
Software-based Erasure Codes for Scalable Distributed Storage

Joseph A. Cooley, Jeremy L. Mineweaser, Leslie D. Servi, Eushiuan T. Tsung
MIT Lincoln Laboratory

cooley, jlm, servi, eushiuan @ll.mit.edu

Abstract*

This paper presents a new class of erasure codes,
Lincoln Erasure codes (LEC), applicable to large-scale
distributed storage that includes thousands of disks
attached to multiple networks. A high-performance
software implementation that demonstrates the capability
to meet these anticipated requirements is described. A
framework for evaluation of candidate codes was
developed to support in-depth analysis. When compared
with erasure codes based on the work of Reed-Solomon
and Luby, tests indicate LEC has a higher throughput for
encoding and decoding and lower probability of failure
across a range of test conditions. Strategies are described
for integration with storage-related hardware and
software.

1. Introduction

In many ways, information is a critical element of
operations for the consumer, corporate enterprise,
academia, government, and military. Consumers are
amassing large collections of digitized multimedia content
and accessing it from multiple localities over the Internet.
Throughout the corporate enterprise, knowledge
management is improving the utilization of intellectual
capital by applying structure to aggregated business
information. Increasingly, industries derive value from the
creation, processing, and management of information.
Information plays a central role in the execution of
modern warfare as the Information Revolution seen in
society reaches military affairs. Current and emerging
capabilities in intelligence, surveillance, and
reconnaissance will produce large quantities of
information that must be rapidly and reliably available.
For a diverse class of information consumers, both the

This work is sponsored by the United States Air Force under Air

Force Contract #F19628-00-C-0002. Opinions, interpretations,
recommendations and conclusions are those of the authors and are not
necessarily endorsed by the United States Government.

volume and the value of information emerge as significant
factors that represent major challenges for traditional
storage management methods. Contributing factors
include demands for wide accessibility, a dynamic
marketplace, and the need for a reliable data storage. As
needs vary widely, no single product solution satisfies all
users. With a scalable architecture for distributed storage
systems and a flexible strategy for cost-effective
acquisition, operations, administration, and maintenance,
valuable information resources can be protected and hence
made more reliable without adversely impacting
accessibility and performance.

The rest of Section 1 describes how the distributed
storage concept emerges from analysis of critical
technology trends and the strategies for information
protection using erasure code techniques. Section 2
describes related work in erasure coding for distributed
storage and a new erasure code, the Lincoln Erasure Code
(LEC). The design, implementation, and performance of
this code and its integration in the distributed storage
system are presented in Section 3. Conclusions are listed
in Section 4.

1.1. Critical technology trends

To sustain effectiveness, an architecture must be
consistent with the long-term trends in technology
development. Due to the exponential growth of
performance per dollar spent in silicon transistor density,
optical fiber bandwidth, and stored bits per square inch,
execution of this strategy has proven difficult. However,
the technologies are now positioned to enable a scalable
distributed storage architecture that can be tailored to meet
user needs.

Silicon transistor density doubling, known as Moore’s
Law, has persisted for decades. The doubling period of
18 months is expected to continue at this rate for another
15 years. A similar trend has emerged that tracks the
increase in storage density for the magnetic media in
hard disk drives. In this case, the doubling period is 12
months, surpassing that of Moore’s Law. In the last
decade, the commercial growth of optical fiber

networking technology has repeatedly increased the
information carrying capacity of a single fiber at an
exponential rate which exceeds those for both transistor
and storage density. Recently the fiber capacity doubling
period has been measured as nine months. In the future,
system architectures established before the emergence of
low-cost, high-speed optical networks may struggle to
keep pace with new architectures. As the leading critical
technology trend, optical networking represents the
foundation of a scalable distributed storage architecture
[1].

1.2. Distributed storage systems

The relative performance of storage, memory,
computing, and communication has a profound impact on
storage architecture design. In traditional network storage
models, individual users equipped with commodity
network interfaces cannot fully utilize the system
backplane (communications link) with storage
transactions. In many current storage systems, only a
small number of disk drives are involved in storing the
contents of an individual computer file. Most personal
computers include a single high capacity hard disk drive to
which read and write requests are sent. For higher
performance and reliability, business systems often
employ Redundant Array of Inexpensive Disks (RAID)
controllers to stripe data across multiple disks and
generate parity check information. [2]. For improved
reliability, these controllers as well as software RAID
implementations can mirror users’ data to a second
identical array and/or generate parity-check information.
The distributed storage system concept emerges from
analysis of the critical technology trends seen in Figure 1.
Extrapolating the trends in optical networking and data
storage to 2010 suggests that thousands of hard disks
running in parallel will be required to keep pace with
COTS communication links operating at many terabits per
second.

1.3. Strategies for information protection

In addition to addressing these performance challenges,
a scalable storage architecture must provide an effective
means to protect the valuable information that is entrusted
to storage systems. In the simple mirroring and parity
schemes described above, administrators of an operational
system must treat any single failure as an emergency or
risk exposing users to service disruptions and information
loss. While geographically distributed data centers can
improve overall system availability, the corresponding

need for emergency response personnel located at each
data center increases the cost of system operation.

Figure 1. Critical technology trends.

Storage
Node Disk &

CPU

User

User

User

NetworkNetwork

User

Storage
Node Disk &

CPU

Storage
Node Disk &

CPU

Storage
Node Disk &

CPU

Storage
Node Disk &

CPU

. . .

Figure 2. Distributed storage system
architecture.

In a distributed storage system, an end user’s computer

interacts directly and concurrently with a potentially large
number of networked storage nodes as shown in Figure 2.
These nodes include CPU, main memory cache, and
persistent storage on hard disk drives. The nodes receive
and respond to user requests across the network. On the
end user’s computer, information is cached in main
memory. User files are stored to the system as a set of
fragments, which may include parity information for
erasure correction. The number of fragments can be
determined by requirements for performance and/or
reliability.

Figure 3. Encoding data for distributed storage.

2. Erasure coding for distributed storage

Erasure recovery is necessary when the failure of a
communications channel or storage device prevents the
direct retrieval of a previously stored data file. Although
such failures are often caused by inherent properties of the
device or channel, they may also be the result of malicious
or careless actions. In general, solutions to this
longstanding problem involve the construction of a larger
file with explicit or implicit redundancy of information.
After an erasure (i.e. the loss of a bit), it is this
redundancy which enables successful data recovery. One
common, simple approach is to create one or more copies
of the original data. This results in a level of added
protection far below that of alternative methods employing
the same amount of redundancy.

Figure 3 shows an example of encoding data for
distributed storage. A file is broken up into a number of
fragments (step 2) and encoded (step 3) as described in the
next section. A graph of parity and data nodes is created.
Each parity node is computed by performing the exclusive
or of each data node to which it is connected (steps 4 and
5). The data and parity fragments are then

distributed to different storage nodes over the network
(steps 6 through 9).

2.1. Related work

Erasure codes have been applied to distributed storage
in the OceanStore project at the University of California
Berkeley [3]. Both Reed-Solomon and Tornado codes
(described below) were implemented in software to
improve the availability of archived data. With both of
these codes, throughput is limited by the high
computational costs of encoding and decoding. Reed-
Solomon codes are further limited by scaling difficulties
for use with more than 255 storage elements. As
technology trends begin to require thousands of fragments
to saturate high-speed network links, alternative erasure
codes may prove more effective.

The Koh-i-Noor project at Microsoft seeks to construct
high-capacity storage systems with high reliability at low
cost [4]. The motivation is to reduce total cost of
ownership for enterprise-class storage systems such as
Hotmail. Through the use of erasure codes, system
maintenance requirements can be significantly reduced

Network

5E 12 0B 93 A3 71 71 0C 15
C0 8F 92 4C 3C B9 B8 98 96
24 48 65 86 67 1D 0C AA 72
59 13 0E 9E 96 5B 94 0C 19
51 B7 67 09 0F CB 68 9E 88
0F 16 22 E3 72 19 0E 6F 2C
87 0E 0C 58 54 C8 B6 08 1A
97 7C 8B 13 14 70 67 9D 8B

b

d

f

h

a

c

e

g

12

93

71

C0

0B

A3

0C

8F

5E

71

15

92

DATA PARITY

DATA

PAR
ITY

DATA

PAR
ITY

IP Header

DSS Header

Storage
Node

Computing Parity:
 = � �

Disk

1 2 3

4

567

8

9

a 5E 93 15

while preserving the integrity of stored information for
long periods of time.

The Reed-Solomon code, a special case of the Bose-
Chaudhuri code, supports both erasure correction and
error correction. It offers optimal efficiency such that any
available parity element can be substituted for any erased
data element in the block. Parity-check information is
generated through operations on a Galois field [5]. The
computational cost of this process is related to the size of
the field, where typical Reed-Solomon implementations
operate in a field of size 28, or one with 255 elements. For
this code, a linear increase in the depth of the field results
in an exponential increase in computational cost, making
it impractical for use in storage systems requiring
thousands of fragments. Two advantages of Reed-
Solomon are storage efficiency and deterministic behavior.

One approach to large block coding is to segment the
data into a number of “mini-blocks” and separately apply
Reed-Solomon coding to each mini-block. While high
throughput can be achieved for encoding and decoding,
this is less space-efficient than other alternatives.

In 1960, R. Gallager’s Sc.D. thesis [6] proposed a new
approach to the erasure code problem using a bipartite
graph, illustrated in Figure 3, step 4. This type of graph
contains two sets of nodes with edges between nodes of
different sets, but no edges between nodes within the same
set. The key idea is to create a graph with a set of nodes
corresponding to the data bits and a set of nodes
corresponding to the parity bits and connect some of the
data nodes to the parity nodes. The encoding process
consists of setting a parity node equal to the exclusive or
(XOR) of the data nodes to which it is connected.
Gallager’s approach is based on a regular graph in which
all nodes of each type have the same number of edges. In
this code, the number of edges is proportional to the
number of nodes. Since the resulting edge count is small
compared to the number of edges in a fully connected
bipartite graph, these are called low density parity check
(LDPC) codes.

In 1997, Luby et. al [7] proved that LDPC codes have
improved properties if the number of edges connected to
each node varies from node to node. For such irregular
codes, the challenge is to characterize the degree of
irregularity that yields the best coding performance. This
is accomplished in two stages. First, a probability
distribution is specified for the degree of a parity node. A
distribution may also be specified for the degree of a data
node. Then a procedure is developed for realizing an
effective code based on the distribution. In contrast to
Reed-Solomon codes, the Luby Transform code [8] and
related codes [7] (including Tornado codes [9]) provide
probabilistic erasure correction through an iterative
decoding algorithm. This class of codes provides a
significant reduction in computational cost for encoding

and decoding, but it sacrifices some storage efficiency in
the process.

The Luby Transform code specifies a probability
distribution for the number of data nodes connected to
each parity node. As edges between nodes are defined, the
code specifies that all eligible combinations of data nodes
may be chosen with equal probability.

A file can be multicast to thousands of users using the
Luby Transform code by sending a small amount of data
and a stream of parity information. The value of each
transmitted parity node is computed as the XOR of the
data nodes to which it is connected. The Luby code is
well suited to this application because it is not necessary
to select (and generate) a specific (and limited) quantity of
parity check information prior to transmission. Rather, the
transmission simply continues until the minimum required
quantity of information has been exchanged. This property
is advantageous for multicast applications; in persistent
data storage applications, however, storing only this
minimal quantity of data and parity information would
adversely impact system reliability.

2.2. Lincoln erasure code (LEC)

In contrast to the Luby code which consists of
predominately parity information, LEC saves all of the
data. However, like the Luby code, LEC’s parity
information is generated using an irregular bipartite graph.
As such, the number of parity nodes of degree j,

)*,,,,,(maxijAkpsN j , in LEC must be specified. In

LEC, for j = j*+2, j*+3, …, imax,

�
�
�

�
�
�
�

�

�

��
�

��
	

*
1

1*
*),,,,(

jj
LkALk

jj
LksjAkpsN j

where s is a scaling factor, p is the fraction of corruption
being protected against, k is the number of data nodes,
imax is the maximum possible degree, j* is two less than
the minimum degree, and A is a variable.

For a given target reliability, desired loss protection, L,
and number of data characters, k, a preferred set of
parameters must be empirically found for s, A, j*, and
imax. In addition, the above formula must be perturbed to
account to its possible non-integer values. For each set of
parameters a specific graph must be generated by
randomly selecting which data nodes are connected to
which parity nodes. To encode using LEC, all data is used
along with parity information computed from the XOR of
the data nodes connected to it (as is performed for the
Gallager and Luby code). To decode, erasures are
corrected with a decoder that is modeled after that of
Luby’s code.

3. Evaluation process and performance
results

A software evaluation tool was developed to study the
reliability and throughput of large block LDPC codes.
The software performs encoding, decoding, generation of
random codes (based on parameters that determine the
degree distribution of parity-check elements), and
reporting of performance metrics for reliability and
throughput. The core function of the tool is the detailed
examination of the decoding process (erasure correction)
under a variety of loss conditions. In this mode, parity and
data exist abstractly but do not have actual values.
Instead, the tool simply tracks the erasure status of each
element during the decoding process.

For LEC, one can select a desirable set of parameters
given the block size and the block failure probability that
is required when a given fraction of the block is erased.
Since the number of parameters is small, desirable codes
can be found by trial and error or using a search
algorithm. A software implementation of the search
algorithm partially automates the parameter selection
process. Given the block size (number of data elements
and parity elements) and the fraction of the block erased, a
parameter search is performed to identify the parameters
that achieve the highest reliability.

In the next step, specific codes are generated and tested
using the selected parameters. The graph that exhibits the
highest reliability is saved until a better code is found.
Since the reliability of random codes generated with the
same parameters varies by as much as a factor of three,
this process is repeated many times (i.e. 100). Encoding
and decoding throughput is measured for graph codes that
demonstrate high reliability.

3.1. Design and implementation

Generated graphs are formatted in a parity-centric
tabular view. Each parity element identifier is followed by
a list of the data elements to which it is connected. For
throughput analysis, a data-centric view of the graph is
also stored. In this view, each data element is followed by
a list of the parity elements to which it is connected. In
both, the node listings are sorted to improve locality
during encoding and decoding.

In addition to reliability, encoding/decoding throughput
for actual files was also a matter of interest. Several
coding methods were compared for a variety of file sizes.
Each test file was segmented into a series of fixed-size
blocks for use with the codec (coding/decoding). During
the decoding process, throughput can be increased with an
optional journaling technique. During block decoding,
correction actions are recorded in a journal and indexed

according to erasure pattern. If a subsequent block
contains the same erasure pattern (or a subset) as a
previous block, then journal results can be used.
Otherwise, an iterative decoding process is performed.

3.2. Performance results

In this section, LEC performance results will be
presented for several target reliabilities, percent losses,
and block sizes. First, the case of targeting 10-6 reliability
for 20 percent loss and 5040 data elements will be
presented in detail.

Using the search algorithm, it was determined that
1760 parity elements was needed to achieve 10-6 reliability
at 20 percent loss for 5040 data elements. The set of
parameters selected was A=1, imax=2229, j*=10, s=1.43.
These parameter values were inserted in the distribution
formula to generate the parity node degree distribution. A
graph code consisting of 5040 data 8-byte elements and
1760 parity 8-byte elements was then constructed. After
randomly "erasing" 20 percent of the data and parity
elements, an attempt was made to decode the unknown
data elements. Table 1 compares the throughput of various
erasure codes for encoding and decoding a 13.1 MByte
file. Tests were conducted on a PC with a 1.7 GHz Intel
Xeon CPU. The table shows that LEC encodes and
decodes faster than both the Luby and Reed-Solomon
methods.

 Table 1. Throughput of erasure codes.

Erasure
Coding
Method

Encoding
(Mbps)

Decoding (20% Loss)
(Mbps)

LEC 240 760
Luby Code 180 220

Reed-Solomon 0.09 0.20

18 19 20 21 22 23

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 Luby Code
 LEC

Bl
oc

k
Fa

ilu
re

 P
ro

ba
bi

lit
y

Percentage of Blocks Lost

 Figure 4. Reliability of erasure codes.

Table 2. 5040 data, targeting 10-6 reliability.

Percent
Loss

Parity
Elements, p

LEC Reliability Luby
Reliability

Minimum # Parity
Elements Needed, p'

Overhead,
p / p'

1 130 6.5 x 10-7 1.0 51 2.55
10 860 3.3 x 10-7 6.1 x 10-1 560 1.54
20 1760 8.3 x 10-7 6.1 x 10-3 1260 1.40
50 6350 1.7 x 10-6 3.5 x 10-6 5040 1.26
75 20000 2.2 x 10-6 2.8 x 10-7 15120 1.42

Table 3. 5040 data, targeting 10-4 reliability.

Percent
Loss

Parity
Elements, p

LEC Reliability Luby Reliability Minimum # Parity
Elements Needed, p'

Overhead,
p / p'

1 110 1.4 x 10-4 1.0 51 2.16
10 810 2.3 x 10-5 1.0 560 1.45
20 1700 3.5 x 10-5 2.9 x 10-2 1260 1.35
50 6230 9.9 x 10-5 1.7 x 10-5 5040 1.24
75 19250 1.1 x 10-4 7.5 x 10-7 15120 1.27

Table 4. 2520 data, targeting 10-6 reliability.

Percent
Loss

Parity
Elements, p

LEC Reliability Luby
Reliability

Minimum # Parity
Elements Needed, p'

Overhead,
p / p'

1 80 1.9 x 10-6 1.0 25 3.20
10 470 2.3 x 10-6 9.0 x 10-1 280 1.68
20 950 1.0 x 10-6 3.2 x 10-2 630 1.51
50 3360 7.3 x 10-7 6.8 x 10-6 2520 1.33
75 10400 1.8 x 10-6 1.1 x 10-6 7560 1.37

Table 5. 2520 data, targeting 10-4 reliability.

Percent
Loss

Parity
Elements, p

LEC Reliability Luby Reliability Minimum # Parity
Elements Needed, p'

Overhead,
p / p'

1 65 1.4 x 10-4 1.0 25 2.60
10 435 1.4 x 10-4 1.0 280 1.55
20 900 5.8 x 10-5 2.9 x 10-1 630 1.43
50 3240 3.6 x 10-5 2.6 x 10-4 2520 1.29
75 10100 2.0 x 10-4 1.8 x 10-6 7560 1.34

Figure 4 compares the reliability of LEC generated

with the above parameters and a Luby code of the same
length. At the 20 percent loss point (for which LEC was
optimized), the block failure probability of LEC is 8 x 10-7
as compared to 6 x 10-3 for the Luby code. Each point on
the plot was experimentally generated using the software
evaluation tool. The uncertainty in the probabilities is half
an order of magnitude. Since the number of
encoding/decoding runs necessary to produce statistically
meaningful reliability results increases as the reliability
becomes better, it is not computationally feasible to
experimentally generate block failure probabilities lower
than 10-7. Probabilities lower than 10-7 can be extrapolated

from the plot. Note that LEC outperforms the Luby code
across the entire range of percent losses tested.

An equivalent Reed-Solomon code would detect all
erasures up to the number of parity elements for the range
of losses in Figure 4. However, as seen in Table 1, the
encoding and decoding speed is so slow that it is not a
realistically feasible code to use.

Tables 2 through 5 present results for varying target
reliabilities, percent losses, and block sizes. For practical
purposes, a distributed storage system would most likely
be concerned with lower percent losses (i.e. less than 20
percent), however we present a wider range of results for
completeness.

Table 2 shows the number of parity elements needed
for different percent losses when targeting 10-6 reliability
for 5040 data elements. For each percent loss, the
software evaluation tool was used to determine the number
of parity elements, p , and the set of parameters that
yields a desirable graph code. This graph code was then
used to generate the LEC reliability at that percent loss.
Note that the LEC reliability in Table 2 should match the
target reliability of 10-6. For example, to achieve 10-6
reliability when losing 10 percent of the blocks with 5040
data elements requires a graph code consisting of 860
parity elements. Using fewer than 860 parity elements
will degrade reliability.

LEC and Luby codes were also compared for the
different percent losses. Table 2 shows that LEC
outperforms the Luby code for losses of 1, 10, and 20
percent. Performance of the two codes is similar for 50
percent loss. However, for low percent losses, it must be
noted that LEC and Luby codes were designed for slightly
different applications as stated in Section 2.1.

The fifth column of Table 2 specifies the minimum
number of parity elements required for successful
decoding. The process will be unsuccessful if fewer than
this number of parity elements are available. This limit is
computed by solving the following equation

(p' - d) (1 - L) >= d

for p' , the minimum number of parity elements needed,

where d is the number of data elements and L is the
percent loss. The last column in Table 2 shows the
overhead required to achieve the target reliability.
Overhead is defined as the ratio of the number of parity
elements used for correction, p , to the number of data
elements that are erased (which is equivalent to p'). This
overhead steadily decreases as the percent loss increases
from 1 to 50 percent and slightly increases for 75 percent
loss.

Table 3 shows the number of parity elements needed
for different percent losses when targeting 10-4 reliability
for 5040 data elements.

Tables 4 and 5 show the number of parity elements
required for different percent losses with 2520 data
elements when targeting 10-6 and 10-4 reliability. With a 50
percent decrease in the number of data elements, the
number of parity elements will decrease by approximately
half.

Tables 2 through 5 demonstrate the tunability of LEC.
By specifying a data percent loss that the distributed
storage system would like to protect against and the
reliability it hopes to achieve, the search algorithm can
find the number of parity elements necessary to achieve
the requirements. Likewise, if cost is a factor in designing
the storage system, the user can specify the number of

parity elements it wants to use at a certain percent loss.
The search algorithm can then determine the level of
reliability it can achieve with this number of parity
elements.

The next section briefly introduces a system
architecture that incorporates this coding technique to
meet users’ reliability requirements while providing high
performance storage services.

3.3. System architecture and integration

Erasure coding offers important capabilities for storage
system architectures. As device-level storage density and
read/write parallelism increase, excellent scalability can
be maintained with a hardware implementation of the
Lincoln Erasure LDPC code. Already, the high
throughput of the software-based codec enables system
development with inexpensive COTS components. This
provides fault tolerance, higher reliability, and space-
efficiency in comparison to pure replication and mirrored
hardware. A software-based code can also protect local
resources such as a RAID or a storage area network
(SAN).

The storage node is the fundamental building block of
the architecture. Each node contains multiple hard disk
drives; the number of drives is determined by overall
system capacity requirements. RAID 0 disk arrays may
be created at each node to reduce disk seek latency and
increase read/write throughput. Processing resources at
each node can be applied to coding tasks or other data
processing as directed by users. For certain classes of
parallel applications, including image processing and data
mining, significant speedup can be achieved by
performing data-intensive computations “near” the storage
location and sending only results to users [10].

The network interface card in each storage node
provides connectivity to the user community and the rest
of the storage system. High read/write throughput is
achieved by aggregating many storage nodes on an optical
network. For example, although data rates may reach 40-
100 Gbps within the core of the network, individual
storage nodes can be attached with low-cost Gigabit
Ethernet adapters. With a sufficient number of storage
nodes, the full capacity of the core network can be
exploited entirely by a single user or shared among
multiple users.

The most robust network topology is one in which each
node is directly connected to every other node. Such
networks are said to have an exponential topology because
the total number of connections increases exponentially
with a linear increase in the number of nodes. Any single
link failure causes minimal disruption since traffic can be
rerouted through an intermediate node. For large

networks such as the Internet, an exponential topology is
not feasible. The scale-free topology is a cost effective
alternative in which small networks are aggregated into
larger networks. This structure is repeated at multiple
levels to form a network hierarchy. In this case, a single
link failure at a high-level aggregation point can separate
the nodes into disjoint sub-networks and prevent
communication among users [11].

In conjunction with a distributed storage architecture,
erasure coding techniques insulate users from network
outages and node failures. Although such problems are
promptly detected and reported to administrators, events
do not escalate into emergencies requiring immediate
response. Instead, user needs will be applied to determine
an appropriate level of protection for each item stored in
the system. A simple, high-performance software
implementation of the erasure coding technique enables
any user to select appropriate parameters and interact with
the storage system.

In many cases, this storage architecture can reduce or
eliminate the need for an offline backup system. Upon
detection of node or network failures, a stored file can be
retrieved and decoded using the erasure code. Then the
file can be encoded and redistributed to the accessible
nodes. In contrast to systems based on serial backup
media such as magnetic tapes, this system provides direct
random access to all stored files with minimal contention
among multiple users. Overall, the mitigation of offline
backup requirements results in cost savings for
infrastructure and personnel and improves user
satisfaction with the storage service.

In addition, system integration of the erasure code
yields economic benefits from the device to the inter-
network level. In particular, graceful degradation of the
storage service under failures and attacks greatly relaxes
system maintenance schedules. Failed hardware can be
restored or replaced along with planned upgrades
according to a periodic schedule. At the same time, the
erasure code significantly reduces storage capacity
requirements relative to pure replication [12]. These
factors translate directly into monetary savings for system
operators and users.

4. Conclusions

Extrapolating critical technology trends in networking,
storage, and processing into the future indicates that the
most scalable storage systems will be established on a
firm foundation of networking. The disparity between
optical fiber carrying capacity and hard disk drive
throughput suggests that thousands of disk drives may be
needed to fully utilize future network links. Existing
RAID approaches solely based on mirroring and parity-

check schemes do not provide cost-effective solutions to
these challenges.

Compared to Reed-Solomon, Tornado, and Luby codes,
LEC provides higher performance both in terms of
throughput and reliability and greater scalability in a
flexible software implementation except for very high
percentage of loss. It is also tunable to system
requirements for the level of reliability or cost of the
storage system. It enables cost-effective implementations
of large, highly distributed, reliable storage systems.

References

[1] Stix, G. “The Triumph of the Light.” Scientific American,
January 2001, 80-86.

[2] Patterson, D., Gibson, G., and Katz, R. “A Case for
Redundant Arrays of Inexpensive Disks (RAID).” In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, June 1988, 109-116.

[3] Kubiatowicz, J., et. al. “OceanStore: An Architecture for
Global-Scale Persistent Storage.” In Proceedings of the
Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2000), November 2000, 190-201.

[4] Isard, M., Manasse, M., Thekkath, C. Koh-i-Noor.
[November 2002]
http://research.microsoft.com/research/sv/kohinoor/

[5] Peterson, W. W. Error Correcting Codes. The MIT Press,
Wiley and Sons, 1961.

[6] Gallager, R. G. “Low Density Parity Check Codes.” Sc.D.
Thesis. Department of Electrical Engineering. MIT.
Cambridge, Massachusetts, 1960.

[7] Luby, M., Mitzenmacher, M., Shokrollahi, M.A.,
Spielman, D., Stemann, V. “Practical loss-resilient
codes.” In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, 1997, 150-159.

[8] Luby, M. Lost Packet Recovery Method for Packet
Transmission Protocols. WIPO Patent WO 00/18017, 30
March 2000.

[9] Byers, J., Luby, M., Mitzenmacher, M. “Accessing
Multiple Sites in Parallel: Using Tornado Codes to Speed
Up Downloads.” In Proceedings of IEEE INFOCOM
1999, 275-283.

[10] Reidel, E., Faloutsos, C., Gibson, G.A., Nagle, D. “Active
Disks for Large-Scale Data Processing.” IEEE Computer,
June 2001, 68-74.

[11] Albert, R., Jeong, H., Barabási, A.-L. “Error and attack
tolerance of complex networks.” Nature 406, 2000, 378 -
382.

[12] Weatherspoon, H., Kubiatowicz, J. “Erasure Coding vs.
Replication: A Quantitative Comparison.” In Proceedings
of the First International Workshop on Peer-to-Peer
Systems (IPTPS 2002), March 2002, 328-338.

