
Implementing and Evaluating Jukebox Schedulers Using JukeTools

Maria Eva Lijding Sape Mullender Pierre Jansen

Fac. of Computer Science, University of Twente
P.O.Box 217, 7500AE Enschede, The Netherlands

E-mail: lijding@cs.utwente.nl

Abstract

Scheduling jukebox resources is important to build effi-
cient and flexible hierarchical storage systems. JukeTools
is a toolbox that helps in the complex tasks of implementing
and evaluating jukebox schedulers. It allows the fast devel-
opment of jukebox schedulers. The schedulers can be tested
in numerous environments, real and simulated. JukeTools
helps the developer to easily detect errors in the schedules.
Analyzer tools create detailed reports on the behavior and
performance of any of the scheduler, and provide compar-
isons between different schedulers.

This paper describes the functionality offered by Juke-
Tools, with special emphasis on how the toolbox can be
used to develop jukebox schedulers.

1. Introduction

This paper presentsJukeTools, a toolbox for design-
ing, implementing, and testing jukebox storage systems.
This toolbox resulted from research in scheduling jukebox
resources and building ahierarchical multimedia archive
(HMA). However, the toolbox can also be used to evaluate
different hardware architectures, caching policies and ser-
vices offered by the storage system. In this paper we focus
on using the toolbox to implement and evaluate schedulers.

A jukebox is a large tertiary storage device whosere-
movable storage media (RSM)—e.g. CD, DVD, magneto-
optical disk, tape—are loaded and unloaded from one or
more drives by one or more robots. A jukebox can store
large amounts of data in a cost-effective way, which makes
it eminently suitable for applications that handle large
amounts of continuous-media files, large databases and
backups.

In order to use a jukebox effectively it is important to
schedule the jukebox resources. On the one hand, a juke-
box is not a random-access device: the RSM switching
times are in the order of seconds or tens of seconds, which
implies that multiplexing between two files stored in dif-

ferent RSM is many orders of magnitude slower than do-
ing the same in secondary storage. On the other hand, the
resources in the jukebox—robots, drives and RSM—are
shared and require exclusive use, which creates the poten-
tial for resource-contention problems.

JukeTools allows the fast development of jukebox
schedulers. Schedulers can be tested using different types
of requests, caching policies and hardware. The verifica-
tion functionality of the toolbox checks the validity of the
schedules and helps the developer to detect errors. Juke-
Tools is specially useful to detect resource contention prob-
lems.

A number of analyzer tools can produce detailed reports
in the form of HTML pages, performance graphics and sta-
tistical data about major system components. Other analyz-
ers combine the statistical data of multiple runs to compare
the performance of schedulers under different load condi-
tions. The log-files and intermediate reports are encoded
in XML [13]. Therefore, new analyzers are easy to write
based on XSLT [12] or XML-parsers. Also, additional de-
tails can be added to the log without affecting existing ana-
lyzers, because unknown entries are ignored.

We have implemented and compared six schedulers (in
multiple variations) with JukeTools, both periodic and ape-
riodic. These schedulers cover all known real-time jukebox
schedulers that deal correctly with the resource contention
problem—Lau’s aggressive and conservative strategies [7],
first-come-first-serve (FCFS) [3]— and three new sched-
ulers that we have developed—Promote-IT [9], thejukebox
early quantum scheduler (JEQS)[8] and thebuffered juke-
box early quantum scheduler (B-JEQS). The implementa-
tion of the old schedulers took only between one and three
days, each.

2. Toolbox Structure

Figure 1 gives an overview of the toolbox. The jukebox
scheduler is at the core of the toolbox and also the primary
component of the HMA. The HMA and the scheduler are
presented in the next section.



HW
charact.

Cache
contents

Jukebox
contents

Requests Arrival
times

Generator Tools

HMA
User

Simulator
Jukebox
Simulator

Time
Simulation

Engine

Activity
Watchdog

GUI/ Sim.
Controller

Logger

Jukebox
Scheduler

Analyzer
Tools

Log

Web pages

GUI

Graphics

Statistics
Cache

Real
User

HW Model Performance
comparison

Measurement
ToolsSpecs

Figure 1. Architecture of JukeTools.

The toolbox supports simulated and real users to use
simulated and real hardware. It hides the difference be-
tween ’simulated’ and ’real’ from the HMA components.
Therefore, the developer can use the same code for the sim-
ulations and the operational system. This allows to thor-
oughly test the HMA components in a controlled environ-
ment before using them in operational systems (more ben-
efits of this approach are presented in [2]). To narrow the
gap between simulation and operational system even more,
the toolbox uses a detailed analyticalhardware modelto
simulate any type of jukebox hardware.

Thetime simulation enginespeeds up the simulation by
removing idle periods and maintains the virtual time of the
system. The engine is presented in Section 5.

The requests for the HMA originate either from real
users outside the toolbox or from the user simulator. The
user simulatorcombines the data of arequest fileand an
arrival-times file to generate the workload for the HMA.
These files are created bygenerator tools. Generator tools
also create syntheticjukebox contentsandcache contents.
The jukebox contents contain the location of each RSM
in the jukebox and the directory of each RSM. The cache
contents keep information about the data currently in the
cache and map the data to file-system identifiers in sec-
ondary storage. For the HMA there is no difference be-
tween synthetic data and real data stored by itself during
the operation of the system. This is another point that sup-
ports the transparent use of the HMA in a simulated or real
environment.

The hardware model is strongly data-driven. It is
built using the specifications provided in thehardware-
characteristics file. The information of the file may corre-

spond to vendor specifications, the output of themeasure-
ment toolsor the wishes of the toolbox user. The hardware
model estimates the time needed to perform operations on
the robots and drives. The estimates are used by the sched-
uler and thejukebox simulator. Section 4 presents more
details.

JukeTools provides different ways to evaluate and mon-
itor the operation of the system. Theloggerprovides a log
service to all the components in the toolbox. The log is later
processed byanalyzer toolsto produce reports in the form
of web pages, graphics, statistics and performance compar-
isons. More complex analyzers provide graphical repre-
sentations of the schedules created during the execution of
the system and details about the utilization of the jukebox
resources.

Different components observe the execution of the
HMA using the publisher-subscriber pattern [4]. The GUI
offers different views of the running system and an attached
simulation controller allows to pause, resume and stop the
simulation. Theactivity watchdoguses the events gener-
ated by the HMA to detect possible deadlocks in the use of
shared resources (more in Section 3).

Given that the bandwidth offered by the drives in a juke-
box is generally much higher than the one required by the
end users and that a jukebox does not provide random-
access, the HMA stages data in a secondary storage cache
from where it is delivered to the applications. The imple-
mentation of the secondary storage cache is outside the
scope of the toolbox. At present we use a regular Linux
file-system, but we are planning to use Clockwise [1] in
the future to guarantee real-time access to the data in the
cache.



The toolbox is implemented in Java, except for some
functionality which is operating system dependent. The
drive controllers use the Java Native Interface (JNI) to call
C functions on Linux in order to open and close the drives
and get drive specific information. Additionally, the ana-
lyzer tools use gnuplot to generate the graphics. The tool-
box and the implemented schedulers are available through
the authors.

3. Hierarchical Multimedia Archive

The HMA can serve complex requests for the real-time
delivery of any combination of media files it stores. A
request can consist of multiple streams and non-streamed
data that are synchronized sequentially or concurrently in
arbitrary patterns. Such requests can originate from any
system that needs to combine multiple, separately stored
media files into a continuous presentation. Examples are
queries to a multimedia database to assemble a TV docu-
mentary, or a computer generated play list for a huge li-
brary of music videos and advertisement that produces an
MTV-like program.

The HMA can also be used for the more simple case of
a Video-on-Demand (VoD) application where the requests
are generally for only a single media file—a movie—to be
played from beginning to end. The capacity of the HMA to
serve complex requests is restricted by the capacity of its
current scheduler. The HMA is for example restricted to
VoD-like requests when the jukebox early quantum sched-
uler is used.

The HMA was designed to guarantee high quality of ser-
vice to the users, but it can also be used to build applica-
tions offering more relaxed or no quality of service. In the
original usage scenario, once the system accepts and con-
firms a request from a user, it is committed to provide the
service requested by the user. The confirmation includes
the starting time assigned to the request. The user can start
consuming the data at the starting time, with the system’s
guarantee that the flow of data will not be interrupted.

Figure 2 shows the architecture of the jukebox sched-
uler. The cache manager filters out the parts of incoming
requests that refer to data that is already in the cache or
scheduled for staging. The schedule builder schedules the
filtered requests on-line, re-computing the schedule when-
ever a request arrives. It generates a new schedule to re-
place the currentlyactive schedule. The dispatcher uses
the active schedule to send commands to the jukebox con-
troller, which move RSM and stage data into secondary
storage.

In the case of real-time schedulers the schedule builder
guarantees that including the new request does not lead
to missed deadlines and the dispatcher guarantees that the
commands are sent to the controller in time. The dispatcher

Cache Manager

Command

Request Confirmation
(Starting Time)

Jukebox
Scheduler

Active
Schedule

Unscheduled
Requests

Dispatcher

Functionality/
State

Jukebox
Controller

Jukebox
Model

Functionality

Operation
duration

Schedule
Builder

Figure 2. Jukebox-scheduler architecture.

may modify the schedules as long as no task in the sched-
ule is delayed and the sequence and resource constraints are
respected (see [9] for a discussion on the benefits of early
dispatching).

The HMA is highly modular and the interfaces between
the components are clearly defined. The schedule builder,
the dispatcher and the hardware controllers run as indepen-
dent threads. The jukebox controller operates as a schedule
verifier, because it only performs valid commands. It de-
termines if a command is valid using information about the
location of each RSM in the jukebox and the state of each
device. This information cannot be modified by the sched-
uler. The jukebox controller can detect illegal commands
that request to: unload an empty drive, load a loaded drive,
read data from an empty drive, unload an RSM different
from the one loaded or load the same RSM in two different
drives. The controller also reports if the commands are exe-
cuted late or if the execution time is different from the time
that was estimated by the scheduler. The latter is specially
important when using real hardware.

The activity watchdog detects more complex conflicts
in the use of the resources as deadlocks in the controller
queues. The watchdog runs as an independent thread and
listens to the events generated by the HMA components.
The watchdog can detect deadlocks in the HMA compo-
nents, if the components publish the beginning and end of
an operation that may lead to a deadlock, and indicate the
maximum time to perform the operation.

3.1. Requests

The requests consist of a deadline and a set of request
units ui j for individual files, or part of files. The requests
can represent any kind of static temporal relation between



the request units. Formally we represent a requestr i with l i
request units as:

r i = (d̃i ,asapi ,maxConfi , {ui1,ui2, . . . ,uil i })

ui j = (∆d̃i j ,mi j ,oi j , si j ,bi j )

The deadlined̃i of the request is the time by which the
user must have guaranteed access to the data. The flag
asapi indicates if the request should be scheduled as soon
as possible. The maximum confirmation timemaxConfi is
the time the user is willing to wait in order to get acon-
firmation from the system, which indicates if the request
was accepted or rejected. The relative deadline of the re-
quest unit∆d̃i j is the time at which the data of the request
unit should be available, relative to the starting time of the
request. The other parameters of the request unitmi j , oi j ,
si j andbi j represent the RSM where the data is stored, the
offset in the RSM, the size of the data, and the bandwidth
with which the user wants to access the data, respectively.

The confirmation to the user indicates if the request is
accepted or rejected. If the request is accepted, the confir-
mation contains the starting timesti assigned to the request.
The starting time must be less or equal to the deadline of
the request (sti ≤ d̃i). If the request is ASAP the scheduler
tries to find the earliest value ofsti that will allow it to ac-
cept the request. The system must provide a confirmation
beforemaxConfi .

4. Jukebox Model and Simulation

We use a model of the hardware to predict the time that
the system will need for operations on robots and drives.
We use this model to build the schedules and time the
jukebox simulator. We have validated our jukebox model
against our actual hardware.

The scheduler basically needs to know the time required
to load an RSM in a drive, read data from the RSM and
unload it. Computing these times is not straightforward.
Many factors are important as the type of RSM, the drive,
the jukebox robotics, the number of robots in the jukebox
and the location of the shelves and drives in the jukebox.
Our hardware model has separate sub-models for the RSM,
the drives, the robots and the jukebox. Together, the sub-
models can describe any type of jukebox architecture.

The hardware model can handle jukeboxes where the
drives are not identical. This allows the toolbox to deal
with situations in which the hardware of the jukebox goes
through gradual upgrades. The model can also handle juke-
boxes with multiple robots. Each robot has an associated
functionality and scope. Its function can be loading, un-
loading or both. The scope of a robot is given by the set
of drives and shelves it can serve (see [10] for more details
about the model).

A goal of the jukebox simulator is to provide the same
execution pattern during each execution of a simulation, so
that the results are reproducible. If we run a simulation with
the same input we want to obtain the same performance
results. Therefore, the jukebox simulator assumes that the
execution of the operations take exactly the time indicated
by the model.

The simulator uses the ‘simulation model’ proposed by
Ruemmler et al. [11] when relevant. The drive simulator,
for example, keeps track of the last time that the drive per-
formed a read to decide if a spin-up is needed. However, we
do not consider it relevant to know the exact rotation time
in an access to data on a disc, because it is very small com-
pared to the other components of the access. Additionally,
the exact rotation time varies if a task is dispatched with a
small time difference (e.g. one millisecond), therefore, the
resulting execution will not be the same.

At present the implementation of the hardware model
can handle any type of optical and magneto-optical juke-
box. We are mainly concerned with these type of juke-
box technology, because discs are better suited for ran-
dom access than tapes, and can be loaded and unloaded
faster. The implementation can easily be extended to in-
clude other type of storage media, drives and jukebox hard-
ware. A good starting point to include magnetic tapes is to
implement the model to estimate the locate-time on serpen-
tine tapes provided by Hillyer et al. [5] and the benchmark
methodology presented by Johnson et al. [6].

5. Time Simulation Engine

The time simulation engineis an event simulator with
the capacity to remove waiting time from the simulation.
Waiting time in a simulation are the periods where a real
system would wait for hardware operations or new user re-
quests, and the system is not busy performing computa-
tions.

The engine manages the virtual time of the system, de-
livers timed wake-up events and provides thread synchro-
nization through semaphores. Threads register themselves
with the engine at creation time. By tracking the state of
the threads through the use of the semaphores the engine
can detect and eliminate waiting times.

A thread can be in one of three states:active, blocked
or sleeping. An active thread performs computations and
needs to run in real time. A blocked thread is waiting for
an event from an active thread, e.g. waiting on a semaphore.
A sleeping thread is waiting for its wake-up event, e.g. to
simulate waiting for the robot to finish moving.

As long as at least one thread is active, the virtual time
advances in real time. When all threads are blocked or
sleeping, the time simulation engine advances the virtual
time to the time of the next event.



The time simulation engine is no thread scheduler—
thread scheduling is performed by the Java Virtual Machine
(JVM). The engine runs in a thread with the highest prior-
ity so that it always gets the right to execute when ready.
Bosch et al. [2] use the concept of real and virtual time in
a thread scheduler.

6. Conclusions

We have presented a toolbox to develop, evaluate and
compare jukebox schedulers. The toolbox allows the de-
veloper to concentrate on the topics relevant for schedul-
ing and abstract from secondary issues. JukeTools helps
to detect inconsistencies in the use the jukebox resources
and missed deadlines. It also provides detailed reports on
the performance of the scheduler, which can be used to de-
tect bottlenecks and inefficiencies. The toolbox is flexible
and can be configured easily to simulate numerous hard-
ware architectures, scheduling policies and user behavior.
Therefore, it provides an ideal framework to evaluate and
compare different schedulers. JukeTools provides an envi-
ronment that makes simulation transparent to the developer
to the extent that the same code can be used for simulations
and operational systems. So far, we have used the toolbox
to implement and compare six different schedulers, plus
multiple variations.

The toolbox can also be used to evaluate different hard-
ware architectures, caching policies and services offered
by the storage system. Furthermore, making some mod-
ifications to the semantics of the components and the in-
terfaces, the toolbox can also be used to implement real-
time schedulers for other environments as secondary stor-
age, and manufacturing systems.

Acknowledgments

We would like to thank Hartmut Benz for his help in
structuring and editing this paper.

References

[1] P. Bosch.Mixed-media file systems. PhD thesis, University
of Twente, June 1999.

[2] P. Bosch and S. J. Mullender. Cut-and-paste file-systems:
Integrating simulators and file-systems. InUSENIX Annual
Technical Conference, pages 307–318, 1996.

[3] S.-H. G. Chan and F. A. Tobagi. Designing hierarchical
storage systems for interactive on-demand video services.
In Proc. of IEEE Multimedia Applications, Services and
Technologies, June 1999.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley professional computing series. Addison-
Wesley, Reading, Mass., 1995.

[5] B. K. Hillyer and A. Silberschatz. On the modeling and per-
formance characteristics of a serpentine tape drive. InProc.
of the 1996 ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, pages 170–179, May
1996.

[6] T. Johnson and E. L. Miller. Benchmarking tape system
performance. InProc. of Joint NASA/IEEE Mass Storage
Systems Symposium, March 1998.

[7] S.-W. Lau and J. C. S. Lui. Scheduling and replacement
policies for a hierarchical multimedia storage server. In
Proc. of Multimedia Japan 96, International Symposium on
Multimedia Systems, March 1996.

[8] M. E. Lijding, F. Hanssen, and P. G. Jansen. A case against
periodic jukebox scheduling. Technical Report TR-CTIT-
02-47, Centre for Telematics and Information Technology,
University of Twente, November 2002.

[9] M. E. Lijding, P. G. Jansen, and S. J. Mullender. A flexible
real-time hierarchical multimedia archive. InProceedings
of the Joint International Workshops on Interactive Dis-
tributed Multimedia Systems and Protocols for Multimedia
Systems, (IDMS/PROMS), volume 2515 ofLecture Notes
in Computer Science, pages 229–240, Coimbra, Portugal,
November 2002. Springer-Verlag, Berlin.

[10] M. E. Lijding, S. J. Mullender, and P. G. Jansen. A com-
prehensive model of tertiary-storage jukeboxes. Technical
Report TR-CTIT-02-41, Centre for Telematics and Informa-
tion Technology, University of Twente, October 2002.

[11] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling.IEEE Computer, 27(3):17–28, 1994.

[12] W3C. XSL Transformations (XSLT) 1.0, November 1999.
[13] W3C.Extensible Markup Language (XML) 1.0, second edi-

tion, October 2000.


