
NSM: A Distributed Storage Architecture for Data-Intensive Applications 
 

Zeyad Ali        Qutaiba Malluhi 
Distributed Computing Laboratory 

Computer Science Department 
Jackson State University 

Jackson, MS 39217 
zeyad.f.ali@jsums.edu qmalluhi@jsums.edu 

 
 

Abstract: 
Several solutions have been developed to provide data-

intensive applications with the highest possible data rates. 
Such solutions tried to utilize the available network 
resources through parallel I/O and TCP/IP tuning in order 
to achieve a better data throughput. The focus was on 
achieving the highest possible data rate while other 
performance enhancements factors were ignored. 
Furthermore, most of those solutions were point solutions 
and designed to work in a specific environment for a 
particular application. 

In this paper, we introduce the Network Storage Manager 
(NSM). NSM is a java-based, high-performance, distributed 
storage system with auto reconfigurability that has been 
developed in the Distributed Computing Laboratory at 
Jackson State University. The system is designed as a 
framework for data-intensive distributed applications of 
different natures. In addition to an architecture that 
employs parallelism, scalability, crash recovery, and 
portability, NSM provides applications with full control to 
optimize other application-controllable features by 
allowing applications to fine-tune such features or even 
plug-in their modules and use it instead of the standard 
NSM implementation. 
 
 

1. Introduction 
High-performance multimedia, visualization, and other 

data-intensive applications usually use datasets that are of 
huge sizes typically hundreds of Gbytes or even Terabytes. 
These datasets not only do not fit in the memory available 
for the client machine, but also may not fit on the local 
disk. Moreover, these data sets are most of the time 
available on remote machines, which imposes long delays 
and slow application startup.  

However, large data sets are not usually needed as a 
whole by applications. A terrain visualization application is 
only interested, at any time, in a certain region of the huge 
image. A high-resolution distributed video player may be 
interested in the last minutes of a huge video clip, and it 

does not want to waste time and resources in downloading 
unwanted data. 

Some traditional solution applications [1] [3] [4] 
segmented and distributed the huge datasets. In this case, 
the client only fetches the segments that are required to 
visualize the current region. These solutions are by far 
domain-specific solutions and cannot be utilized to provide 
similar solutions for other kinds of data-intensive 
applications.  

Another attempt [5], in an effort to provide a general 
solution, suggested modifying operating systems to allow 
application control on virtual memory and paging. 
Unfortunately, it did not happen in practice because it could 
not justify changing the operating system in favor of a 
limited set of application.  

Partitioning huge data object into small chunks and 
distributing them onto storage servers, adds some kind of 
parallelism that helps the client machine to achieve a better 
performance in handling the out-of-core data. But 
parallelism by itself does not guarantee the optimal 
performance of an application since higher data throughput 
does not necessarily result in better application 
performance. Other performance enhancement techniques 
such as proper data layout, prefetching, and cache 
replacement policies should be considered very supportive 
to better fulfill the needs of the application and optimize its 
performance. But because of the different natures of 
applications, an algorithm that is optimal for one 
application may not be so to other ones. Furthermore, 
features, not necessarily related to performance, such as 
data partitioning, transport protocols, meta data, security 
schemes and encoding algorithms are also believed to be 
application-dependent. 

2. NSM Solution 
In NSM, we provide a general solution that has an 

architecture in which all the high-performance features and 
services, needed to achieve high and reliable data 
throughput, are core system features. The system has a 
unique architecture that provides many advantages 
including high performance, reliability, self-healing, load 



 

balancing and seamless access. Our system utilizes multiple 
parallel data streams to achieve load balancing and high 
data rates. The system offers users transparent and seamless 
access to the physically distributed datasets. Applications 
utilizing NSM for their data storage are smart applications 
because they automatically inherit all of its merits and 
features including, high availability, reliability and high 
throughput. 

In the other hand, any feature that is believed to be 
application-dependant is designed as a pluggable system 
component with standard implementation. Such features 
may be replaced with an application-specific 
implementation by the application’s developer. For 
example, if the standard round-robin implementation for the 
data layout of the object to be distributed, is not believed by 
the application’s developer to be the optimal layout for that 
specific domain, he/she can simply implement his/her 
algorithm by implementing the NSM layout interface and 
plug-in the new implementation.  
 

Figure 1. NSM architecture from an application’s view 

 
All the application-controllable features of NSM are 

designed in way that avoids interdependence between any 
two interacting or interrelated components; this design 
characteristic provides higher degree of flexibility to 
applications in the sense that plugging an application-
specific algorithm, such as data partitioning, does not result 
in changing other controllable system features. However, 
application plug-ins should conform to the set of interfaces 
provided by the system.  

In order to simplify using NSM by applications, we 
provide a group of APIs that can be used by applications. 
An application can use straightforward APIs such as 
writeDataSet (), openDataSet (), closeDataSet (). If an 
application needs to plug its own implementation for any of 
the pluggable features of system, it can also specify the 
required plug-in by using commands such as setPrefetcher 
(Prefetcher ClasName). Figure 1 illustrates NSM 
architecture from an application’ s point of view.  

3. NSM System Overview 
3.1. Data Layout over Storage Servers 

 

Figure 2. Data set layout over storage servers 

 
In NSM we partition the data set into a number of small 

data blocks. The partitioning algorithm may be a standard 
fixed-size algorithm or an application-provided algorithm. 
The system distributes the blocks across multiple data 
servers. To enable dependable service, NSM uses coding to 
add redundancy to the original data. This redundancy 
enables applications to retrieve the original data even if 
portion of the data is unavailable due to server and/or 
network failure. The encoding/decoding algorithms are also 
NSM pluggable feature. The data blocks and their 
corresponding parity blocks are grouped in married blocks.  
A married block contains one block for each data and parity 

MMaarrrriieedd  bblloocckk  

Server 1 Server m Server 2 Server m+1 Server n 

Data block 

Parity block 

m data servers k parity 
servers 



 

server. Selecting the blocks in each married block is an 
application issue and depends on its decision on the suitable 
data layout. To ensure load balancing, NSM distributes the 
blocks of a married block to distinct servers.  At the 
reader’ s side, a request to a single block is considered to be 
a request to all the blocks in that married block. See figure 
2. 

3.2. Distributing Data Sets 
The married blocks are buffered for uploading. Buffering 

is essential to allow client machines to smoothly handle 
huge or remote data sources. Efficient data service can then 
be achieved by using multiple concurrent streams 
established between the client and the distributed data 
servers. After uploading all the blocks of the data source, 
the meta data is obtained from the layout algorithm and 
uploaded to one or more designated meta servers. Figure 3 
illustrates the details of how applications can NSM features 
in distributing huge datasets.  

 

 

3.3. Meta Data 

Applications have full control over the meta data 
generated after distributing the dataset. They can add their 
own key-value pairs to the basic meta data generated by 
NSM. However, application can still use the detailed mode 
of meta data which results in a larger meta file. The fully 
detailed meta mode is needed where the logical or physical 
block names and/or sizes can not be algorithmatically 
reconstructed from the basic meta mode. 

3.4. Data Retrieval 
The system offers applications transparent and seamless 

access to the physically distributed data sets.   Applications 
can use NSM as a high-performance random input stream. 
An application can open multiple data sets at a time using 
the same NSMReader.  This feature is very advantageous 
for applications that need to work with multiple data sets of 
similar or even different types. A video player application 
[9] successfully played a video file by joining blocks from 
two data sets. A huge MPEG-1 video clip was distributed 
into two different data sets. One set contained all I and P 
frames and the second one had all B frames.

 

Figure 3.  Distributing data sets using NSMWriter



Figure 4 illustrates NSM capability to provide applications 
with blocks from more than one dataset. 

 

Figure 4.  Handling multiple data sets in one input 
stream 

Each data set has its own buffer. The buffer size is set by 
the application. A prefetching mechanism is utilized in an 
effort to have the most probably to be requested blocks in 
memory even before they are requested by the application.  
 

The standard prefetching algorithm is used unless 
otherwise. The prefetcher does not start requesting blocks 
unless the application is not sending any request for a 
predefined period of time. Applications requests have 
higher priority over prefetching request. Applications can 
send requests with different levels of priority. A request to a 
single block results in requesting all the blocks in the 
corresponding married block. The requests are queued and 
served according to their priority. The application can void 
any queued requests; this feature may be helpful in case of 
sudden changes in locality. 

If the data set buffer if full and more requests are coming, 
a cache management algorithm is used to decide which 
blocks to dispose. The standard cache replacement policy 
will dispose the least recently used block. However, since 
cache management is a pluggable feature, an application 
can plug-in its own implementation instead. 

The blocks, as shown in figure 5, are downloaded in 
parallel from their storage servers using asynchronous 
system calls. The system recovers any server failure or 
network delay by transparently switching to any of the 
available parity servers. The missing data blocks are 
reconstructed by the decoding the corresponding parity 
blocks. The on-the-fly data recovery leads to a high 
reliability without sacrificing the performance. 

  

Figure 5. Handling applications requests by NSMReader.

 



 

4. Related Work  
Related distributed mass storage technologies are DPSS 

[8], HPSS [7] and OceanStore [6]. DPSS is very vulnerable 
because it does not provide any mechanism for fault 
tolerance or recovery. HPSS is a hierarchical storage 
system that deals with different levels of storage devices 
such as disks and tapes. In HPSS, server mirroring (rather 
than coding) or automatic recovery from the tape is 
employed to achieve high availability. OceanStore 
addresses the storage utility model. It deals with a global 
storage environment consisting of thousands of un-trusted 
servers. 

OceanStore data consists of nomadic encrypted objects 
with many floating replica. NSM, on the other hand, deals 
with a controllable pool of trusted servers. NSM blocks 
have specific locations because performance is a high 
priority. 

5. Experimental Results 
Several performance evaluation experiments were 

conducted to measure the impact of each of the high-
performance features provided by NSM.  One of them is the 
effect of the parallel data transfer on the achieved data rate 
while downloading a data set. The results are shown in 
figure 6. 

1

2

3
4 5

6
7

8
9 10

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

FTP Servers

D
at

a 
R

at
e 

(M
bi

t/s
ec

on
d)

Data Rate

 

Figure 6. Using multiple parallel streams vs. single 
stream. 

6. References 
[1] Michael Cox, David Ellsworth, “Application-controlled 
demand for out-of-core visualization”. Proceedings of the IEEE 
Visualization ’97. 
[2] J. Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer 
Tuning” Computer Communication Review, ACM SIGCOMM, 
volume 28, number 4, Oct. 1998. 
 [3] Gwang S. Jung, Q. Malluhi, et al. “An Automatically 
Reconfigurable Distributed Data Storage System for High Data 
Availability”. Proceedings of the IASTEDInternational 
Conference Parallel and Distributed Computing Systems, 1999. 

[4]Q. Malluhi, Zeyad Ali, “DTViewer: A High Performance 
Distributed Terrain Image Viewer with Reliable Data Delivery”. 
Proceedings of the 2nd International Workshop on Intelligent 
Multimedia Computing and Networking IMMCN 2002. 
[5] T. Anderson, "The Case for Application-Specific Operating 
Systems," Proceedings of the Third Workshop on Workstation 
Operating Systems, April 1992, pp. 92-94. 
[6] John Kubiatowicz, et al. “OceanStore: An Architecture for 
Global-Scale Persistent Storage  “. Proceedings of the  Ninth 
international Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS 2000), 
November 2000. 
[7] Richard W. Watson, Robert A. Coyneet al. “The Parallel I/O 
architecture of the High-Performance Storage System (HPSS)”. 
Proceedings of the 14th IEEE Symposium on Mass Storage 
Systems. 
[8] Tierney, B. Lee, J., Crowley, B., Holding, M., Hylton, J., 
Drake, F., "A Network-Aware Distributed Storage Cache for Data 
Intensive Environments", Proceedings of IEEE High Performance 
Distributed Computing conference ( HPDC-8 ), August 1999, 
LBNL-42896.  
[9] Q. Malluhi and Omar Aldaoud, “Architecture of an Efficient, 
Reliable, Cost-effective, Scalable, Self-healing VoD system”. 
Proceedings of the International Conferences on Parallel and 
Distributed Techniques and Applications. PDPTA’02. 
 
 
 


