
A Simple Mass Storage System for the SRB Data Grid

Michael Wan, Arcot Rajasekar, Reagan Moore, Phil Andrews
San Diego Supercomputer Center

University of California, San Diego
(mwan, sekar, moore, andrews)@sdsc.edu

Abstract

The functionality that is provided by Mass Storage
Systems can be implemented using data grid
technology. Data grids already provide many of the
required features, including a logical name space and
a storage repository abstraction. We demonstrate how
management of tape resources can be integrated into
data grids. The resulting infrastructure has the ability
to manage archival storage of digital entities on tape
or other media, while maintaining copies on
distributed, remote disk caches that can be accessed
through advanced discovery mechanisms. Data grids
provide additional levels of data management
including the ability to aggregate data into containers
before storage on tape, and the ability to migrate
collections across a hierarchy of storage devices.

1. Introduction

The SDSC Storage Resource Broker (SRB) [1, 2, 3,
4] is data grid middleware that provides a storage
repository abstraction for transparent access to
multiple types of storage resources. The SRB has been
used to implement data grids (to integrate access to
data distributed across multiple resources), digital
libraries (to support collection-based management of
distributed data), and persistent archives (to manage
technology evolution). The Storage Resource Broker
is in widespread use, supporting collections that have
five million images replicated across multiple HPSS
archives, and data grids that span the continent.
Persistent archives are now being implemented using
the Storage Resource Broker in support of the National
Archives and Records Administration, and the
National Science Foundation National Science Digital
Library.

The capabilities provided by the SRB represent a
unique integration of data grids, digital libraries, and
persistent archives. The mechanisms that were
required to integrate these three types of data handling
systems turn out to be uniquely suited to the
implementation of a mass storage system. The name
space is managed by the digital library technology,

distributed physical storage resources are managed by
the data grid technology, and technology evolution is
managed through a persistent archive storage
repository abstraction.

The SRB is implemented as a federated client-
server system, with each server managing/brokering a
set of storage resources. Storage resources that are
brokered by the SRB include Mass Storage Systems
(MSS) such as HPSS [5], UniTree [6], DMF [7] and
ADSM [8], as well as file systems. What is of great
interest is that the SRB data grid can be used to
implement all of the capabilities of a distributed Mass
Storage System, while providing access to data stored
in file systems, databases, object ring buffers,
databases, and other types of storage systems. A Mass
Storage System based upon data grid technology can
be implemented using virtually any type of storage
device.

The motivations for implementing a MSS in a data
grid are:

• Cost of licensing - Not all of our users can afford
the licensing fees of commercial MSS systems.
By implementing the Mass Storage System
functionality within a data grid, a common
software system can be used for resource
federation and data sharing, as well as for data
archiving.

• Efficiency and performance - A MSS system that
is tightly integrated with the infrastructure of the
SRB data grid can take full advantage of SRB
features such as file replication, server directed
parallel I/O, latency management, data based
access controls, and collection based data
management.

• Elimination of duplication of features – The SRB
and MSS systems such as HPSS duplicate some
features. For example, the HPSS has its own disk
cache that is used as a front end to a tape system.
The SRB can be configured to provide a cache
that serves as a front end to a HPSS resource.
Since the SRB has no knowledge of the
operational characteristics of the HPSS cache, it
may not be able to effectively manage its own
cache utilization in conjunction with the HPSS
cache management. With the integration of Mass

Storage System capabilities into the SRB, a single
large cache pool can be used. Another example is
that most MSS systems have their own
authentication schemes in addition to the SRB
authentication system. A single authentication
system can be used if their capabilities are
integrated. The resulting system is easier to
administer.

• SRB already has many of the required capabilities
– The features needed for a simple MSS include a
name space, a storage repository abstraction,
storage resource naming and data management
tools. For example, the SRB Metadata Catalog
(MCAT) [9] maintains a POSIX-like logical name
space that eliminates the need to design a name
server from scratch. Since the MCAT namespace
is based on commercial database technology, the
transaction performance is substantially better
than current archives. Other reusable features will
be discussed later. Leveraging these reusable
features greatly reduces the effort required to
implement a simple MSS in a data grid.

• Finally, an MSS based on data grids can provide a
storage system that spans remote caches and
distributed archival devices interconnected by a
Wide-Area-Network. Such a logical linking of
distributed devices will provide new ways for data
sharing and fault tolerance not currently provided
by site-located mass storage systems.

2. SRB Architecture and Features

The Storage Resource Broker (SRB) is middleware
that uses distributed clients to provide uniform access
to diverse storage resources. It consists of three
components: the metadata catalog (MCAT) service,
SRB servers for access to storage repositories and SRB
clients, connected to each other via a network.

The MCAT is implemented using a relational
DBMS such as Oracle, DB2, SQLServer,
PostgresSQL, or Sybase. It stores metadata associated
with data sets, users and resources managed by the
SRB. It maintains a POSIX-like logical name space
(file names, directories and subdirectories) and
provides a mapping of each logical file name to a set
of physical attributes and a physical handle for data
access. The physical attributes include the host name
and the type of resource (UNIX file system, HPSS
archive, object ring buffer, database). The physical
handle for data access is the file path for UNIX file
system type resources. The MCAT server handles
requests from the SRB servers. These requests include
information queries as well as instructions for
metadata creation and update.

The MCAT imposes additional mappings on the
logical name space to support replication (one logical
name mapped to multiple physical file names), soft
links (a logical name mapped to another logical name),
aggregation (structural mapping of a file to a location
in a container), segmentation (structural mapping of a
file across multiple tape media), file-based access
control (users mapped to permissions on roles for each
digital entity). These mappings make it possible to
organize digital entities independently of their actual
storage location.

The SRB is implemented as a federated server
system. Each server consists of three layers. The top
level "communication and dispatcher" layer listens for
incoming client requests and dispatches the requests to
the proper request handlers.

The middle layer is the logical layer or the "high-
level API handler" layer. This layer handles requests
in which all input parameters are given in terms of
their logical representations (e.g., logical path name in
the logical name space, logical resource name, logical
user etc). Upon receiving a request, the logical layer
handler queries the MCAT and translates the logical
input parameters into their physical representations. It
then calls upon the appropriate handler in the physical
layer to perform the actual data access and movement.

The physical layer or the "low-level API handler"
layer handles data access and data movement requests
from its own logical layer or directly from the physical
layer of other SRB servers. This layer basically
consists of driver functions for the 16 most commonly
used POSIX I/O functions: create, open, close, unlink,
read, write, seek, sync, stat, fstat, mkdir, rmdir, chmod,
opendir, closedir, and readdir. If the handler cannot
handle the request locally, it will forward the request
to the server that can respond.

4. Simple MSS Design

The design goals for a simple Mass Storage System
are:

• Provide a distributed farm of disk cache resources
backed by a tape library system. The cache system
may be configured to contain any number of
distributed cache resources that may or may not be
on the same host as the tape system. This makes it
possible to treat the disk cache as an independent
level of the storage hierarchy, with the disk cache
created “near” the end user.

• Provide a tape library system to control the
mounting and dismounting of tapes. At a
minimum, a Storage Tech silo running ACSLS
software should be supported.

• Provide a uniform access mechanism for data
stored on the Mass Storage System or on disk
caches. A file in the logical name space stored in
the MSS resource should appear and behave the
same as any other files stored on other resources.
The physical location (on cache or tape) of the file
should be totally transparent to users.

• Files should always be staged automatically to
cache before any I/O operations are done. Tools
for system administrators to manage the cache
system are also needed. i.e., tools to synchronize
files from cache to tape and purge files on cache.

• Large files should be stored in segments. The
advantages of using segmented files are:

o The system can handle files of very large size.
o Parallel data transfer between tapes and the

cache system can be implemented. In our first
release, although large files are stored in
segments on tapes, parallel transfer between
tapes and cache has not been implemented. Data
transfer between the cache system and clients
can be done in parallel using existing SRB
infrastructure.

Based of the above design goals, the following
software components are needed to build the MSS:

1. A client-server architecture with an authentication
scheme appropriate for access across
administration domains and a framework for
exchange of information between clients and
servers that can function over Wide Area
Networks.

2. A federated server system that allows cache and
tape resources to be located on different hosts.

3. A metadata server that maintains a logical POSIX-
like name space and provides a mapping of each
logical file name to its physical location.

4 . Additional metadata and server functions that
allow files stored in the MSS resource to appear
and behave the same as any other files stored on
other resources.

5. Storage resource servers that have the following
capabilities:
a. Ability to translate user requests to physical

actions using metadata information
maintained in the MCAT catalog.

b. A set of driver functions for basic tape I/O
operations.

c. A set of driver functions for basic cache I/O
operations.

d. Functions to stage files from tape to cache and
dump files from cache to tapes. The tape and
cache resources can be distributed.

e. Support for data transfer between the cache
system and clients.

6. A tape library server whose primary function is to
schedule and perform the mounting and
dismounting of tapes.

7. A tape database that tracks the usage of all tapes
controlled by the MSS.

4. Implementation

The SRB framework version 1.1.8 initially provided
the functionalities listed above, except for the metadata
needed to manage files on the MSS, the drivers for
basic tape I/O functions, functions to stage files from
tape to cache, and the tape library server and tape
database.

A major innovation that was needed to implement a
MSS within the SRB data grid was the development of
a new compound resource type as a fundamental
resource type within the SRB/MCAT system.
Compound resources include a cache for I/O
operations and a backend tape or archive for long term
storage. Files written to a compound resource are
treated as residing on a single resource. In order to
allow files stored in the MSS resource to appear and
behave the same as files stored on other resources,
support is needed for compound digital entities. The
file that is written to a compound resource can be
migrated between the cache and the tape back-end
within the compound resource, without requiring
separate metadata attributes to describe the residency
of the file on either component of the compound
resource.

A compound resource contains multiple cache
resources for a given tape resource (each of which are
called internal compound resources). When a user
creates a file using a compound resource, the object
created is tagged as a compound digital entity. With
the help of MCAT, the server then drills down through
the compound resource and discovers all of the
internal resources. It selects the cache resource where
the digital entity will be stored initially. After the file
operation is completed (with a “close” call), the
metadata of the just created compound digital entity is
updated with the physical description of the file
pointing to the digital entity created in the cache
resource.

A compound digital entity is treated as any other
digital entity for most operations in SRB, except when
the digital entity is opened for read or write. In this
case, the server will check to see if the digital entity is
already in a cache. If it is not, the digital entity will be
staged on one of the cache resources configured in the
compound resource. If the digital entity is changed, the

dirty bit of the cached digital entity is set. The dirty
copy is not automatically synchronized to tape.
Synchronization is only done via requests by system
administrators. A "dump tape" API and command are
created to allow system administrators to manage the
cache system by synchronizing files in the cache
system onto tape, and then purging the files from the
cache system.

The ability to manipulate data that is stored on tape
requires additional capabilities beyond those required
for access to data on disk. A set of driver functions for
basic tape I/O operations have been defined and have
been incorporated into the SRB server. These
functions include mount, dismount, open, close, read,
write, seek, etc. Currently, the driver has only been
tested for 3590 tape drives.

A tape library server for the STK silo running
ACSLS software has been incorporated into the SRB
system. Its primary function is to schedule and perform
the mounting and dismounting of tapes. It uses the
same authentication system and server framework as
other SRB servers. Currently, tape mount is on a first-
come-first-server basis. Some amount of intelligence
is built in such that when a client is done using a tape
and issues a dismount request, the tape will not be
actually dismounted if there is another request for the
mounting of the same tape in the queue. In this case,
the server will just pass the tape to the new request.
Specialized queuing features can be implemented as
needed.

A database schema that tracks the usage of all tapes
controlled by the MSS has been incorporated in the
MCAT. The schema is used to track the tape position,
total bytes written, full flag, etc for all tapes controlled
by the MSS. A set of system utilities has been created
for tape labeling and tape metadata ingestion, listing of
tape metadata and modification of tape metadata. By
managing these attributes in the MCAT catalog, it is
possible to support sophisticated queries against the
tape attributes and against the attributes of the digital
entities within the MSS. One can readily determine all
of the files resident on a given tape, identify all tapes
that are filled beyond a given level, and identify all
tapes that are needed to retrieve all digital entities
within a logical sub-collection in the metadata catalog.

5. Comparisons with the IEEE Mass
Storage System Reference Model

The SRB MSS provides similar functionality to the
IEEE MSS Reference Model [10].

Comparing with the implementations of the
reference model, there are both similarities and
differences. A major difference stems from the fact

that the SRB MSS uses the underlying File System of
the operating system for managing data storage instead
of the mapping of bitfiles to the logical and physical
volume abstractions used in the Reference Model. The
use of a File System greatly simplifies the design of
the storage manager. This approach is reasonable
given that the performance of modern File Systems is
quite good. Another source of difference is that the
SRB MSS integrates the functionality of several
servers of the Reference Model into a single server.
This greatly simplifies the architecture of the SRB
MSS. Improved robustness and performance of the
system is achieved at the expense modularity. The
design provides modular interfaces to support addition
of new storage repositories and new access APIs,
while aggregating all metadata into a single database.

The major components of the Reference Model
include:

1. Name Server – provides POSIX-like name space,
a mapping of logical names to bitfile IDs and
access control (ACL) for the name space objects.

2. Bitfile Server – provides the abstraction of logical
bitfiles to its clients and handles the logical
aspects of the storage and retrieval of bitfiles.

3. Storage Server – handles the physical aspect of
bitfile storage and retrieval. It translates references
to storage segments into references to virtual
volume and into physical volume references.

4. Mover – transfers data from a source device to a
sink device.

5 . Migration-Purge server – provides storage
management by migrating bitfiles on disks to
tapes.

The SRB MCAT server, which maintains a POSIX-
like logical name space, is equivalent to the Name
Server of the Reference Model. The only difference is
that each SRB digital entity is mapped directly to a set
of physical attributes rather than to a logical bitfile as
in the Reference Model. Because of the direct
mapping, the functionality of translating from logical
bitfiles into physical volume references is not needed.
The rest of the functionalities of the Bitfile Server,
Storage Server and Mover of the Reference Model are
combined into a single SRB Resource server. Separate
SRB Resource servers are created for each type of
storage device. For tape resources, the SRB uses a
tape library server for mounting and dismounting of
tapes. As for the Migration-Purge server of the
Reference Model, SRB has an API and a system utility
that migrates files on cache to tape resources.

6. Usage Examples

The use of data grid technology to implement a
Mass Storage System makes it possible to incorporate
latency management capabilities directly into the
architecture. For access to data distributed across
multiple resources, the finite speed of light can
severely limit sustainable transaction rates, if the
transactions are issued one by one. The SRB data grid
provides multiple mechanisms to minimize the number
of messages that are sent over a wide area network,
including the aggregation of data into containers, the
aggregation of metadata into an XML file, and the
aggregation of I/O commands through the use of
remote proxies.

For a Mass Storage System, the ability to aggregate
data into containers is essential for achieving high
performance when managing small digital entities.
When the size of a digital entity is less than the tape
access bandwidth multiplied by the tape latency, it
becomes cost effective to work with containers of files.
The size of the container is adjusted such that the
retrieval time of two digital entities from the same
container is smaller that the retrieval time of the two
files directly from tape.

The usage scenario that illustrates the generality of
the data grid based mass storage system is to consider
the storage of a container on a mixture of caches,
archives, and compound resources. This scenario
requires the use of five different mappings on the
logical name space:

• Mapping from the logical file name to a location
within a container

• Mapping of the container to one of several
replicas

• Mapping of a logical resource name to a physical
resource name

• Mapping of access control lists between the user
name and the requested file

• Mapping of a compound digital entity to its
location in a compound resource

The SRB provides the ability to organize physical
resources by a logical resource name. Writing to the
logical resource name then results in the replication of
the file across all of the physical resources. Separate
metadata attributes are maintained for each replica of
the file. The SRB also supports the aggregation of
files into a container. Containers are manipulated on
disk caches, and then written to an archive. A primary
disk cache can be identified with multiple secondary
disk caches. A primary archive can be identified with
multiple secondary archives. When a primary resource

is not available, the SRB will then complete the
operation to the secondary resource. Note that
containers can be replicated onto multiple storage
repositories.

The SRB also supports compound resources
composed of a cache and either a tape or archive.
Writing a file to a compound resource results in the
creation of a single set of metadata, with an attribute
used to specify which component of the compound
resource holds the data. The interesting management
scenario is the creation of a logical resource name that
includes a compound resource, a primary disk cache,
secondary disk caches, a primary archive, and
secondary archives. Writing a container to this logical
resource then results in the creation of a replica of the
container in the compound resource (disk cache and
backend tape), and the creation of a replica on one of
the disk caches. A synchronization command will
cause the replica on the disk cache to be copied onto
one of the archives.

The ability of data grids to support sophisticated
resource management functions on top of distributed
storage repositories makes it possible to greatly
increase the number of options when archiving data.
An example is the implementation of alternate
completion scenarios, in which a file is assumed to be
archived when it is written to “k” of the “n” physical
resources specified by a logical resource name.
Another example is the implementation of load
balancing, by the writing of digital entities in turn to a
list of resources specified by the logical resource
name. The ability to replicate files across trees of
storage resource options instead of the traditional
simple storage hierarchy, greatly increases the ability
to manage archival copies of data.

A second data grid capability that greatly enhances
mass storage systems is the organization of the digital
entities as a hierarchical collection. It is possible to
use digital library discovery mechanisms to identify
relevant files within the mass storage system. The
discovery mechanisms can be exercised through
interactive web interfaces, or directly from
applications through C library calls.

A third data grid capability that simplifies
management of mass storage systems is the association
of access controls with the data, rather than the storage
system. This makes it possible to include sites across
administration domains within the mass storage
system, while simplifying administration of the
system. Data grids support collection-owned files, in
which access to the files is restricted to the collection.
Users authenticate themselves to the collection. The
collection uses access control lists that are specified
separately for each registered digital entity to
determine whether a person is authorized to access a

file. The collection in turn authenticates itself to the
remote storage system.

A fourth data grid capability that simplifies
incorporation of new technology into the mass storage
system is the use of a storage repository abstraction
that defines the set of operations that will be performed
when accessing and manipulating digital entities. The
storage repository abstraction makes it possible to
write drivers for each type of storage system, without
having to modify any of the higher software levels of
the storage environment. The storage repository
abstraction is also used to support dynamic addition of
resources to the system.

7. Conclusions

Because of the cost of licensing, access efficiency
and transaction performance issues, we have
implemented a simple MSS system in the Storage
Resource Broker data grid. We were able to
accomplish this task within a relative short time
(slightly over 6 man months) because we were able to

leverage existing capabilities within the SRB
infrastructure. We believe this approach will radically
change how archives are constructed. The ability to
manage replicas of data on low cost storage media is
as simple as making a replica of a digital entity on a
disk cache. The ability to discover, access, and
manipulate digital entities stored on tape media can
now be done through the same sophisticated interfaces
that data grids provide for access to all types of storage
systems.

8. Acknowledgements

This research has been sponsored by the Data
Intensive Computing thrust area of the National
Science Foundation project ASC 96-19020 “National
Partnership for Advanced Computational
Infrastructure,” the NSF National Science Digital
Library, the NARA supplement to the NSF NPACI
program, the NSF National Virtual Observatory, and
the DOE ASCI Data Visualization Corridor.

9. References

[1] Baru, C., R, Moore, A. Rajasekar, M. Wan, (1998)
"The SDSC Storage Resource Broker," Proc.
CASCON 98 Conference, Nov.30-Dec.3, 1998,
Toronto, Canada.
 [2] SRB, (2001) "Storage Resource Broker, Version
1.1.8", SDSC (http://www.npaci.edu/dice/srb).
[3]Rajasekar, A., and M. Wan, (2002), “SRB &
SRBRack - Components of a Virtual Data Grid
Architecture”, Advanced Simulation Technologies
Conference (ASTC02) San Diego, April 15-17, 2002.
[4]Rajasekar, A., M. Wan, and R. Moore, (2002),
“MySRB & SRB - Components of a Data Grid,” The
11th International Symposium on High Performance
Distributed Computing (HPDC-11) E d i n b u r g h ,
Scotland, July 24-26, 2002.
[5] HPSS, High Performance Storage System,
http://www4.clearlake.ibm.com/hpss/index.jsp.

[6] UniTree, http://www.unitree.com.
[7] DMF, Da ta Migra t ion Fac i l i t ty ,
http://136.162.32.160/products/software/dmf.html.
[8] ADSM, ADSTAR Distributed Storage
Management,
http://searchstorage.techtarget.com/sDefinition/0,,sid5
_gci214398,00.html.
[9] MCAT, (2000) "MCAT:Metadata Catalog", SDSC
(http://www.npaci.edu/dice/srb/mcat.html).
[10] Sam Coleman and Steve Mller, “Mass Storage
System Reference Model: :Version 4", Goddard
Conference on Mass Storage Systems and
Technologies, Volume 1, 1992.

