copy further decrease the chance of data loss to the
point where simple two-way mirroring in a 2 PB file system
can still have a mean time to data loss of 30 years without
the use of expensive RAID hardware. If this is not suffi-
ciently long, techniques such as three-way mirroring and
RAID 5 with mirroring can virtually guarantee that data
will never be lost.
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Abstract

This is our abstract. In it we simply state that we’ve
figured out how to use telekinesis in mass storage
systems.

We’d say more here if there were more to say.

1. Introduction

Here we introduce the topic of telekinesis and explain
its relevance to mass storage.

2. Our work

Here we explain what’s nifty, keen, cool, rad and bad
about our work. We’re the first people in this part of the
galaxy to use telekinesis as a key architectural component
of mass storage systems.

2.1. Telekinetic bits

We figured out how to move bits using telekinesis.
Fortunately, they are not heavy, so it was not hard.

2.2. Telekinetic readers and writers
The TKbits don’t do any good if you can’t read them
and write them, so we figured out how, as shown in

Figure 1.

2.2.1. Telekinetic readers. It’s not that hard to read
TKbits as long as you have the power.

2.2.2. Telekinetic writers. You can also write bits
telekinetically if you know how.

“ This research was sponsored by the Universal Dispensing
Authority under Contract No. UDA-1864-AbeLincoln-98. Views and
conclusions contained in this report are the authors’ and should not be
interpreted as representing the official opinion or policies, either
expressed or implied, of the UDA, the U.D. Government, or any person
or agency connected with them. In fact, the authors aren’t even
responsible for this work.

3. Related work

Here’s where we explain why it’s niftier, keener,
cooler, radder and badder than anything else in the known
universe, including Fredkin gates, reversible computing
and jellied beet consommé [1,2,3].

6.15%

Figure 1. How to figure it out.

4. Future work

Here’s where we explain how much of the work we
really didn’t get done before the paper was due.

5. Conclusions

Recap and indicate how totally cool it really all is. Be
sure to state the conclusion: Necessity is the Mother of
Invention [4].
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