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Abstract* 

This paper presents a new class of erasure codes, 
Lincoln Erasure codes (LEC), applicable to large-scale 
distributed storage that includes thousands of disks 
attached to multiple networks.  A high-performance 
software implementation that demonstrates the capability 
to meet these anticipated requirements is described.  A 
framework for evaluation of candidate codes was 
developed to support in-depth analysis.  When compared 
with erasure codes based on the work of Reed-Solomon 
and Luby, tests indicate LEC has a higher throughput for 
encoding and decoding and lower probability of failure 
across a range of test conditions.  Strategies are described 
for integration with storage-related hardware and 
software. 

 

1. Introduction 

In many ways, information is a critical element of 
operations for the consumer, corporate enterprise, 
academia, government, and military.  Consumers are 
amassing large collections of digitized multimedia content 
and accessing it from multiple localities over the Internet.  
Throughout the corporate enterprise, knowledge 
management is improving the utilization of intellectual 
capital by applying structure to aggregated business 
information.  Increasingly, industries derive value from the 
creation, processing, and management of information. 
Information plays a central role in the execution of 
modern warfare as the Information Revolution seen in 
society reaches military affairs.  Current and emerging 
capabilities in intelligence, surveillance, and 
reconnaissance will produce large quantities of 
information that must be rapidly and reliably available.  
For a diverse class of information consumers, both the 
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volume and the value of information emerge as significant 
factors that represent major challenges for traditional 
storage management methods.  Contributing factors 
include demands for wide accessibility, a dynamic 
marketplace, and the need for a reliable data storage.  As 
needs vary widely, no single product solution satisfies all 
users.  With a scalable architecture for distributed storage 
systems and a flexible strategy for cost-effective 
acquisition, operations, administration, and maintenance, 
valuable information resources can be protected and hence 
made more reliable without adversely impacting 
accessibility and performance. 

The rest of Section 1 describes how the distributed 
storage concept emerges from analysis of critical 
technology trends and the strategies for information 
protection using erasure code techniques.  Section 2 
describes related work in erasure coding for distributed 
storage and a new erasure code, the Lincoln Erasure Code 
(LEC).  The design, implementation, and performance of 
this code and its integration in the distributed storage 
system are presented in Section 3.  Conclusions are listed 
in Section 4. 

1.1. Critical technology trends 

To sustain effectiveness, an architecture must be 
consistent with the long-term trends in technology 
development.  Due to the exponential growth of 
performance per dollar spent in silicon transistor density, 
optical fiber bandwidth, and stored bits per square inch, 
execution of this strategy has proven difficult.  However, 
the technologies are now positioned to enable a scalable 
distributed storage architecture that can be tailored to meet 
user needs. 

Silicon transistor density doubling, known as Moore’s 
Law, has persisted for decades.  The doubling period of 
18 months is expected to continue at this rate for another 
15 years.  A similar trend has emerged that tracks the 
increase in storage density for the magnetic media in 
hard disk drives.  In this case, the doubling period is 12 
months, surpassing that of Moore’s Law.  In the last 
decade, the commercial growth of optical fiber 



networking technology has repeatedly increased the 
information carrying capacity of a single fiber at an 
exponential rate which exceeds those for both transistor 
and storage density.  Recently the fiber capacity doubling 
period has been measured as nine months.  In the future, 
system architectures established before the emergence of 
low-cost, high-speed optical networks may struggle to 
keep pace with new architectures.  As the leading critical 
technology trend, optical networking represents the 
foundation of a scalable distributed storage architecture 
[1]. 

1.2. Distributed storage systems 

The relative performance of storage, memory, 
computing, and communication has a profound impact on 
storage architecture design.  In traditional network storage 
models, individual users equipped with commodity 
network interfaces cannot fully utilize the system 
backplane (communications link) with storage 
transactions.  In many current storage systems, only a 
small number of disk drives are involved in storing the 
contents of an individual computer file.  Most personal 
computers include a single high capacity hard disk drive to 
which read and write requests are sent.  For higher 
performance and reliability, business systems often 
employ Redundant Array of Inexpensive Disks (RAID) 
controllers to stripe data across multiple disks and 
generate parity check information.  [2].  For improved 
reliability, these controllers as well as software RAID 
implementations can mirror users’ data to a second 
identical array and/or generate parity-check information. 
The distributed storage system concept emerges from 
analysis of the critical technology trends seen in Figure 1.  
Extrapolating the trends in optical networking and data 
storage to 2010 suggests that thousands of hard disks 
running in parallel will be required to keep pace with 
COTS communication links operating at many terabits per 
second. 

 

1.3. Strategies for information protection 

In addition to addressing these performance challenges, 
a scalable storage architecture must provide an effective 
means to protect the valuable information that is entrusted 
to storage systems.  In the simple mirroring and parity 
schemes described above, administrators of an operational 
system must treat any single failure as an emergency or 
risk exposing users to service disruptions and information 
loss.  While geographically distributed data centers can 
improve overall system availability, the corresponding 

need for emergency response personnel located at each 
data center increases the cost of system operation.  

 
 
 

 

Figure 1.  Critical technology trends. 
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Figure 2.  Distributed storage system 
architecture. 
 
In a distributed storage system, an end user’s computer 

interacts directly and concurrently with a potentially large 
number of networked storage nodes as shown in Figure 2.  
These nodes include CPU, main memory cache, and 
persistent storage on hard disk drives.  The nodes receive 
and respond to user requests across the network.  On the 
end user’s computer, information is cached in main 
memory.  User files are stored to the system as a set of 
fragments, which may include parity information for 
erasure correction.  The number of fragments can be 
determined by requirements for performance and/or 
reliability. 



Figure 3.  Encoding data for distributed storage. 

2. Erasure coding for distributed storage 

Erasure recovery is necessary when the failure of a 
communications channel or storage device prevents the 
direct retrieval of a previously stored data file.  Although 
such failures are often caused by inherent properties of the 
device or channel, they may also be the result of malicious 
or careless actions.  In general, solutions to this 
longstanding problem involve the construction of a larger 
file with explicit or implicit redundancy of information.  
After an erasure (i.e. the loss of a bit), it is this 
redundancy which enables successful data recovery.  One 
common, simple approach is to create one or more copies 
of the original data.  This results in a level of added 
protection far below that of alternative methods employing 
the same amount of redundancy. 

Figure 3 shows an example of encoding data for 
distributed storage.  A file is broken up into a number of 
fragments (step 2) and encoded (step 3) as described in the 
next section.  A graph of parity and data nodes is created.  
Each parity node is computed by performing the exclusive 
or of each data node to which it is connected (steps 4 and 
5).  The data and parity fragments are then  

 
distributed to different storage nodes over the network 
(steps 6 through 9). 

2.1. Related work 

Erasure codes have been applied to distributed storage 
in the OceanStore project at the University of California 
Berkeley [3].  Both Reed-Solomon and Tornado codes 
(described below) were implemented in software to 
improve the availability of archived data.  With both of 
these codes, throughput is limited by the high 
computational costs of encoding and decoding.  Reed-
Solomon codes are further limited by scaling difficulties 
for use with more than 255 storage elements.  As 
technology trends begin to require thousands of fragments 
to saturate high-speed network links, alternative erasure 
codes may prove more effective. 

The Koh-i-Noor project at Microsoft seeks to construct 
high-capacity storage systems with high reliability at low 
cost [4].  The motivation is to reduce total cost of 
ownership for enterprise-class storage systems such as 
Hotmail.  Through the use of erasure codes, system 
maintenance requirements can be significantly reduced 
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while preserving the integrity of stored information for 
long periods of time. 

The Reed-Solomon code, a special case of the Bose-
Chaudhuri code, supports both erasure correction and 
error correction.  It offers optimal efficiency such that any 
available parity element can be substituted for any erased 
data element in the block.  Parity-check information is 
generated through operations on a Galois field [5].  The 
computational cost of this process is related to the size of 
the field, where typical Reed-Solomon implementations 
operate in a field of size 28, or one with 255 elements.  For 
this code, a linear increase in the depth of the field results 
in an exponential increase in computational cost, making 
it impractical for use in storage systems requiring 
thousands of fragments.  Two advantages of Reed-
Solomon are storage efficiency and deterministic behavior. 

One approach to large block coding is to segment the 
data into a number of  “mini-blocks” and separately apply 
Reed-Solomon coding to each mini-block.  While high 
throughput can be achieved for encoding and decoding, 
this is less space-efficient than other alternatives. 

In 1960, R. Gallager’s Sc.D. thesis [6] proposed a new 
approach to the erasure code problem using a bipartite 
graph, illustrated in Figure 3, step 4.  This type of graph 
contains two sets of nodes with edges between nodes of 
different sets, but no edges between nodes within the same 
set.  The key idea is to create a graph with a set of nodes 
corresponding to the data bits and a set of nodes 
corresponding to the parity bits and connect some of the 
data nodes to the parity nodes.  The encoding process 
consists of setting a parity node equal to the exclusive or 
(XOR) of the data nodes to which it is connected. 
Gallager’s approach is based on a regular graph in which 
all nodes of each type have the same number of edges. In 
this code, the number of edges is proportional to the 
number of nodes.  Since the resulting edge count is small 
compared to the number of edges in a fully connected 
bipartite graph, these are called low density parity check 
(LDPC) codes. 

In 1997, Luby et. al [7] proved that LDPC codes have 
improved properties if the number of edges connected to 
each node varies from node to node. For such irregular 
codes, the challenge is to characterize the degree of 
irregularity that yields the best coding performance.  This 
is accomplished in two stages.  First, a probability 
distribution is specified for the degree of a parity node.  A 
distribution may also be specified for the degree of a data 
node.  Then a procedure is developed for realizing an 
effective code based on the distribution.  In contrast to 
Reed-Solomon codes, the Luby Transform code [8] and 
related codes [7] (including Tornado codes [9]) provide 
probabilistic erasure correction through an iterative 
decoding algorithm.  This class of codes provides a 
significant reduction in computational cost for encoding 

and decoding, but it sacrifices some storage efficiency in 
the process. 

The Luby Transform code specifies a probability 
distribution for the number of data nodes connected to 
each parity node.  As edges between nodes are defined, the 
code specifies that all eligible combinations of data nodes 
may be chosen with equal probability. 

A file can be multicast to thousands of users using the 
Luby Transform code by sending a small amount of data 
and a stream of parity information.  The value of each 
transmitted parity node is computed as the XOR of the 
data nodes to which it is connected.  The Luby code is 
well suited to this application because it is not necessary 
to select (and generate) a specific (and limited) quantity of 
parity check information prior to transmission.  Rather, the 
transmission simply continues until the minimum required 
quantity of information has been exchanged. This property 
is advantageous for multicast applications; in persistent 
data storage applications, however, storing only this 
minimal quantity of data and parity information would 
adversely impact system reliability. 

2.2. Lincoln erasure code (LEC) 

In contrast to the Luby code which consists of 
predominately parity information, LEC saves all of the 
data.  However, like the Luby code,  LEC’s parity 
information is generated using an irregular bipartite graph.  
As such, the number of parity nodes of degree j, 
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where s is a scaling factor, p is the fraction of corruption 
being protected against, k is the number of data nodes,  
imax is the maximum possible degree, j* is two less than 
the minimum degree, and A is a variable.  

For a given target reliability, desired loss protection, L, 
and number of data characters, k, a preferred set of 
parameters must be empirically found for s, A, j*, and 
imax. In addition, the above formula must be perturbed to 
account to its possible non-integer values.  For each set of 
parameters a specific graph must be generated by 
randomly selecting which data nodes are connected to 
which parity nodes. To encode using LEC, all data is used 
along with parity information computed from the XOR of 
the data nodes connected to it (as is performed for the 
Gallager and Luby code).  To decode, erasures are 
corrected with a decoder that is modeled after that of 
Luby’s code. 



3. Evaluation process and performance 
results 

A software evaluation tool was developed to study the 
reliability and throughput of large block LDPC codes.  
The software performs encoding, decoding, generation of 
random codes (based on parameters that determine the 
degree distribution of parity-check elements), and 
reporting of performance metrics for reliability and 
throughput.  The core function of the tool is the detailed 
examination of the decoding process (erasure correction) 
under a variety of loss conditions.  In this mode, parity and 
data exist abstractly but do not have actual values.  
Instead, the tool simply tracks the erasure status of each 
element during the decoding process. 

For LEC, one can select a desirable set of parameters 
given the block size and the block failure probability that 
is required when a given fraction of the block is erased.  
Since the number of parameters is small, desirable codes 
can be found by trial and error or using a search 
algorithm.  A software implementation of the search 
algorithm partially automates the parameter selection 
process.  Given the block size (number of data elements 
and parity elements) and the fraction of the block erased, a 
parameter search is performed to identify the parameters 
that achieve the highest reliability. 

In the next step, specific codes are generated and tested 
using the selected parameters.  The graph that exhibits the 
highest reliability is saved until a better code is found.  
Since the reliability of random codes generated with the 
same parameters varies by as much as a factor of three, 
this process is repeated many times (i.e. 100). Encoding 
and decoding throughput is measured for graph codes that 
demonstrate high reliability. 

3.1. Design and implementation 

Generated graphs are formatted in a parity-centric 
tabular view.  Each parity element identifier is followed by 
a list of the data elements to which it is connected.  For 
throughput analysis, a data-centric view of the graph is 
also stored.  In this view, each data element is followed by 
a list of the parity elements to which it is connected.  In 
both, the node listings are sorted to improve locality 
during encoding and decoding. 

In addition to reliability, encoding/decoding throughput 
for actual files was also a matter of interest.  Several 
coding methods were compared for a variety of file sizes.  
Each test file was segmented into a series of fixed-size 
blocks for use with the codec (coding/decoding).  During 
the decoding process, throughput can be increased with an 
optional journaling technique.  During block decoding, 
correction actions are recorded in a journal and indexed 

according to erasure pattern.  If a subsequent block 
contains the same erasure pattern (or a subset) as a 
previous block, then journal results can be used.  
Otherwise, an iterative decoding process is performed. 

3.2. Performance results 

In this section, LEC performance results will be 
presented for several target reliabilities, percent losses, 
and block sizes.  First, the case of targeting 10-6 reliability 
for 20 percent loss and 5040 data elements will be 
presented in detail. 

Using the search algorithm, it was determined that 
1760 parity elements was needed to achieve 10-6 reliability 
at 20 percent loss for 5040 data elements. The set of 
parameters selected was A=1, imax=2229, j*=10, s=1.43.  
These parameter values were inserted in the distribution 
formula to generate the parity node degree distribution.  A 
graph code consisting of 5040 data 8-byte elements and 
1760 parity 8-byte elements was then constructed. After 
randomly "erasing" 20 percent of the data and parity 
elements, an attempt was made to decode the unknown 
data elements. Table 1 compares the throughput of various 
erasure codes for encoding and decoding a 13.1 MByte 
file. Tests were conducted on a PC with a 1.7 GHz Intel 
Xeon CPU.  The table shows that LEC  encodes and 
decodes faster than both the Luby and Reed-Solomon 
methods. 

 
    Table 1.  Throughput of erasure codes. 
 

Erasure 
Coding 
Method 

Encoding 
(Mbps) 

Decoding (20% Loss) 
(Mbps) 

LEC 240 760 
Luby Code 180 220 

Reed-Solomon 0.09 0.20 
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        Figure 4.  Reliability of erasure codes. 



Table 2. 5040 data, targeting 10-6 reliability. 

Percent 
Loss 

# Parity 
Elements, p  

LEC Reliability Luby 
Reliability 

Minimum # Parity 
Elements Needed, p' 

Overhead, 
p / p' 

1 130 6.5 x 10-7 1.0 51 2.55 
10 860 3.3 x 10-7 6.1 x 10-1 560 1.54 
20 1760 8.3 x 10-7 6.1 x 10-3 1260 1.40 
50 6350 1.7 x 10-6 3.5 x 10-6 5040 1.26 
75 20000 2.2 x 10-6 2.8 x 10-7 15120 1.42 
 

Table 3. 5040 data, targeting 10-4 reliability. 

Percent 
Loss 

# Parity 
Elements, p  

LEC Reliability Luby Reliability Minimum # Parity 
Elements Needed, p' 

Overhead, 
p / p' 

1 110 1.4 x 10-4 1.0 51 2.16 
10 810 2.3 x 10-5 1.0 560 1.45 
20 1700 3.5 x 10-5 2.9 x 10-2 1260 1.35 
50 6230 9.9 x 10-5 1.7 x 10-5 5040 1.24 
75 19250 1.1 x 10-4 7.5 x 10-7 15120 1.27 

 
Table 4. 2520 data, targeting 10-6 reliability. 

Percent 
Loss 

# Parity 
Elements, p  

LEC Reliability Luby 
Reliability 

Minimum # Parity 
Elements Needed, p' 

Overhead, 
p / p' 

1 80 1.9 x 10-6 1.0 25 3.20 
10 470 2.3 x 10-6 9.0 x 10-1 280 1.68 
20 950 1.0 x 10-6 3.2 x 10-2 630 1.51 
50 3360 7.3 x 10-7 6.8 x 10-6 2520 1.33 
75 10400 1.8 x 10-6 1.1 x 10-6 7560 1.37 

 
Table 5. 2520 data, targeting 10-4 reliability. 

Percent 
Loss 

# Parity 
Elements, p  

LEC Reliability Luby Reliability Minimum # Parity 
Elements Needed, p' 

Overhead, 
p / p' 

1 65 1.4 x 10-4 1.0 25 2.60 
10 435 1.4 x 10-4 1.0 280 1.55 
20 900 5.8 x 10-5 2.9 x 10-1 630 1.43 
50 3240 3.6 x 10-5 2.6 x 10-4 2520 1.29 
75 10100 2.0 x 10-4 1.8 x 10-6 7560 1.34 

 
Figure 4 compares the reliability of LEC generated 

with the above parameters and a Luby code of the same 
length.  At the 20 percent loss point (for which LEC was 
optimized), the block failure probability of LEC is 8 x 10-7 
as compared to 6 x 10-3 for the Luby code.  Each point on 
the plot was experimentally generated using the software 
evaluation tool.  The uncertainty in the probabilities is half 
an order of magnitude.  Since the number of 
encoding/decoding runs necessary to produce statistically 
meaningful reliability results increases as the reliability 
becomes better, it is not computationally feasible to 
experimentally generate block failure probabilities lower 
than 10-7.  Probabilities lower than 10-7 can be extrapolated 

from the plot.  Note that LEC outperforms the Luby code 
across the entire range of percent losses tested. 

An equivalent Reed-Solomon code would detect all 
erasures up to the number of parity elements for the range 
of losses in Figure 4.  However, as seen in Table 1, the 
encoding and decoding speed is so slow that it is not a 
realistically feasible code to use. 

Tables 2 through 5 present results for varying target 
reliabilities, percent losses, and block sizes. For practical 
purposes, a distributed storage system would most likely 
be concerned with lower percent losses (i.e. less than 20 
percent), however we present a wider range of results for 
completeness.  



Table 2 shows the number of parity elements needed 
for different percent losses when targeting 10-6 reliability 
for 5040 data elements.  For each percent loss, the 
software evaluation tool was used to determine the number 
of parity elements, p , and the set of parameters that 
yields a desirable graph code.  This graph code was then 
used to generate the LEC reliability at that percent loss.  
Note that the LEC reliability in Table 2 should match the 
target reliability of 10-6.  For example, to achieve 10-6 
reliability when losing 10 percent of the blocks with 5040 
data elements requires a graph code consisting of 860 
parity elements.  Using fewer than 860 parity elements 
will degrade reliability. 

LEC and Luby codes were also compared for the 
different percent losses.  Table 2 shows that LEC 
outperforms the Luby code for losses of 1, 10, and 20 
percent.  Performance of the two codes is similar for 50 
percent loss.   However, for low percent losses, it must be 
noted that LEC and Luby codes were designed for slightly 
different applications as stated in Section 2.1. 

The fifth column of Table 2 specifies the minimum 
number of parity elements required for successful 
decoding.  The process will be unsuccessful if fewer than 
this number of parity elements are available.  This limit is 
computed by solving the following equation 

(p' - d) (1 - L) >= d 

for p' , the minimum number of parity elements needed, 

where d  is the number of data elements and L   is the 
percent loss.  The last column in Table 2 shows the 
overhead required to achieve the target reliability.  
Overhead is defined as the ratio of the number of parity 
elements used for correction, p , to the number of data 
elements that are erased (which is equivalent to p' ).  This 
overhead steadily decreases as the percent loss increases 
from 1 to 50 percent and slightly increases for 75 percent 
loss. 

Table 3 shows the number of parity elements needed 
for different percent losses when targeting  10-4 reliability 
for 5040 data elements. 

Tables 4 and 5 show the number of parity elements 
required for different percent losses with 2520 data 
elements when targeting 10-6 and 10-4 reliability.  With a 50 
percent decrease in the number of data elements, the 
number of parity elements will decrease by approximately 
half. 

Tables 2 through 5 demonstrate the tunability of LEC.  
By specifying a data percent loss that the distributed 
storage system would like to protect against and the 
reliability it hopes to achieve, the search algorithm can 
find the number of parity elements necessary to achieve 
the requirements.  Likewise, if cost is a factor in designing 
the storage system, the user can specify the number of 

parity elements it wants to use at a certain percent loss.  
The search algorithm can then determine the level of 
reliability it can achieve with this number of parity 
elements. 

The next section briefly introduces a system 
architecture that incorporates this coding technique to 
meet users’ reliability requirements while providing high 
performance storage services. 

3.3. System architecture and integration 

Erasure coding offers important capabilities for storage 
system architectures.  As device-level storage density and 
read/write parallelism increase, excellent scalability can 
be maintained with a hardware implementation of the 
Lincoln Erasure LDPC code.  Already, the high 
throughput of the software-based codec enables system 
development with inexpensive COTS components.  This 
provides fault tolerance, higher reliability, and space-
efficiency in comparison to pure replication and mirrored 
hardware.  A software-based code can also protect local 
resources such as a RAID or a storage area network 
(SAN). 

The storage node is the fundamental building block of 
the architecture.  Each node contains multiple hard disk 
drives; the number of drives is determined by overall 
system capacity requirements.  RAID 0 disk arrays may 
be created at each node to reduce disk seek latency and 
increase read/write throughput.  Processing resources at 
each node can be applied to coding tasks or other data 
processing as directed by users. For certain classes of 
parallel applications, including image processing and data 
mining, significant speedup can be achieved by 
performing data-intensive computations “near” the storage 
location and sending only results to users [10]. 

The network interface card in each storage node 
provides connectivity to the user community and the rest 
of the storage system.  High read/write throughput is 
achieved by aggregating many storage nodes on an optical 
network.  For example, although data rates may reach 40-
100 Gbps within the core of the network, individual 
storage nodes can be attached with low-cost Gigabit 
Ethernet adapters.  With a sufficient number of storage 
nodes,  the full capacity of the core network can be 
exploited entirely by a single user or shared among 
multiple users. 

The most robust network topology is one in which each 
node is directly connected to every other node.  Such 
networks are said to have an exponential topology because 
the total number of connections increases exponentially 
with a linear increase in the number of nodes.  Any single 
link failure causes minimal disruption since traffic can be 
rerouted through an intermediate node.  For large 



networks such as the Internet, an exponential topology is 
not feasible.  The scale-free topology is a cost effective 
alternative in which small networks are aggregated into 
larger networks.  This structure is repeated at multiple 
levels to form a network hierarchy.  In this case, a single 
link failure at a high-level aggregation point can separate 
the nodes into disjoint sub-networks and prevent 
communication among users [11]. 

In conjunction with a distributed storage architecture, 
erasure coding techniques insulate users from network 
outages and node failures.  Although such problems are 
promptly detected and reported to administrators, events 
do not escalate into emergencies requiring immediate 
response.  Instead, user needs will be applied to determine 
an appropriate level of protection for each item stored in 
the system.  A simple, high-performance software 
implementation of the erasure coding technique enables 
any user to select appropriate parameters and interact with 
the storage system. 

In many cases, this storage architecture can reduce or 
eliminate the need for an offline backup system.  Upon 
detection of node or network failures, a stored file can be 
retrieved and decoded using the erasure code.  Then the 
file can be encoded and redistributed to the accessible 
nodes.  In contrast to systems based on serial backup 
media such as magnetic tapes, this system provides direct 
random access to all stored files with minimal contention 
among multiple users.  Overall, the mitigation of offline 
backup requirements results in cost savings for 
infrastructure and personnel and improves user 
satisfaction with the storage service. 

In addition, system integration of the erasure code 
yields economic benefits from the device to the inter-
network level.  In particular, graceful degradation of the 
storage service under failures and attacks greatly relaxes 
system maintenance schedules.  Failed hardware can be 
restored or replaced along with planned upgrades 
according to a periodic schedule.  At the same time, the 
erasure code significantly reduces storage capacity 
requirements relative to pure replication [12].  These 
factors translate directly into monetary savings for system 
operators and users. 

4. Conclusions 

Extrapolating critical technology trends in networking, 
storage, and processing into the future indicates that the 
most scalable storage systems will be established on a 
firm foundation of networking.  The disparity between 
optical fiber carrying capacity and hard disk drive 
throughput suggests that thousands of disk drives may be 
needed to fully utilize future network links.  Existing 
RAID approaches solely based on mirroring and parity-

check schemes do not provide cost-effective solutions to 
these challenges.  

Compared to Reed-Solomon, Tornado, and Luby codes, 
LEC provides higher performance both in terms of 
throughput and reliability and greater scalability in a 
flexible software implementation except for very high 
percentage of loss.  It is also tunable to system 
requirements for the level of reliability or cost of the 
storage system.  It enables cost-effective implementations 
of large, highly distributed, reliable storage systems. 

References 

[1] Stix, G. “The Triumph of the Light.”  Scientific American, 
January 2001, 80-86. 

[2] Patterson, D., Gibson, G., and Katz, R. “A Case for 
Redundant Arrays of Inexpensive Disks (RAID).” In 
Proceedings of the 1988 ACM SIGMOD International 
Conference on Management of Data, June 1988, 109-116. 

[3] Kubiatowicz, J., et. al.  “OceanStore: An Architecture for 
Global-Scale Persistent Storage.” In Proceedings of the 
Ninth International Conference on Architectural Support 
for Programming Languages and Operating Systems 
(ASPLOS 2000), November 2000, 190-201. 

[4] Isard, M., Manasse, M., Thekkath, C.  Koh-i-Noor.  
[November 2002] 
http://research.microsoft.com/research/sv/kohinoor/ 

[5] Peterson, W. W. Error Correcting Codes. The MIT Press, 
Wiley and Sons, 1961. 

[6] Gallager, R. G. “Low Density Parity Check Codes.”  Sc.D. 
Thesis.  Department of Electrical Engineering.  MIT. 
Cambridge, Massachusetts, 1960. 

[7] Luby, M., Mitzenmacher, M., Shokrollahi, M.A., 
Spielman, D., Stemann, V.  “Practical loss-resilient 
codes.”  In Proceedings of the Twenty-Ninth Annual ACM 
Symposium on Theory of Computing, 1997, 150-159. 

[8] Luby, M. Lost Packet Recovery Method for Packet 
Transmission Protocols.  WIPO Patent WO 00/18017, 30 
March 2000. 

[9] Byers, J., Luby, M., Mitzenmacher, M. “Accessing 
Multiple Sites in Parallel: Using Tornado Codes to Speed 
Up Downloads.”  In Proceedings of IEEE INFOCOM 
1999, 275-283. 

[10] Reidel, E., Faloutsos, C., Gibson, G.A., Nagle, D. “Active 
Disks for Large-Scale Data Processing.” IEEE Computer, 
June 2001, 68-74. 

[11] Albert, R., Jeong, H., Barabási, A.-L. “Error and attack 
tolerance of complex networks.” Nature  406, 2000, 378 - 
382. 

[12] Weatherspoon, H., Kubiatowicz, J.  “Erasure Coding vs. 
Replication: A Quantitative Comparison.”  In Proceedings 
of the First International Workshop on Peer-to-Peer 
Systems (IPTPS 2002), March 2002, 328-338. 

 


