Data Grids, Collections, and Grid Bricks
Arcot Rajasekar, Michael Wan, Reagan Moore, George Kremenek, Tom Guptil
San Diego Supercomputer Center
University of California, San Diego
(sekar, mwan, moore, kremenek, tgpt) @sdsc.edu

Abstract

Data grids federate storage resources. They
provide a logical hame space that can be used to
register digital entities, a storage repository
abstraction for manipulating data, and a high level
abstraction for supporting user-selected interfaces.
Data grids can be used to build persistent collections.
Data can be stored across multiple types of storage
systems with persistent copies kept in archives.
Persistent identifiers can be kept in the logical nhame
space. By integrating Grid Bricks (commodity based
disk caches) with archival storage systems, one can
assemble a data management environment that
supports both interactive access (data picking) and
long-term persistent storage. Examples of the creation
of interactive data picking environments will be given
that integrate Grid Brick technology with large-scale
archives.

1. Introduction

Data grids are middleware that tie together storage
systems that are distributed across administration
domains linked by wide area networks. The name
“middleware” is used to define software systems that
manage distributed state information. In the case of
data grids, the state information is created by the
registration of digital entities into a logical name space
to denote their membership in a collection. From this
perspective, data grids are the middleware software
systems that support the creation of collections that
span storage systems located in multiple
administration domains (Stockinger, 2001).

The term “Data Grid” traditionally represents the
network of distributed storage resources, from archival
systems, to caches, to databases, that are linked using a
logical name space to create global, persistent
identifiers and provide uniform access mechanisms
(Foster, 1999). Examples of data grids can be found in
the physics community (PPDG, 1999, GriPhyN, 2000,
Hoschek et. al., 2001, NEES 2000), in biomedical
applications (BIRN, 2001), for climate prediction
(Hammond, S., 1999) and for ecological sciences
(KNB, 1999). More recently several projects have
promoted the establishment of data grids for other

communities such as astronomy (NVO, 2001),
geography, and earth science for plate tectonic systems
(EarthScope, 2001), etc. Most of these data grids are
under construction and represent different proto-
typical systems for building distributed data
management environments. Many of these use the
SDSC Storage Resource Broker (SRB) for their
distributed data management.

The ability to create a data collection is heavily
dependent upon the set of abstractions that are used to
hide infrastructure dependencies. From the viewpoint
of auser of acollection, acommon interface is desired
for discovering, accessing, and manipulating the
registered data. The common interface eliminates the
need to understand the protocol required by each type
of storage system. The use of alogical nhame space to
register the digital entities makes it possible to create
global persistent identifiers that are independent of the
physical file names used within the storage systems.
Because the logical name space can be organized as a
collection hierarchy, it is possible to create discovery
and access methods that are more sophisticated than
the mechanisms traditionally provided by storage
systems. In particular, it is possible to build a data
grid that manages a collection that is housed in an
archival storage system (Rajasekar, 2001, Moore,
2001).

The utility of data grids can be described in terms
of their ability to manage persistent data (Moore,
2002). It is possible to create and manage
geographically distributed replicas of the digital
entities that are registered into the collection. The
naming convention for the digital entities can be
global in scale, making it possible to use data grids to
collaboratively share access to data. |n addition to use
as data sharing environments, data grids can also be
used to support interactive access to persistent
collections, independently of the archival storage
system capabilities.

Since data grids can be used to federate access to
storage systems, it is possible to integrate archival
storage systems with commaodity based disk caches, or
Grid Bricks. The concept of a Grid Brick was
proposed by Chaitan Baru of SDSC and Bala lyer of
IBM in April 2002. They defined a Grid brick as a
storage appliance with a particular software stack
aready installed on it. We particularize the definition
to mean a commodity disk cache on which data grid

technology isinstalled to provide alogical name space.
By replicating the digital entities onto both the disk
caches and archives, one can simultaneously provide
both long-term persistent storage, and interactive
access to large collections. We will look at the
management, scaling, performance, and cost issues
associated with incorporating Grid Bricks into data
grids. We will illustrate use of this technology as a
third type of storage environment, providing persistent
access for interactive “picking” of data from a large
collection.

2. Storage Environments

The management and analysis of data collections
requires multiple types of access environments
(Moore, 1997). We will consider three data
management environments: persistent storage, data
streaming systems for data intensive analysis, and
picking environments for interactive access to single
digital entities. Persistent storage and disaster
recovery support are traditionally provided by archival
storage systems. Data intensive analysis systems
support the processing of entire data collections by
caching the collection on a high performance disk
system, and then streaming the entire collection
through analysis platforms. Data picking
environments support interactive access to popular
collections. A picking environment is needed to
support the random retrieval of individual digital
entities. The picking environment does not need the
high performance network access required by data
streaming environments, nor does it need the
persistence required by archives. We already use data
grid technology to integrate access to archives and data
streaming systems. We can also integrate storage
systems that are devoted to support for data picking
into data grids. The solution we have examined for
persistent access systems is the creation of commaodity-
based Grid Bricks that can be used to assemble low
cost multi-terabyte disk caches. The Grid Brick is an
extension of the idea of CyberBricks proposed by Jm
Gray (Devlin, 2002).

The basic concept behind CyberBricks is that they
can be aggregated as needed to provide the desired
amount of disk space. For Grid Bricks to be feasible as
an extensible storage medium, the administrative
support needed to the manage user access must also be
automated. Since each CyberBrick is a stand-alone
system, containing not only the disk but also the
associated controlling CPU and network access, data
management systems are needed to provide a uniform
name space across the CyberBricks and manage the
distribution of files across the multiple systems. Grid

Bricks integrate data grid management services with
CyberBrick commodity hardware (Rajasekar, 2002).
Data grids provide the ability to replicate data stored
on the grid bricks into archives to provide long-term
storage, and the ability to automate movement of data
onto high-performance SANs for data intensive
analyses.

A typical CyberBrick costs on the order of $3,500
to $4,500 per terabyte of disk cache, and contains the
following components based on calendar year 2002
technology. As higher capacity disk drives become
available, the cost will decrease dramatically.

« 17GhzCPU

1 GB of memory

3ware Raid controller

1-TB of disk (eight 160-GB IDE disk drives)
Gigabit Ethernet network connection

CyberBricks typically run the Linux operating
system, which requires user and file system
administration, and operating system maintenance.
The utility of CyberBricks for the provision of an
interactive picking environment is strongly dependent
upon the ability to minimize the administrative
management overhead. Fortunately data grids make it
possible to centralize user and file administration, and
eliminate the need to separately administer each
CyberBrick.

An environment that integrates archival storage,
data picking environments, and high performance data
analysis can be constructed by using data grids as the
controlling data management mechanism.

3. Data Grids

The ability of data grids to simplify the
administration of collections is strongly tied to the
capabilities provided by logical hame spaces, storage
repository abstractions, and common data access
mechanisms. A standard use of the logical name space
is to support global persistent identifiers as a way to
name the digital entities that are registered into the
collection. The logical name space can also be used to
register and manage the users that are allowed to access
data within the distributed environment. The
fundamental concept behind this approach to user
administration is the use of collection owned data. To
minimize the effort required to administer multiple
CyberBricks, al data stored on the bricks are owned by
a collection, and stored under a single collection Linux-
ID. For this approach to work, users authenticate
themselves to the collection, and the collection in turn
authenticates its access to each grid brick. The logical
name space is used to register user names, user

passwords and authentication methods, and access
control lists for each digital entity. This simplifies user
administration of Grid Bricks to the installation of a
single persistent collection Linux-ID on each Grid
Brick. The data grid manages all interactions with
users, eliminating the need for user administration on
each Grid Brick.

The data grid storage repository abstraction is used
to simplify administration of the file systems on the
Grid Bricks. The organization of the files into
directory/subdirectory structures, or equivalently
collection/subcollection hierarchies, is managed within
the logical name space. The Grid Brick disk space is
maintained as a single large file system, without the
need to differentiate into multiple directory structures
for different types of user access requirements. All user
access control is managed through the access control
lists maintained in the logical name space. The only
remaining administrative support required on the Grid
Bricks is the installation of updates to the Linux
operating system for security patches, and replacement
of disks when they fail.

The persistence of data within Grid Bricks is
managed by replication across multiple systems. The
presence of areplicais registered into the logical name
space, along with the | P address of the system on which
the replica resides, and the access protocol that is
required to manipulate the replica. The storage
repository abstraction maps from the standard set of
operations that are used to manipulate data, to the Linux
I/O operations supported on the Grid Brick, as well as
to the protocol used to interact with an archival storage
system or a high-performance SAN. From the user
perspective, the same APl can be used with equivalent
operations performed no matter where the data actually
resides.

The data grid used at SDSC is based on the Storage
Resource Broker (SRB) and associated Metadata
Catalog (MCAT, 2000). The system is shown in Figure
1. The SRB provides facilities for collection-building,
managing, querying and accessing, and preserving data
in a distributed data grid framework (SRB, 2001,
Moore & Rajasekar, 2001). It provides federation of
storage systems and uniform access to diverse,
heterogeneous storage resources across administration
domains. The Metadata Catalog holds systemic and
application- or domain-dependent metadata about the
resources and datasets, and methods and users that are
being brokered by SRB. Together, the SRB and the
MCAT provide a scalable information discovery and
data access system for publishing and computing with
scientific data and metadata. The SRB provides a
means to organize information from multiple
heterogeneous systems into logical collections for ease
of use. The SRB, in conjunction with the Meta data

Catalog supports location transparency by accessing

data sets and resources based on their attributes rather

than their names or physical locations [Baru et.a.,

1998]. The SRB provides a logical representation for

storage systems, data, and collections and provides

several features for use in digital libraries, persistent
archive systems and in collection management systems.

SRB also provides capabilities to store replicas of data,

for authenticating users, controlling access to

documents and collections, and auditing accesses.

The SRB can also store user-defined metadata at the
collection and object level and provides search
capabilities based on these metadata. In a nutshell, the
SRB provides the following data grid functionalities
(descrlbed in some detail in (RWM, 2002)).

Integrate data collections and associated
metadata, including system-metadata, domain-
specific metadata and user-defined metadata.

* Handle multiplicity of platforms, resource and
data types.

» Provide seamless authorization and
authentication to data and information stored in
distributed sites.

» Provide transparent access to resources and
attribute-based access to data and collections

» Provide a virtual organization structure for data
and information based on a digital library
framework.

» Handle dataset scaling in size and number

* Handle replication of data and provide replicated

data management,

* Provide caching, archiving and data placement
facilities,

 Handle access control and provide auditing
facilities,

* Provide remote operations for data sub-setting,
metadata extraction, indexing, data movement,
etc.

The SRB/MCAT system provides a storage
repository abstraction, a high-level abstraction to
support multiple user application interfaces, and a
logical name space for the registration of logical
entities. The high-level abstraction for the user
interface defines the set of operations that will be
supported in the data grid, including collection
management, metadata manipulation, data
management, data movement, attribute-based data
discovery, and data access. These operations are
interfaced to the storage repository protocols through
the storage repository abstraction. The desired
operations are sent to a server that is installed on the
remote storage system. The user client issues
requests that are interpreted by a SRB server, sent to
the appropriate remote server, processed at the remote
storage system, and the results sent back to the client.

Access
APIs

Prime
Server

Servers

Figure 1. The SDSC Storage Resource Broker and M etadata Catalog components.

Through the data grid, the user effectively accesses
data without knowing the file name (attribute-based
query), without knowing the location of the data, and
without knowing the access protocol required by the
remote storage system.

4. Examples

The management of data for the National Virtual
Observatory (NVO) builds upon all three data
management environments, data archiving, data
streaming, and data picking. The NVO project is
funded by the National Science Foundation to provide
access to images from multiple sky surveys. A typica
sky survey contains 10 TBs of data, with up to 5
million images. All three modes of access are needed.
For the 2-Micron All Sky Survey (2MASS), the
SRB/MCAT system has been used to implement
archiving, streaming, and picking environments. The
collection is archived in the HPSS storage system at
SDSC in 140,000 containers. To minimize the impact
on the HPSS name space, the images were sorted into

containers such that all images for the same area of the
sky are stored in the same container. Access to the
original images is managed through the SRB data
handling system, which automatically retrieves the
correct container from HPSS, caches the container on a
disk system, and then reads the desired image from the
cached container.

The data streaming environment is created by
replicating the collection onto a high performance Sun
SAN disk system. The datais copied from HPSS onto
the SAN using parallel 1/O transfer over gigabit-
Ethernet networks. Once the data resides on the SAN,
then analyses are made over the entire collection using
aterascale IBM SP computer.

The data picking environment is created by
replicating the collection onto Grid Bricks. The
SRB/MCAT system can be told which replica to
access. If no direction is given, the SRB preferentially
accesses data that resides on a disk file system to
provide the lowest possible latency. The data picking
environment is being implemented in support of NVO
mosaic services and image access services. These
services provide web access to the entire collection,

allowing users to pick the region of sky that is of
interest, and dynamically retrieve selected images
without incurring archival storage access latencies.

5. Grid Brick Building Experiences

Since the whole point of the Grid Brick was
interactive access for data picking, a disk-based system
was required. We decided at the beginning that
capacity was more important than speed. We tested
IBM's 7200-RPM 75-GB drives, but our initial
terabyte systems were based on the Maxtor
DiamondMax 81.9GB drives. When Maxtor released
their 160GB drives, we began using those instead —
although they were slightly more expensive per
gigabyte than the smaller units, this additional expense
was offset by a reduction in the number of nodes we
needed to deploy for a given application. Since these
drives allow us to build terabyte-scale arrays with only
eight drives instead of sixteen, we can use a standard
PC case and power supply instead of the more
expensive server cases and multiple power supplies
that we used in our original test units. Although the
larger drives run at only 5400 RPM, spreading the data
out across multiple spindles helps compensate for the
slower speed. We have seen peak RAID-0 read
performance of well over 100MB/s from eight of these
drives. The Maxtor 160 GB drives have additional
advantages, including peak (spin up) power
requirements that are less than 1/2 that of the 81.9 GB
drives and operating power requirements of less than
12 watts. With lower peak and operating power
requirements, we can use a smaller power supply and
we have almost no problems with heat. Indeed, eight
160 GB drives actually use slightly less power on
average than a single Athlon or Pentium 4 CPU
running at full speed.

In the early stages of our work, we did our RAID
management in software using the Linux kernel "md"
driver. This worked reasonably well for small servers,
but we came to a consensus that doing this on a
machine that was also likely to be a busy file server
would have a significant performance cost. We note
that transferring data from a Grid Brick at 120 MB/sec
can use al of the CPU power. We also had trouble
putting more than three ATAG66 controllers in one
system. This combined with the relatively low price of
IDE RAID controllers and the performance problems
using a master+slave configuration in a RAID led us to
take another route. Our original terabyte systems used
the 3ware Escalade 6800 IDE RAID controller, while
our newer systems use the Escalade 7500 cards. The
Linux kernel driver for this card is quite mature, and
we've had very impressive performance from our

system. With the new 160 GB drives now shipping, we
can attach up to 1.1 TB of capacity per card for a very
reasonable price. 3ware's documentation says they
have tested three cards in a single machine and that
there is no reason you shouldn't be able to use more,
though using more than 2-3 cards would make for a
very busy PCI bus. When choosing to put multiple
controllers in your system, don't forget about
networking — if you are using your system as a file
server, every byte you read from the drives also needs
to go out over a network interface. You might be able
to address the bus contention problem by purchasing a
system with many PCIl busses if you really need a fast
4-terabyte file server in a single Grid Brick, though a
better approach might be to wait for the new 320GB
drives. Combining these drives with the new 12 port
3ware controllers will allow you to build extremely
dense storage sol utions suitable for many applications.

Early in the development stages, we decided to go
with an Athlon-based system instead of an Intel-based
one. This reduced our costs for motherboards and
CPU, but it limited the amount of RAM we could put
in the machine since at the time most Athlon boards
had only 3 slots, limiting us to either 768 MB using
256 MB DIMMs or 1.5 GB using 512 MB DIMMSs.
Since we did this initial work, pricing and hardware
availability have changed and we're now building
systems based on the current generation Intel Celeron.
We chose the Celeron over other options due to its low
cost, low power requirements, and low heat output.
Using a system board that supports the 1.7ghz Celeron
also allows easy substitution of a faster Pentium 4 CPU
without any other changes to the system design. This
could be very useful for nodes that are doing data
processing or aggregation and have additional
processor requirements.

Selection of a motherboard was a somewhat more
complicated process. Our original test system was built
using the Athlon-based Asus A7V. When we migrated
our second generation systems to the older "socket
370" Celeron, we used the Asus TUSI-M board. This
board worked well with the older Escalade 6800
controllers, but it doesn't work at all with the newer
7810 or 7500 cards. After a great deal of testing and
experimentation, we settled on the Gigabyte GA-
8IRXP board. This board features integrated LAN, a
fast bus, and support for Intel's newer Celeron CPU.
However, selection of a system board and CPU may be
dictated by the needs of your particular application.
For help in choosing a system board suited to your
application, 3ware publishes a list of boards that are
certified to work with their controller cards. With some
of the next generation of system boards now featuring
integrated gigabit ethernet, we may choose to revisit
this problem again to reduce cost and complexity.

Also note that for applications where raw performance
is not a key concern, the VIA C3 processor can present
an appealing alternative — with a peak power
consumption of only 8.5w, this processor alows you to
build extremely dense systems while greatly
simplifying power and heat capacity planning.

Though our test systems were installed in standard
Antec SX-1030B desktop cases, our production
systems were integrated into a 4U rack mount. With
the advent of 320 GB drives, it will be possible to
create a Grid Brick with a capacity of 1.1 TB that can
be packaged into a 1U rack mount. In standard racks,
this implies the ability to manage 40 TB of data
aggregated across 40 Grid Bricksin asingle rack.

One of the benefits of the integrated storage
approach that we used in the grid brick is that the
systems require little software customization and are
easy to integrate into existing management
infrastructure. At SDSC, we manage hundreds of
UNIX and Windows machines using management
tools like GNU cfengine and Microsoft's Systems
Management Server. For management purposes, a grid
brick is simply a standard system that happens to have
a terabyte of local disk instead of the usual 20-40
gigabytes. The 3ware controller does require a driver
and software, but the driver is included with many
Linux distributions and the software is simple to
install. In our case, it was simply a matter of telling
cfengine "these systems need the 3ware software
installed". For a site doing their own system
installation or managing a small number of systems
manually, you simply install Linux (Redhat recognizes
the 3ware controller automatically) and install the
monitoring software from 3ware's web site. While our
reference bricks run Linux, there is no reason that you
couldn't build a similar system running Windows or
one of the BSD Unix variants. The only requirements
are support for the 3ware controller card and the ability
to handle very large block devices.

There are only two real management caveats we've
encountered. One of these is a bug: the "grub"
bootloader included with current versions of Redhat
Linux is not capable of booting from a block device
larger than 1 terabyte. In the short term, this problem
can be fixed by using the "LILO" bootloader (also
included with Redhat) instead. In the long term, we
hope RedHat will address this. The other problem is
more complicated: we understand how to back up a
few hundred machines that have a few gigabytes of
data on each system. Backing up hundreds of
machines with multiple terabytes of data is a much
bigger problem, especially when you're trying to keep
costs reasonable. For environments where it's not
possible to have data redundancy at the application
level, the simplest solution is to build upon the

capabilities of data grids, and replicate the data onto an
archive or onto a second grid brick. One can achieve
high availability by using replication within the data
grid, and using the ability of the data grid to fail over
to a replica when the initial storage resource is
unavailable. Data grids make it possible to improve
reliability by using the same access mechanisms for
both the original copy of the data and the “back-up”

copy.
6. Administration and Usage of Bricks

The use of the SRB as the data management system
over the Grid Bricks makes the system administration
of the bricks very simple. In fact, when the brick was
installed, apart from the root user ID, only one non-
root user ID was created, called bricksrb. The whole 1
TB user file area is managed under the control of the
user ID bricksrb. The SRB isinstalled as an RPM and
any patches for the software are implemented in pre-
specified Preventative Maintenance schedules. Hence,
with no users to manage and the file resource under the
control of SRB, system management becomes very
simple and many distributed Grid Bricks can be
managed by a single system administrator. The SRB
monitoring system is used to check the usage of the
file resource in the Grid Brick and if it reaches a high
water mark, either the resource can be write-locked
(disallowing any new files being created on it) or files
can be automatically moved off to near-line storage
(tape systems [Wan et.al. 2003]) using the caching and
container facility of SRB.

The Grid Bricks went through rigorous testing
before deployment. First, the disks in the brick are
tested for more than two days with a set of rigorous
writing/reading programs. This is to weed out any
disks that may have manufacturing defects or early
mortality. Once these tests are done, we can be
somewhat safely assured of a long MTBF. After this
testing, the SRB server is started on the Grid Brick and
another round of rigorous testing, lasting a week, is
performed on the Bricks. In this test, parallel streams
of files are read and written from the disks at various
degrees of parallelism. Also, as part of the tests,
varying file sizes are also used from a few KiloByte
filesto file sizes of over 50 GigaBytes. This again tests
the scalability of the SRB. The Grid Brick
performance should be compared to some baseline
characteristics (based on the experience of the first
brick) before they are ready for actual deployment.
During the regular use of the Grid Bricks, test routines
are also regularly run to check the performance of the
Grid Bricks. These tests are performed to see if any
new bottlenecks have arisen. These tests are made to

find slowdown in performance due to disk failures,
SRB optimizations, network loading and overall
system health

Currently, the Grid Bricks are being used as part of
several on-going projects at SDSC. One of the
projects is to deploy the collection of visualization
artifacts (images, movies, 3d simulations, etc) that
have been created by the Visualization Group at
SDSC. The SRB will be used to manage this
collection, along with its rich support for metadata.
Metadata describing the physical characteristics of the
artifact as well as the themes of the artifact, along with
annotations and commentary will be used to provide a
very enjoyable browsing and searching experience for
the user.

In another project, a Grid Brick is being used to
store and serve digital education material for the
National Science Digital Library (NSDL) project. In
this project, web sources are crawled, based on their
contents useful for education curriculum modules.
Copies (snapshots) of these web pages and supporting
web pages are stored in the SRB. Currently, this
project has generated nearly 100 GB of storage and is
expected to grow to nearly one TeraByte in the near
future. An interesting aspect of the project is its use of
XML-based metadata. The metadata is gathered by
another collaborator on the project and is converted
into XML files. The SRB is used to interpret these
XML files, extract the metadata and associate them
with the web pages stored in the SRB. The aim of the
project is to archive snapshots of web pages that form
part of a science curriculum. By archiving the
snapshots and making them available, a teacher can
retain access to material that in effect remains
unchanged for the duration of the course and beyond.

9. References

[1] 2MASS, http://www.ipac.caltech.edu/2mass/.
[2]Baru, C., R, Moore, A. Rajasekar, M. Wan,
(1998) “The SDSC Storage Resource Broker,”
Proc. CASCON'98 Conference, Nov.30-Dec.3,
1998, Toronto, Canada.

[3]BIRN, “Biomedical Informatics Research
Network”, (http://www.nbirn.net/).
[4]EarthScope, (2001) “EarthScope”, (
http://www.earthscope.org/).

[5]Foster, Kesselman, C., “The Grid: Blueprint
for aNew Computing Infrastructure,” Morgan
Kaufmann, San Francisco, 1999.

A third project, getting underway, is with the
National Archives and Records Agency (NARA). In
this project, a Grid Brick system deployed at SDSC
will be integrated with storage resources at NARA and
the University of Maryland. The ability to integrate
Grid Bricks into a data grid will be used to provide a
distributed persistent archive for the NARA agency.

7. Summary

Data sharing environments can be built that are
based on logical name spaces to provide global names,
grid bricks for data picking environments, SANs for
data streaming environments, and persistent archives
for long term storage. Data grid technology provides
the essential infrastructure for federating the systems.
Grid Bricks provide an attractive cost effective storage
environment for persistent access to large collections
to support the picking of individual digital entities.

8. Acknowledgements

This research has been sponsored by the Data
Intensive Computing thrust area of the National
Science Foundation project ASC 96-19020 “National
Partnership for Advanced Computational
Infrastructure,” the NSF National Science,
Technology, Engineering, and Mathematics Education
Digital Library, the NARA supplement to the NSF
NPACI program, the NSF National Virtual
Observatory, and the DOE ASCI Data Visualization
Corridor. We also acknowledge Peter Ashford who
helped during the design and building of the first
TeraByte brick.

[6]GriPhyN, (2000) “The Grid Physics Network”,
(http://www.griphyn.org/proj-descl.0.html).
[7]Stockinger, H., O. Rana, R. Moore, A. Merzky,
“Data Management for Grid Environments,”
European High Performance Computing and
Networks Conference, Amsterdam, Holland,

June, 2001.

[8]Devlin, B., J. Gray, B. Laing, G. Spix,
“Improve Y our Scalability Vocabulary “,
(http://www.clustercomputing.org/ARTICL ES/tfc
c-4-1-gray.html), 2002.

[9)Hammond, S., (1999). "Prototyping an Earth
System Grid", at the Workshop on Advanced

Networking Infrastructure Needs in Atmospheric
and Related Sciences, National Center for
Atmospheric Research, Boulder CO, 03 June
1999.
(http://www.scd.ucar.edu/css/esg/presentations/nl
anr/index.htm).

[10]Hoschek, W., Jaen-Martinez, J., Samar, A.,
Stockinger, H., and Stockinger, K. (2000) “Data
Management inan International Data Grid
Project,” |EEE/ACM International Workshop on
Grid Computing Grid'2000, Bangalore, India17-
20 December 2000. (http://www.eu-
datagrid.org/grid/papers/data_mgt_grid2000.pdf).
[11]KNB, (1999) “The Knowledge Network for
Biocomplexity”, (http://knb.ecoinformatics.org/).
[12]MCAT, (2000) “MCAT: Metadata Catalog”,
SDSC (http://www.npaci.edu/dice/srb/mcat.html).
[13]NEES, (2000) “Network for Earthquake
Engineering Simulation”,
(http://www.eng.nsf.gov/nees/).

[14]NVO, (2001) “National Virtual

Observatory”, (http://www.srl.caltech.edu/nvo/).
[15]PPDG, (1999) “The Particle Physics Data
Grid”, (http://www.ppdg.net/,
http://www.cacr.caltech.edu/ppdg/).

[16]Moore, R., “Knowledge-based Grids,”
Proceedings of the 18" IEEE Symposium on
Mass Storage Systems and Ninth Goddard
Conference on Mass Storage Systems and
Technologies, San Diego, April 2001.

[17]Moore, R., “Preservation of Data,
Information, and Knowledge,” Proceedings of the
World Library Summit, Singapore, April 2002.
[18]Moore, R., and A. Rajasekar, (2001) “Data
and Metadata Collections for Scientific
Applications’, High Performance Computing and
Networking (HPCN 2001), Amsterdam, NL, June
2001.

[19]Moore, R., C. Baru, P. Bourne, M. Ellisman,
S. Karin, A. Rajasekar, S. Young, “Information
Based Computing,” Proceedings of the Workshop
on Research Directions for the Next Generation
Internet, May, 1997.

[20]Rajasekar, A., and M. Wan, (2002), “SRB &
SRBRack - Components of aVirtual Data Grid
Architecture” , Advanced S mulation Technologies
Conference (ASTC02) San Diego, April 15-17,
2002.

[21]Rajasekar, A., M. Wan, and R. Moore,
(2002), “MySRB & SRB - Components of a Data

Grid,” The 11th International Symposium on High
Performance Distributed Computing (HPDC-11)
Edinburgh, Scotland, July 24-26, 2002.
[22]Rajasekar,A., R. Moore, "Dataand Metadata
Collections for Scientific Applications', High
Performance Computing and Networking (HPCN
2001), Amsterdam, Holland, June 2001.
[23]SRB, (2001) “ Storage Resource Broker,
Version 1.1.8", SDSC
(http://www.npaci.edu/dice/srb).

[24]Wan, M., A. Rgjasekar, P. Andrews, R.
Moore, “A Simple Mass Storage System for the
SRB Data Grid”, Proceedings of the 20" |IEEE
Symposium on Mass Storage Systems and
Eleventh Goddard Conference on Mass Storage
Systems and Technologies, San Diego, April
2003.

