
NAS Switch: A Novel CIFS Server Virtualization

Wataru Katsurashima, Satoshi Yamakawa,
Takashi Torii, Jun Ishikawa,

and Yoshihide Kikuchi
Internet Systems Research Laboratories,

NEC Corporation
w-katsurashima@bq.jp.nec.com,

s-yamakawa@cj.jp.nec.com,
t-torii@ce.jp.nec.com,

j-ishikawa@bc.jp.nec.com,
y-kikuchi@dc.jp.nec.com

Kouji Yamaguti, Kazuaki Fujii,
and Toshihiro Nakashima

NEC Software Kyushu, Ltd.

k-yamaguchi@px.jp.nec.com,

k-fujii@pv.jp.nec.com,
t-nakashima@pq.jp.nec.com

Abstract

This paper proposes a CIFS Server virtualization
method which requires no proprietary software or
hardware for clients or NAS units. The method is
implemented as an in-band network application between
clients and NAS units, and it provides users and
administrators with a single virtual NAS system that
incorporates all their units. Since almost all name
resolution operations are performed by individual NAS
units independently, use of this method imposes only a
very light computational load and creates little latency.

1. Introduction

The ease of introduction and management of those file
server appliances known as Network Attached Storage
(NAS) devices has led to their recent extensive use in
environments ranging from small offices to data centers.

The convenience of a NAS system tends to decrease
gradually, however, as the number of NAS units in it
increases because, while management becomes more
complex in proportion to the number of units, the
capacity and performance of such a storage system do not
increase to the same degree. Management of multiple
storage units can be particularly complex because, when
data is being transferred from one unit to another, service
for all clients must be stopped with respect to those units.

The creation of a single “virtual-NAS” system
incorporating multiple storage units has been proposed to
ease the problems of increased scale. Conventional
approaches to such virtualization may be classified into
two types, NAS-based virtualization [1, 2, 3] and out-of-
band virtualization [4, 5]. Because both these approaches

require that clients and/or NAS units be equipped with
either proprietary software or hardware, however, they
would be difficult to introduce and could not be
efficiently adopted within existing systems.

By way of contrast, this paper proposes a virtualization
method which requires no proprietary software or
hardware for clients or NAS units. The method,
described in the sections which follow, can also easily be
generalized for use with common file servers. It is
implemented as an in-band network application between
clients and NAS units, and it provides users and
administrators with a single virtual NAS system that
incorporates all their units. Since almost all name
resolution operations are performed by individual NAS
units independently, use of this method imposes only a
very light computational load and creates little latency.

While the use of the method with respect to the
Network File System (NFS) is briefly discussed in
Section 6, this paper otherwise focuses on its use with
respect to the Common Internet File System (CIFS)
protocol alone.

2. System Architecture

Figure 1 shows one possible configuration for the
proposed method. The NAS Switch, our proposed
virtualization switch, is simply connected to the IP
network to which clients and NAS units are connected.
Neither clients nor NAS units require any proprietary
software or hardware; the only requirement is use of the
CIFS protocol.

The NAS Switch provides clients with virtual share-
folders, corresponding to the actual share-folders in the
NAS units. It monitors CIFS packets and forwards each
to its appropriate actual NAS share-folder. In some cases,

the NAS Switch may be able to provide responses by
itself to client requests in CIFS packets without using an
NAS unit (see Section 4 for details).

Note that we further assume here that clients also
employ the Distributed File System (DFS) [6], but this
assumption is safe for almost all current environments,
including all Windows OSs beginning with Windows 98.

Clients

NAS units

NAS Switch

CIFS CIFS CIFSCIFS

IP switch

Figure 1. System Architecture

3. Functions

The NAS Switch hides the physical configuration of
NAS units and provides a single virtual NAS system for
users and administrators. It provides two main functions:
(1) it enables administrators to link name spaces in NAS
units hierarchically, to integrate them into larger “virtual
name spaces”, and to show these to users; and (2) it
allows administrators to perform administrative data
transfers between NAS units in a manner which is
transparent (i.e. unseen) with respect to users.

3.1. Integration of name spaces

A virtual name space is composed of hierarchically-
linked NAS name spaces (Figure 2). Since a virtual name
space is independent of the actual NAS configuration,
administrators can add a new NAS for increased capacity
without changing the name spaces that users see.

3.2. Administrative Data Transfers between NAS
units

It is easy for administrators to conduct data transfers in
order, for example, to maintain a good balance in free-
capacity among the various NAS units. Further, since
such data transfers do not interrupt user operations in any
way, they can be performed at any time on any data, even
that which is open for operations by users.

Share 1 Share 2 Share 3 Share 4

NAS 1 NAS 2

Virtual Name spaces

NAS Switch

Root Root

…

Link
points

Figure 2. Virtual Name Space

4. Design and Implementation

Since in-band virtualization devices like the NAS
Switch have an inherent potential to become a bottleneck,
the first priority in designing them is to make their
processing loads as light as possible. In this regard, the
NAS Switch is designed to manage only junctions (i.e.,
link points) at which NAS name spaces are linked; all
other name resolution operations are left to individual
NAS units. This means a NAS Switch can forward
almost all requests at high speed, resulting in low latency,
as has been demonstrated by a Linux-based NAS Switch
prototype which we have created (see Section 5 for
details).

Figure 3 is a simple block diagram showing the
composition of the NAS Switch. The response decision
block receives requests from clients and determines those
requests to which responses can be provided directly by
the NAS Switch itself. Such requests are those which
relate directly to link points. Specifically, they are
• requests across share-folders, and
• requests for referral.
Any other type of request is immediately forwarded to

an appropriate NAS unit.
File I/O type requests (e.g., read or write requests) can

be forwarded faster than other requests because any file
access request can be classified roughly as either a file
I/O type a or directory I/O type, and also because file I/O
type requests do not relate to link points. The NAS
Switch first sees the command number of a received
request, and, if it is of the directory I/O type, the NAS

Switch determines whether or not it relates to link points
by checking its pathname. If it is of the file I/O type, the
NAS Switch immediately forwards the packet which
include request header, that is, with the cut through mode.

The sequence which occurs when a client request
crosses a link point is described below. If a request is
across share-folders (i.e., is one which thus crosses a link
point), the NAS switch returns a specific error to a client,
in response to which the client returns a request for a
referral, GET_DFS_REFERRAL. The NAS Switch
receives this and returns a referral which gives
information about the location of the requested resource.
The client is then able to carry out a corrective redirection
of the original request. The referral locates another
virtual share-folder in the NAS Switch, and redirected
requests are also received by the NAS Switch. Since a
client performs the above exchanges transparently (i.e.
unseen by its users), users are still able to browse virtual
name spaces seamlessly. The mechanism for redirection is
the same as that used in DFS, and here the NAS switch
behaves the same as a DFS server.

Response
Decision

Response
Publication

Link Point
Information

Table

To NAS units

From Clients

Data Flow

Query

TID
Registration

To Clients

From NAS units

Figure 3. Composition of the NAS Switch

5. Performance Evaluation

This section presents the results of NAS Switch
prototype experiments conducted to determine the
overheads of the proposed system architecture. Here, we
benchmarked systems both with/without the NAS Switch.

5.1. Experiment system

All experiments were run on the 1Gbps network
shown in Figure 4. There were 4 clients, 2 NAS units and
one NAS switch; all machines were linked in a Gigabit
Ethernet network by means of 16-port Extreme Summit-

5i switch. The manufacture of each machine is shown
below.

NAS units: one NEC Corp. Express 5800 with dual
2.4-GHz Xeon processors, each having a 512KB L2
cache; 512MB of RAM; one 66Mhz, 64-bit PCI I/O bus;
one 18GB Seagate Cheetah drive connected to an on-
board SCSI controller; NTFS file system; a 3Com
3C996B-T 1000BaseT network controller, full duplex;
Windows 2000 Server, Service Pack 3, with maximized
throughput for file sharing.

NAS Switch: manufacture is the same as with the NAS
units except for the OS, whose kernel is built from a
Linux 2.4.17.

Clients: 4 clients are connected to form a single
segment, and each of the clients is a 1.4-GHz Pentium III
PC running a Windows 2000 Server with Service Pace 3,
and having 1GB RAM and a 1000BaseT network card.

Clients 1.4GHz Pentium-III

NAS
Switch

NAS units 2.4GHz Xeon

1Gb Ethernet

1Gb Ethernet 2.4GHz Xeon

Figure 4. Test Network Topology

5.2. Experimental Results

Below are the results of latency comparison
experiments conducted to determine whether or not the
NAS Switch kept overhead sufficiently small.

5.2.1. Measurement method
We used eTesting Labs Inc.'s NetBench(R) version

7.0.2 with the Disk mix test script DM_NB702.SCR.
Netbench is a benchmark program that measures how
well a file server handles file I/O requests from 32-bit
Windows clients, which pelt the server with requests for
network file operations. Netbench reports throughput and
client response time measurements.

In these experiments, clients mapped virtual share-
folders (hosted by the NAS Switch) to network drives
(e.g., F drives), and all requests from clients reached NAS
units via the NAS Switch. Similarly, all responses from
NAS units also reached clients via the NAS Switch. Two

clients accessed virtual share-folders mapped to share-
folders hosted by one NAS unit, and the other two clients
accessed virtual share-folders mapped to the other NAS
unit.

Table 1. Overall results

Average
Response Time
(milliseconds)

Elapsed
Time

(seconds)

Number
of I/O
Calls

Without use of
the NAS Switch 0.181 600.351 1896178

With use of
the NAS Switch 0.307 600.089 1801632

Table 2. Results for read/write I/O

Table 3. Results for open/close I/O

5.2.2. Latency comparison
Table 1 shows a comparison of average response times

for the system with/without use of the NAS Switch and
demonstrate that the NAS Switch kept overhead very
low: 0.12 milliseconds.

Table 2 shows a comparison of average response times
for read/write I/O (file I/O type) requests. Since client
caching worked very well, response times very low on the

whole. The NAS Switch can forward file I/O type
requests with the cut through mode, as mentioned above,
and overheads for these requests were kept very too small.
Since read/write I/O were big (almost all 64kB), there is a
significant decrease in latency from input port to output
port of the NAS Switch.

Table 3 shows a comparison of average response times
for open/close I/O (directory I/O type) requests. Since
the NAS Switch need check its pathname in order to
determine, the overhead for this type of request was
higher than that for a read/write request, it was still
relatively low: 0.2 to 0.3 milliseconds.

These results show the design of the NAS Switch kept
overheads small both file I/O type and directory type I/O.

6. Discussion

Let us consider here the potential of the proposed
architecture for application to two particular uses.

Massive storage systems using the NAS Switch:
A critical requirement for most massive storage

systems is huge throughput, and for such purposes, NAS
Switches might be clustered. As noted earlier, the NAS
Switch is designed to manage only junctions at which
NAS name spaces are linked, and NAS Switches would
have to share so little information among themselves that
clustering would be relatively easy.

In even larger NAS systems, some degree of automatic
load distribution would be needed, and for that purpose,
we believe an appropriate approach might be policy-
based load distribution, which would use administrative
data migration between NAS units to eliminate system
bottlenecks.

NFS (Network File System) Support:
Let us next consider potential support of the other

standard file access protocol, the NFS protocol. While in
this paper we have considered in detail only its support of
CIFS, it should be noted that the NAS Switch can also
provide a single virtual NAS system for NFS clients,
managing only junctions at which NFS servers’ name
spaces are linked.

NFS clients would be handled slightly differently from
CIFS clients. The NAS Switch would provide integrated
exports to NFS clients and hide junctions from them
because, unlike CIFS clients, NFS clients would not have
a referral function. For this reason, when receiving a
request across NAS units (e.g. to rename a NAS-1
namespace file as a NAS-2 namespace file), the NAS
Switch would have to execute the required action itself;
the server would be unable to do that on its own.

Netbench’s Commands
(mapping Windows API) Read Write

 The percentages of
the number 39.7 % 31.1 %

without use of
the NAS Switch 0.064 0.027

with use of
the NAS Switch 0.118 0.055

Average
Response

Time
(milliseconds)

Differences 0.054 0.028

Netbench’s Commands
(mapping Windows API) Open File Close

 The percentages of
the number 6.2 % 5.9 %

without use of
the NAS Switch 0.224 0.254

with use of
the NAS Switch 0.462 0.576

Average
Response

Time
(milliseconds)

Differences 0.238 0.322

7. Related work

7.1. Distributed File System

The CIFS protocol employs DFS [6] to integrate NAS
name spaces. With DFS, administrators can unify NAS
share-folders by making them sub-folders of a share-
folder. These sub-folders serve clients as links to other
share-folders and make it easier for users to browse
seamlessly among linked name spaces.

With respect to its use with most NAS virtualization,
however, DFS presents the following problems:
• The OSs of some NAS types are not capable of

employing DFS.
• Administrative work is severely limited by the fact

that data currently open for user operations cannot
be transferred.

• Share folders which contain sub-folders for
linking other share-folders are a highly restricted
resource; there can be only one per server.

The NAS Switch reported here helps to overcome all
of these problems.

7.2. NAS-based and Out-of-band Virtualization

To date, the two most common approaches to creating
a single virtual-NAS system have been (1) NAS-based
and (2) out-of-band.

NAS-based virtualization [1, 2, 3] introduces a cluster
file system for use with NAS units so that both the
capacity and performance of the system can be increased
seamlessly. It is consequently necessary either employ
NAS units which all have the same proprietary
architecture, or to install proprietary software in all NAS
units. Moreover, when the scale of the system is
increased, overhead for communications between NAS
units can no longer be ignored, and this limits the
potential for scale increases.

In contrast to this, out-of-band virtualization [4, 5]
uses a metadata server, as well as the redirectors
contained in client OSs. The metadata server operates
independently of the NAS units themselves. It has a map
that leads from directory trees to location information in
files, and it provides unified name spaces for use over the
entire system. Redirectors ask the metadata server for file
locations and conduct data access directly to storage
servers. It is thereby possible to increase storage capacity
seamlessly and independently of name spaces. It is also
necessary, however, to install proprietary software in all
clients, and to provide an additional network, such as a
SAN (Storage Area Network).

As noted earlier, these drawbacks make it difficult, if
not wholly impractical, to introduce such virtualization
into actual systems.

With our in-band virtualization method, however,
introduction is simple because it does not require clients
and NAS units to be equipped with any proprietary
hardware or software. That is, it is like a Layer 7 switch
in that it requires no change to existing systems. Although
such in-band virtualization devices have the potential to
become bottlenecks, our NAS Switch avoids this problem
by managing only those points which link NAS name
spaces, thus requiring only limited processing.

8. Conclusions

In this paper, we have proposed a method for creating
a single virtual-NAS system which requires no software
or hardware modification either to clients or to NAS units.
The proposed method is designed to be implemented as
an in-band switch between clients and NAS units and to
provide a single virtual NAS system for users and
administrators. Since almost all name resolution
operations are performed by individual NAS units
independently, use of this method imposes only a very
light computational load and creates little latency.

References

[1] 1Vision Software, Inc. vNAS,
http://www.the1vision.com/products/vnas/

[2] Spinnaker Networks, Inc. SpinServer,
http://www.spinnakernet.com/

[3] Zambeel, Inc. Aztera,
http://www.zambeel.com/

[4] Anupam Bhide, et al, “File Virtualization with
DirectNFS,” Proc. of the 10th NASA Goddard
Conference on Mass Storage Systems and the 9th
IEEE Symposium on Mass Storage Systems, pp. 43-
58, Maryland, USA, 2002.

[5] EMC, Celerra HighRoad,
http://www.emc.com/products/software/highroad.jsp

[6] Distributed File System,
http://www.microsoft.com/windows2000/techinfo/h
owitworks/fileandprint/dfsnew.asp

