
Views, Objects, and Persistence for Accessing a High Volume Global Data Set

Richard T. Baldwin
US DOC NOAA

National Climatic Data Center
Rich.Baldwin@noaa.gov

Abstract

Efficient access methods are reviewed and explored in
relation to the global surface hourly data set and several of
its derivative products. Typical access paradigms are
compared for object persistence using streamed output
files, key/value databases, and object and relational
databases (ODBMS/RDBMS). An overview of Java Data
Objects (JDO), Enterprise Java Beans (EJB), and other
alternatives to persist objects are given. Efficiencies
gained by implementing RDBMS views or aggregates are
also investigated. Given spatial, temporal, and analytical
factors, a conservative estimate for the number of data
objects from global hourly data approaches 2 billion.

1. Introduction

Part of the mission of the National Climatic Data Center
(NCDC) is to archive and provide access to world and US
weather data. There are many different types of data
archives at NCDC totaling well over 500 terabytes. This
paper will focus on a data set of particular interest to many
of our customers in industry, government and the military.
The Integrated Surface Hourly (ISH) data set is comprised
of observations, generally recorded hourly for a group of up
to 40 different weather elements. The observations are
from US military, civilian, and global stations, some
starting before 1900 [1]. The database to tals approximately
350 gigabytes and contains records for nearly 20,000
stations worldwide as shown in Figure 1. These data are
archived on a Hierarchical Data Storage System (HDSS), a
tape robotics system, and are currently being loaded into an
Oracle database.

A weather element in the ISH data set is any particular
type of weather observation (temperature, visibility, wind
speed and direction, etc.). There are 40 of these types of
elements recorded in ISH (not all of theses elements are
present at every observation). Additional derivative
elements can be calculated from these elements (eg. relative
humidity). From these elements, summarizations can also
be calculated which isolate particular trends of interest.

Currently NCDC and the US Navy are working to produce
a set of ten summaries to be made available on-line. The
number of these summaries will at least double over the
next year. An example of a climate summary would be a
table of wind speed versus direction over a 30-year period
for a given station. This particular summary would be of
use to the Federal Aviation Administration (FAA) in
airport design and to the armed forces in mission planning.
Other summaries would also include present weather,
temperature, relative humidity, etc. ISH summaries can be
thought of as objects, entities which are uniquely
contained. Objects other than summaries can also be
derived from ISH weather elements. These could include
observations which are event specific or combinations of
one or several additional data sets. An example of an
observation specific object would include hourly
temperature, minimum and maximum temperature, daily
average temperature, heating degree days, etc. An
event specific object from a hurricane, tornado or blizzard
would include a whole host of pertinent weather element
observations.

Figure 1. ISH global data distribution

2. Object Persistence

A goal for data managers is to be able to retain and
quickly access the unique information defined by a
specialized object whether that is described as a summary
or some other combination of information. There are two
broad options available for persisting objects; 1) local or
remote storage in a file system or database RDBMS or
ODBMS or 2) constructing an object within the context of a
view or materialized view in an RDBMS. The option
chosen depends on the complexity of the object and the
need to store the entire object in its original form (e.g. Java
Collection) or whether the object needs to be decomposed
into database specific types. If an object can be adequately
described in the context of a view, a mechanism to acquire
that object still remains, but it should be faster.

2.1 Storage and retrieval mechanisms

The options for storing objects persistently include a
simple filesystem (stream output files), a key/value
database, a relational database management system
(RDBMS), or an object database management system
(ODBMS). Using Java, the RDBMS solution can be
approached from several different specifications or
application server environments, Java Database
Connectivity (JDBC), Enterprise JavaBeans (EJB), Java
Data Objects (JDO), or “JDO-variant” Castor. The
strengths and failings of each option will be presented.

Using Java to write streamed output files to a “flat”
filesystem is fast and convenient, but without any
mechanism to manage efficient retrieval for a large number
of files/objects. These files are portable, but this process is
undoubtedly cumbersome (consider managing 1000
serialized files created from 1000 ob jects). Stream files can
be generally viewed as limited to the implementation
platform. This approach might be best limited to small
implementations.

A key/value database such as DB Berkeley provides a
simple, fast, and portable means of storing and retrieving
Java objects without decomposition of the object. Any Java
collection can simply be serialized and stored with an
appropriate key. DB Berkeley is an open source solution
which can be deployed on many Unix platforms. The DB
Berkeley key/value database has a capacity ranging from 2
to 275 terabyte of storage depending on the page size
selected for the application. The size of this database is also
limited by the file size supported on a filesystem (450
gigabytes). The key/value database is single threaded, so
simultaneous access is a limitation. Writing to disk occurs
10 to 15 times faster than a streamed output file [2]. The
key/value database can be accessed from multiple
platforms, re-hosted to other machines (e.g. into a secure

SIPERNET network environment), or loaded into an
RDBMS.

Object Database Management Systems (ODBMS) are
storage solutions for objects used predominately in gaming.
Within the database, the representation of the object is
hidden from the user. Some ODBMS solutions will allow
ad hoc queries of the ODBMS using ObjectQuery
Langauage OQL, but these tend to be inefficient [3]. Many
of these solutions are vender specific generally lacking any
adoption of standards (e.g. Object Data Management Group
(ODMG)). As an example of an ODBMS, consider the open
source project Ozone. It is completely Java based, relatively
fast, and portable. The Ozone project uses an object server
that allows developers to build object-oriented, Java based,
persistent applications. Java objects can be created and run
in a transactional database environment. There is no object
decomposition as in EJB or JDO. Ozone is compliant with
W3C DOM implementations which allows for the storage
of XML data. Ozone relies on a single-instance architecture
where there is only one instance of a database object inside
the database server, controlled with proxy objects. Since the
proxy object represents the actual database object, it is used
by the client as if it was the actual database object [4]; thus,
the proxy effectively manages all concurrency (table
integrity during simultaneous I/O) issues related to updating
the object. Ozone will also allow Java objects to be stored
in a local or remote object-oriented database.

Most Java implementations use JDBC as the mechanism
to retrieve and store data from a RDBMS. This requires
knowledge of SQL and details of the table layout and type.
Implementing persistence brings problems with managing
multiple tables, tracking objects and the rows and columns
which they map to in a table (impedance mis-match), type
differences, and portability [3]. Although this approach
presents several difficulties for large problems, it is a
straightforward solution for simple persistence examples. It
does provide a mechanism for objects to be stored with or
without decomposition through serialization and storage as
a LOB (Locator Object) type. As RDBMS persistence
problems become larger, additional layers like EJB and
JDO are drawn upon to address these complexities. The
two main issues to be mindful of are design and
concurrency. A key feature of a solid persistence design or
architecture is the separation of business logic and
persistence logic. RDBMS persistence depends on a
persistence delegate, code that hides or abstracts the details
of object and table while maintaining table concurrency. A
good delegate provides the benefits of optimistic
concurrency with the security of pessimistic concurrency
[5].

Enterprise Java Beans (EJB) is an interface layer
implemented on top of a JDBC/RDBMS which provides a
consistent method of presenting persistent data application

components that can be shared across many simultaneous
remote and local client connections [3]. BMP bean
managed persistence has largely been replaced by CMB
container managed persistence as the more efficient
implementation [6][7]. EJB requires a high degree of
supporting software which manages database concurrency.
Methods providing the object mapping or object
decomposition to the RDBMS are required either through
JBDC and SQL or EBQL. Managing concurrency and
inefficiencies are the major issues effecting EJB which is
still the preferred option of Oracle and IBM.

EJB is object relational (type) specific where Java Data
Object (JDO) is persistent type neutral. The JDO
specification to date has been implemented by a number of
vendors which have led to dependencies. Two prominent
RDBMS vendors are not supporting the JDO specification
claiming that it lacks RDBMS feature portability (e.g.
sequences etc.). While this is true and probably a minor
point, these vendors are pushing their own solutions.
Software development for JDO involves writing setter and
getter methods for the elements of an object and an XML
mapping fi le for object decomposition. The
object-to-database translation code is dynamically built
from these resources. This technology will allow the storage
of a Java object without having to manually tear a collection
down into primitive types or strings, and without the need
for any SQL code to ingest the data. This approach will
work with any relational database which has a JDBC driver
(Oracle, MySql, etc.). JDO allows for multiple transactions
and effectively merges the data model and the object model
of our storage/access problem [3]. The tedious aspect of
JDO is the construction of the mapping file.

The open source project Castor is a JDO variant which
effectively handles concurrency issues, maps Java types to
RDBMS types using XML, and maintains portability within
RDBMS solutions. Castor provides a Java framework to
build objects which can be mapped in to an RDBMS. By
using xDoclet plug-ins with Castor , a developer needn’t
worry about mapping Java types to database types (using
O/R mapping tools like Cocobase, Jdeveloper/TopLink,
etc.). The mappings are handled automatically. Castor
dynamically builds the object-to-database translation code.
When requiring object decomposition, Castor is an effective
open source solution, however it lacks clear documentation
and does not build cleanly.

2.2 Database Views

Views or materialized views are used in data
management to increase the speed of queries on a very large
database. Queries to large databases like ISH involve joins
between many tables, which are very expensive operations
in terms of time and processing power. Materialized views
improve query performance by pre-calculating expensive

join and aggregation operations on the database prior to
query execution time[8]. A materialized view is simply a
specialized view where the database manages the indices,
aggregation, etc. as additional data are added to the tables
contained in the view. The concepts of managing large
tables, views, and materialized views are associated with
either transactional databases or redundancy data
warehousing. Along with this is the notion of the “data
mart” [9][10]. A “data mart” is a smaller component of the
data warehouse in both content and time. A database
design goal is to explore ways that data can be separated
into “data marts” to improve accessibility from the
transactional (current production system) database, while
including the necessary infrastructure to maintain
information useful in a data warehousing environment.

3. Discussion

The immediate task of deploying ISH summaries into
t h e C l i m a t e D a t a O n l i n e (C D O) s y s t e m
(http://cdo.ncdc.noaa.gov) raises a few questions. How can
a series of relatively complex summarizations be
represented as views or materialized views with a
RDBMS? If views are impractical, how can the summary
be represented as a persistent object without requiring
decomposition? Which storage method provides the best
throughput: a streamed I/O filesystem, key/values database,
RDBMS, or ODBMS?

Views can provide a significant cost savings (eg.
10-fold) for large tables. The current ISH operational
database volume is limited to 2 years while the
development database contains 5 years of data. The final
operational system will have 40 plus years of data. It may
be that once all of the data are loaded for ISH a cost benefit
for a materialized view with aggregation is realized, but
currently, the optimal approach is to include aggregate
functions in queries for the appropriate summaries. This
approach is further supported by the difficulty in applying
an aggregate (averages, standard deviations) for summaries
by hour per month for any number or combination of years
potentially requested by users.

As this database evolves, the applicability of “data
marts” may be realized. Conceptually, ISH materialized
views can be represented in a star diagram where subsets of
the database are created (Figure 2.) With ISH, materialized
views of specific weather elements can be generated and
then accessed with much greater efficiency than a query
against the entire database table. Likewise specific
weather events could also be represented by views which
join multiple tables from data sources other than ISH. So,
the “data marts” could represent both objects of weather
elements and combinations of weather elements for a
narrowly focused event.

Figure 2. Star model diagram for ISH.

The EJB, JDO, and Castor solutions are all interesting
paradigms; however, each decomposes an object into
database types. This is not immediately needed for ISH
summaries but may be of interest later in defining
derivative ISH products. As a test, a prototype system was
built using OpenFusion (JDO) The prototype defined a
weather station object which contained various ISH
weather elements (temperature, wind speed, wind
direction, and precipitation). A persistence object was
created which managed the station object’s persistent
transactions with the relational database (the setter and
getter methods). The JDOEnhancer uses an XML
descriptor file to map the elements of the station object in
to the database. The JDOEnhancer also built the SQL code
to create and populate tables in the database. Assembly and
compilation of this implementation was quick and
straightforward. Insertion and modification of elements in
the weather station object were accomplished without any
complications.

For the remaining persistence mechanisms (stream
output file, key/value database, JDBC/RDBMS, and
ODBMS), prototypes were built and tested. A prototype
summary for wind speed and direction was created in a
Java hash table. This object was then persisted through
these storage mechanisms. Table 1 shows the results of
object loading and access times. Each object or summary
is relatively small (2-3 Kb). The key/value database
showed the best overall performance. The RDBMS
solution using Oracle showed the poorest results. To
further test the performance of the key/value database,
wind summaries for approximately 9500 ISH stations were
processed by year for 1995 through 1999 resulting in the
creation and storage of nearly 48,000 objects in a database
file of 196Mb. Access times for objects stored in this large
database were not less than those times recorded below.

Table 1. ISH transaction times.

Load Fetch

Stream File 21 msec 12 msec

Key/Value 2 msec 23 msec

ODBMS 45 msec 65 msec

RDBMS 180 msec 39 msec

Another performance metric is shown in Figure 3 where
the size of an object is compared to the load and fetch rates
for the persistent mechanisms. Generally, the transfer rates
increase with larger sized object. This possibly can be
attributed to a lower percent of overhead (opening or
locating an file/object) effecting transfer rate as the object
increases in size. It is interesting to note that the key/value
database performs, comparatively, much better with
smaller objects. The fetch rate surpasses the load rate as
key/value objects increase in size. Also note that
performance for the ODBMS database peaks with objects
at approximately 100kb. Overall the key/value database
showed the best consistent performance of all the
mechanisms reviewed.

Figure 3. A comparison of data transfer rates
versus the size of an object.

4. Conclusion

This overview of persistence mechanisms and views
provides current methods of storing and accessing data
objects. The test cases have laid the ground work for further
ISH software and database development. A critical issue
for data access in a global environment can be summarized

by determining what system configurations are best suited
for rapidly deploying the desired data products. For ISH,
the solutions; materialized views, aggregates, key/value
databases and JDO, each play a role. These ideas will
continue to be expanded upon as our understanding of this
technical problem evolves.

Acknowledgments. Many thanks to Neal Lott for
document review and proofing, Dee Dee Anders for DBA
tips and pointers, and to Jeff Duska for keeping me straight
on all of the Java persistence mechanisms.

References

[1] N. Lott, R. Baldwin, P. Jones, The FCC Integrated
Surface Hourly Database, A New Resource of Global
Climate Data, US DOC/NOAA/NCDC Technical
Report 2001-01, 2001

[2] Berkeley DB, http://www.sleepycat.com

[3] R.M. Roos, Java Data Objects, Addison-Wesley,
London, 2002.

[4] F. Braeutigam, G. Mueller, P. Nyfelt, Project Ozone:
Users Guide, http://www.ozone-db.org

[5] G. Reese, Database Programming with JDBC and
Java, O’Reilly & Associates, 2nd edition, Sebastopol,
CA, 2000.

[6] J. Walker, Using Bean-Managed Persistence in EJB
Entity Beans, Oracle Magazine, vol. XVI, issue 4, pp.
70-76, 2002.

[7] J. Walker, Implementing CMP in EJB Entity Beans,
Oracle Magazine, vol. XVI, issue 6, pp. 92-97, 2002.

[8] Oracle 9i Materialized Views, white paper, (Oracle
Corp.2001),http://otn.oracle.com/products/oracle9i/pd
f/o9i_mv.pdf

[9] W.H. Inmon, E. Young, What is a Data Mart?, white
paper, (Pine Cone Systems Inc., 1997),
http://63.170.41.42/library/whiteprs/techtopic/tt04.pdf

[10] W.H. Inmon, Data Marts and the Data Warehouse:
Information Architecture for the Millennium, white
paper,(Informix,1999),http://www.billinmon.com/libr
ary/whiteprs/infx_dm.pdf

