Towards Optimal 1/0 Scheduling for MEMS-based Storage

Hailing Yu

Divyakant Agrawal

Amr El Abbadi

Department of Computer Science, University of California,
Santa Barbara, CA, 93106
{hailing,agrawal,amr} @ cs.ucsb.edu

Abstract

MEMS-based storage devices are currently being devel-
oped to narrow the gap between processor and disk speeds.
MEMS-based storage devices have a different architecture
from disk devices, thus algorithms, such as I/O scheduling
and data placement, designed for disks need to be revisited.
In this paper, we focus on developing an I/0 scheduling al-
gorithm for MEMS-based storage devices. Our theoretical
analysis shows that this algorithm is guaranteed to perform
within twice the optimal time for any workload.

1. Introduction

Although magnetic disks have dominated the persistent
storage technology, recently the memory hierarchy has suf-
fered from the problems of latency, bandwidth, and cost
gap. In particular, due to advances in processor technol-
ogy and semiconductor manufacturing, the processor-to-
disk performance gap has been consistently growing. Cur-
rently this gap has widened to six-orders of magnitude and
future trends indicate that unless a breakthrough occurs in
the disk technology, this gap will continue to widen by
about 50% annually.

Micro-ElectroMechanical Systems (MEMS) [1, 5]
based storage systems are currently being developed as
an alternative to conventional rotational disks for the non-
volatile storage of large amounts of data. By using
photolithographic processes similar to those employed in
manufacturing traditional semiconductor devices, MEMS-
based storage devices can be produced and manufactured
at a very low cost.

MEMS-based storage has quite different characteristics
from disks. In particular, they are two dimensional while
disks have been approached always as one dimensional
storage devices by dividing them into cylinders, sectors
and tracks. Even though existing techniques developed for
disks, such as disk scheduling algorithms and data place-
ment schemes, can be adapted to MEMS-based storage de-

vices, some characteristics of MEMS-based devices have
not been considered adequately. In this paper, we first note
that optimal scheduling for MEMS-based storage is NP-
complete and then propose off-line and on-line scheduling
algorithms that exploit the two-dimensional characteristics
of these devices. We then show that these algorithms are
guaranteed to perform within twice the optimal scheduling
time.

2. Background

In this section, the architecture of MEMS-based stor-
age devices is first described. Our development is based
on the CMU’s CHIPS project [1] and the IBM Millipede
project [5]. Then we briefly review existing scheduling al-
gorithms proposed for this new storage device.

2.1. Architecture for MEMS-based Storage

A MEMS-based storage device is composed of record-
ing media heads and a recording media surface. The
recording heads, usually called tips, are embedded in a
semiconductor wafer arranged in a rectangular fashion.
The recording media is another rectangular silicon wafer
referred to as the media sled. There are different ap-
proaches for recording data. For example, IBM’s Milli-
pede [5] uses pits in the polymers made by tip heating,
CMU’s CHIPS [1] adopts the same techniques as data
recording on disks. In this system, because it is very hard
to rotate the unit on a microscopic scale, the media sled is
suspended by springs above the wafer with probe tips. The
movement in the Z direction is used to actuate the distance
between the probe tips and the media sled. This design is
shown in Figure 1 (Based on the CMU design [6]). The X
and Y actuators provide the force for moving the media sled
in X and Y directions while the spring supplies the restoring
motion. These two actuators work independently.

The media sled is divided into rectangular regions as
shown in Figure 2. Each of these rectangular regions con-
tains an array of M x N bits and is serviced by one probe



Anchor

/\ actuator
X actuator

Maedia sled

Tip array

Figure 1. A design of MEMS-based storage
devices

tip. The relation between the regions and tips is a one-to-
one mapping; i.e., the number of regions is the same as the
number of probe tips. In theory, all the probe tips can be ac-
tivated simultaneously. For the CMU’s CHIPS device, the
system has 6400 tips, arranged in an array of 80 x 80 tips
per rectangular region with each region having 2500 x 2500
(M x N) bits. Due to power and heat constraints, only 1280
tips can be activated simultaneously.

N bits

bits

1 bit

/

Sweep area of 1 probe tip

Figure 2. The media sled is divided into rect-
angular regions

Based on the above design considerations, some basic
observations and assumptions can be made:

e Because the relation between the probe tips and re-
gions is a one-to-one mapping, it can be assumed that
the max distance the media sled can move in the X (Y)
direction is the edge length of regions in the X (Y) di-
rection.

e The infinity distance L., between two points, (xi,y])
and (x2,y2), is the larger value of |x; —xz| and |y; —
y2|- Because the movement in the X and Y directions
are independent, the distance between two points in
one region is Le.

e The time T for the sled to move from one point to
another is an increasing function of the distance in
the X and Y directions [4]. Based on the above ob-
servation, time 7 is the larger of these two values
(time spent on the X (called 7y) and Y (called Ty) di-
rection movement. Note that time is symmetric, i.e.
T (v,w) =T (w,v), where v, w are two points.

2.2. Existing scheduling algorithms for MEMS-
based storage

Many different scheduling algorithms have been devel-
oped for conventional disks [7], such as FCFS (first-come
first-service), CLOOK (cyclical look), SSTF (shortest seek
time first), SSTF_LBN (shortest seek time based on the
Logical Block Number of the request), and SPTF (shortest
position time first). The CMU group has adapted many of
these disk scheduling algorithms in the context of MEMS-
based storage by mapping these storage devices into a disk-
like interface [3]. The CMU experimental results showed
that SPTF performs best in terms of average response time.

3. Theoretical Development

In MEMS-based storage devices, requests can be
mapped to (x,y) locations on a two-dimensional surface,
where x,y determine the position of a request on the sur-
face. Because the tip’s number is not related to the seek
time, and scheduling algorithms finding the shortest seek
time to serve all requests, we can simply ignore the active
tip’s number. Requests for a MEMS-based storage can be
viewed as points distributed in one rectangular area which
is the same as one region. When the device serves requests,
the media sled moves the request’s position determined by
the x and y, and the corresponding tips are activated, then
the device accesses (reads or writes) data by the activated
tips. The time spent moving the media sled from its current
position to the next position is called seek time 7', which
is determined by the L. distance between these two po-
sitions. After mapping requests into (x,y) locations in a
two-dimensional surface, given a set of requests, a graph
can be constructed: Requests are denoted as vertices, an
edge represents the time required to move from one vertex
to another. The optimal solution is to find the shortest path
that visits each vertex exactly once in the graph. This corre-
sponds to the Symmetric Traveling Salesman Problem, so
finding the optimal path can be shown to be NP-complete.



In the existing disk-based algorithms, SPTF performs
best [3]. However it is easy to show that it does not perform
well in all settings. For example, consider the case where
all requests have different x values, but the same y value, as
shown in Figure 3. Assume request R3 is the current request
being served, because R, is nearer to R3 than R4, then using
the scheduling criterion of SPTF, R, is the next request to
be served. Applying the same reasoning, the order in which
the requests will be served under SPTF is R3,R>,R4,R1,R5.
The problem is that this algorithm is greedy, and finds the
next request to serve based on the shortest seek time and
does not consider the entire distribution of requests. In this
example, if all requests are considered, the minimal order
in terms of seek time would be R3,R>,R1,R4,Rs.

R1 R2R3 R4 RS

Figure 3. A setting that SPTF does not per-
form well

Even though it is not practical to design an optimal al-
gorithm, we develop an algorithm with guaranteed upper
bound for any workload. The algorithm is based on serv-
ing requests in the order of the double walk of a minimum
spanning tree(MST) for all requests. We have explored
some interesting properties of MST in the infinity distance
space to reduce its construction cost [8].

These properties are established based on the definitions
of regions with respect to a vertex in the infinity distance
space. Consider a vertex v with coordinates(x,y), we de-
fine the following four regions with respect to v(x,y) as
follows. Regionl is the subspace with any vertex (xj,y;)
satisfying x; > x,y; > y; Region2 is the subspace with any
vertex (x2,y2) satisfying x» <x,y, > y; Region3 is the sub-
space with any vertex (x3,ys3) satisfying x3 < x,y3 < y; and
Region4 is the subspace with any vertex (x4,ys) satisfying
X4 2 x,y1 <.

We have shown that in an MST, any vertex in any re-
gion can have at most two neighbors [8]. Using this result,
we can next establish that the degree of any vertex is at
most eight. We then derive a stronger result, namely that in
the L.. model and a set of vertices, there exists some MST
where the degree of every vertex is at most four. Finally we
derive a way to reduce the cost of traversing a MST, such
that when traversing the MST, the cost of moving from one
vertex u to its sibling v directly is no larger than the cost of
passing through the parent vertex of u and v.

4. Scheduling Algorithms

Our approach is based on building a minimum spanning
tree of all requests and serving the requests in the dou-
ble walk order. An undirected graph (called cost graph)
needs to be constructed in order to build a minimum span-
ning tree. Since it is possible to traverse from a request
(xi,yi) to any other request (x;,y;), the number of edges
in the cost graph will be n(n — 1)2 edges. Both Prim’s and
Kruskal’s algorithms for constructing MST have time com-
plexity O(mlogn), where m is the number of edges and n is
the number of vertices. By applying the properties of MST
in the infinity distance space, each vertex in an MST could
have one nearest neighbor in each region. If these four
nearest neighbors for each vertex are in a cost graph G, the
MST can be built based on graph G. So we develop a proce-
dure to construct the cost graph with at most 8n edges [8].
Thus the cost of constructing the MST reduces to O(nlogn)
when restricted to L., distance.

We develop an off-line algorithm for the case when all
the requests are known a priori. In the algorithm, a cost
graph is first constructed with at most 8n edges. An MST
is built by Prim’s Algorithm. The requests are served in a
preorder traversal of the MST. Based on the optimization
described above, moving from the current request position
to the next request position directly is no larger than the
cost of passing through the parent vertex, thus during the
preorder serving of requests, we move the media sled from
the current request position to the next request position di-
rectly.

We also designed an on-line algorithm where requests
are continually arriving as prior requests are being served.
The procedure for serving requests is the same as the off-
line algorithm. We have developed an algorithm to update
the current MST dynamically. Based on the fact that there
exists some MST where the degree of every vertex is at
most four, we find the four nearest vertices of the new ver-
tex in the different regions, if they are exist. The new vertex
is connected to the MST by the smallest cost edge to one
of these four vertices. The remaining edges are checked to
see if the MST cost can be reduced. The time required to
update the MST in the online case is O(n).

5. Analysis

Our approach is based on the properties of MST. In Sec-
tion 5.1, we show that for any workload, our approach can
satisfy an upper bound. A preliminary performance study
is presented in Section 5.2.



5.1. Upper bound

Without the optimization of moving from one vertex u to
its sibling v directly, our approach corresponds to a double
walk of an MST. The cost of a double walk is equal to two
times the cost of this spanning tree. If the spanning tree
is an MST, the cost of a double walk is equal to 2 x Tyst
(Tysr is the cost of the MST). The optimal algorithm tries
to find a path with the minimum cost. Actually the path is
a spanning tree too. So the cost of the optimal path T, ; is
no less than Tyssr. If we serve the requests by the route of
a double walk, the following can be established:

Tseek = 2% Tygst Tust < Tope-

Thus Tyeer < 2% T, 1, Where T is the total seek time for
serving all requests. When considering moving from one
vertex u to its sibling v directly instead of passing the parent
of u and v, we get the following equation: Ty, < 2% T, .
Hence, our approach is guaranteed to have an upper bound
of 2T, irrespective of the workload.

5.2. Preliminary Performance

A preliminary performance study was also performed.
We set up the experiments by simulating a 100 x 100 region
with uniformly distributed workloads. We implemented
four scheduling algorithms: FCFS, SSTF, SPTF and our
off-line algorithm. Because the seek time is a function of
seek distance, we give simulation results based on the av-
erage seek distance instead of average seek time. The sim-
ulation results are shown in Figure 4.

|+ FCFS —8— SSTF —A— SPTF —%— MST-Based |

60

50

40

. ./'\/l—l—n\.’_._._.
20 $\

Average seek distance

10 20 30 40 50 60 70 80 90 100

The number of requests

Figure 4. Average seek distance.

The data shows that SPTF and MST-based approaches
always perform better than SSTF and FCFS. SSTF is better

than FCFS. As the number of requests increases, the aver-
age seek distance of FCFS and SSTF is almost a constant,
so these two algorithms do not scale well. However the av-
erage seek distance of SPTF and MST-based approach de-
creases. When the workload is not heavy, the MST-based
approach achieves better average seek distance than SPTF.
Under heavy workload, the result shows that their perfor-
mance is comparable.

6. Conclusion

MEMS-based storage devices are being developed to al-
leviate the storage/processor bottleneck. Their unique char-
acteristics differentiate them from the conventional disks.
The I/0 scheduling algorithms and data placement schemes
developed for disks need to be revisited. In this paper, we
developed an I/O scheduling algorithm based on the two-
dimensional property of MEMS-based storage. Our theo-
retical analysis shows that the new scheduling algorithm
can guarantee the upper bound of 2 x T, ,; on seek time.
The preliminary simulation results showed that the new
algorithm and SPTF have comparable performance under
uniformed workload. Our future work will conduct more
experiments for different workloads, consider the starva-
tion issue, and optimize this algorithm to achieve an up-
per bound of 1.5 x T, ,; based on the algorithm designed by
Christofides [2].

References

[1] CMU CHIPS project. 2002.

http://www.Ics.ece.cmu.edu/research/ MEMS.

N. Christofides. Worst-case analysis of a new heuristic for

the traveling salesman problem. Report 388, Grad School of

industrial Administration, CMU, 1976.

J. Griffin, S. Schlosser, G. Ganger, and D. Nagle. Operat-

ing systems management of MEMS-based storage devices.

0SDI, 2000. http://www.lcs.ece.cmu.edu/research/ MEMS/.

[4] T. M. Madhyastha and K. P. Yang. Physical modeling of

probe-based storage. Proceedings of the Eighteenth IEEE

Symposium on Mass Storage Systems, 2001.

P.Vettider, M.Despont, U.Durig, W.Haberle, M. Lutwyche,

H.E.Rothuizen, R.Stuz, R.Widmer, and G.K.Binnig. The

“millipede”-more than one thousand tips for future afm stor-

age. IBM Journal of Research and Development, pages

44(3):323-340, May 2000.

[6] S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger.
Designing computer systems with MEMS-based storage. AS-
PLOS, 2000. http://www.Ics.ece.cmu.edu/research/ MEMS/.

[7] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revis-
ited. USENIX Conference Proceedings (Washington, D.C.),
pages 313-337, 1990.

[8] H. Yu, D. Agrawal, and A. E. Abbadi. Towards optimal 1/O
scheduling for MEMS-Based storage. UCSB Technical Re-
port 2002-22.

[2

—

3

—

[5

—



