Design and Implementation of a Storage Repository Using Commonality Factoring

Dr. Jim Hamilton
Avamar Technologies
Jjhamilton@avamar.com

Abstract

In this paper, we discuss the design of a data
normalization system that we term commonality
factoring. A real-world implementation of a storage
system based upon data normalization requires design of
the data normalization itself, of the storage repository for
the data, and of the protocols to be used between
applications performing data normalization and the server
software of the repository. Each of these areas is discussed
and potential applications are presented. Building on
research begun in 1999, Avamar Technologies has
implemented an initial application of this technology to
provide a nearline, disk-based system for backup of
primary storage.

1. Introduction

The twin problems of rapidly increasing demands for
storage capacity and the management of the resultant
storage repositories have been extensively discussed. In
addition to these well-known issues, a sharp growth
profile has been noted in the demand for on-line or near-
line storage of static digital content. This demand is
fueled by the conversion of vast amounts of data from an
analog to a digital format, including document archives
and multimedia, as well as by huge quantities of static
digital data from geophysical sources, medical and genome
research, sensor data, etc.

Despite the dramatic improvements in primary storage
technology, bit-for-bit storage of all the desired digital data
onto primary storage is not cost effective. Even if
economically feasible, such an approach would stretch our
current abilities to manage such vast data stores.
Accordingly, hierarchical techniques are used to
supplement primary storage, most commonly the archive
of data and backups to relatively less expensive media
such as tape. Such solutions, however, are themselves
expensive and error-prone, and in addition add to the
complexity of storage management. There is a major
loss-of-opportunity cost associated with these solutions,
since they limit the user access to data. For example, if
larger amounts of oil exploration or earth sensor data were

Eric W. Olsen
Avamar Technologies
ewo@avamar.com

immediately available to researchers, data analysis could
be significantly more complete.

There are at least four primary strategies for increasing
the amount of data online. One can simply ride the crest
of ever more dense storage, with the reducing cost/bit, and
attempt to meet the demand with very large primary
storage. To be realistic, such an approach must consider
cost and storage management issues. In addition, backup
of the primary store becomes a major consideration. The
cost of the backup solution may rival the cost of the
primary store once administrative costs are considered.
For many enterprises, the network bandwidth needed for
backup of large primary store repositories has led to the
need for separate backup networks.

A second approach to increasing online content is to
store the data in compressed form, maximizing the
information density of the primary store. Compression is
a valuable tool in the arsenal of IT systems designers and
application developers. While compression involves a
trade between computation/latency and storage usage,
relatively lightweight “real-time” compression algorithms
have had great success for specific data types. However,
there are factors working against compression as a
universal panacea for storage. Compression algorithms
are typically closely associated with data type. While
there are exceptions, compression is typically dealt with at
the application level, rather than being offered
transparently as a storage service. High compression
ratios are achieved at the expense of significant
computation (and corresponding latency). Many
compression algorithms, in order to have reasonable
performance, use in-memory techniques that do not work
well for very large datasets. Lossy compression
algorithms are not always acceptable. Finally, the data
reduction achievable from compression is typically limited
to an order of magnitude or so, even for the data to which
it is applicable.

A third approach to increasing online content is to
create a hierarchical storage architecture where the
successively lower cost/higher latency storage tiers are
virtualized, presenting a seamless global data repository to
the user. To date, hierarchical storage has not lived up to
its promise, primarily because of complexity,

management, and usability issues. However, a number of
new approaches are coming to market.

A fourth approach for online or nearline storage is
some form of data normalization. By data normalization
we mean finding subsets of the data that are replicated
(across time or within and across datasets), and reducing or
eliminated the redundancy. Approaches to data
normalization and applications of the technique can be
quite diverse. In addition to database normalization, we
are all familiar with systems that store differences across
time, such as change management systems and the
familiar “full vs. incremental” approach to tape backup.
Vendors now offer solutions that store single instances of
files. Filesystem snapshot technologies and backup
systems that factor out redundant fixed data blocks are
other examples of data normalization.

Unlike compression algorithms, data normalization
techniques need not be data type specific. While the level
of data reduction achievable is obviously data dependent,
the upper bound for this value is not limited
mathematically, as is the case with compression
techniques. If every employee of a large corporation has a
copy of the employee stock plan, storing pointers instead
of replicated data could have an effective data reduction
ration of 100,000 to 1.

In achieving benefit from data normalization, many
issues must be addressed. Some sort of indexing system
or pointer scheme is required. The indexing system itself
is subject to concerns regarding scalability, performance,
availability, and fault tolerance. The algorithms for
identifying common data, factoring commonality, and re-
integration of data must exhibit acceptable performance
and reliability. With the elimination of redundancy, fault
tolerance for the normalized data representation becomes
particularly important. If the application involves storage
over time, it may be necessary to provide some form of
deletion and storage reclamation. Since data elements are
shared by potentially unrelated users or applications,
reliable and correct deletion is becomes a significant
design consideration.

2. Elements of Commonality Factoring
Design

Design of a data normalization system may be
partitioned into at least two subject areas. First, the basic
units of data that are candidates for redundancy
comparisons must be defined. Once the approach to
redundancy is defined, companion mechanisms for
indexing and storage are needed. This section discusses
the first of these topics.

We define the term “Commonality Factoring System”
(CFS) to mean a system that defines and computes atomic
units of data, providing a mechanism for data

normalization. The atomic units of data themselves will
be simply termed atomics.

Design of a commonality factoring system involves a
number of trade offs:

e Algorithms can be tuned for specific data type(s),

taking advantage of patterns unique to that data.
The advantages gained must be traded against the
increased complexity of multiple algorithms and
the loss of potential commonality across data
types

* The level of data abstraction to which

commonality factoring is to be applied. For
example, file vs. data (block or bit) layer.
Whether to design commonality factoring at a
single abstraction level, or at multiple layers

* For data layer algorithms, trades must be made for

fixed vs. variable size atomics. Fixed size
atomics simplify atomic identification and
indexing/storage, but often with significantly
reduced commonality when compared to variable
size approaches

e Atomic sizes and (in the case of variable size

atomics) atomic size distribution have their own
considerations. Smaller atomics increase
commonality (a one-bit atomic has wonderful
commonality...), but at added processing expense
and increased demand upon the indexing and
storage system. For variable size atomics, the
algorithm needs to produce a well-behaved
distribution of atomic sizes

e Atomics must have an associated identifier. For

large repositories, this is a non-trivial issue.
Identifiers must be small compared the data itself,
yet unique to a very high probability (on the order
of 1-10%*-20 or better for most applications). At
the same time, the computational burden and
latency in calculating identifiers and in comparing
identifiers must be acceptable

Avamar has designed and implemented a CFS
supporting both fixed and variable sized atomics.
Typically, fixed size atomics are used for applications such
as databases where the application is implemented around
a concept of fixed blocksize. For general filesystems or
data sets, a variable atomic size algorithm is employed.

To partition a data stream into variable sized atomics,
we have designed and implemented an algorithm that, for a
given input stream, consistently factors that input stream
into the same sequence of atomics (see Figure 1. below).
When the algorithm is presented with a slightly different
input stream (as when a file is modified), it will identify
the same atomics up to a point of difference and then
resynchronize very quickly following the difference. This
client-side algorithm is central to the overall
implementation of our CFS.

New 1.0

1.1

1.2

2.1

Edited 2.2

2.3

3.1

Figure 1. Partitioning a Data Stream

A CFS needs identifiers for its atomics. Ultimately,
much of the activity of a CFS will be in comparison of
atomics. Except for specialized applications where
custom hardware may be used, it is generally infeasible to
perform direct bit comparisons of atomics. Identifiers also
enable queries and comparisons to be done by reference,
with large savings in computation, communication and
storage. It is no understatement to say that the properties
and utility of a CFS are determined as much by the
approach to identifiers as by the selection of atomics.

The CFS design is not complete until mechanisms are
defined for creation of composite structures and storage of
metadata. These topics are coupled with both the (client-
side) CFS implementation and the (server-side) storage
repository for atomics. Data structures are needed to
provide the “recipe” for the reconstruction of data from

atomics, and this information must be stored with the
data. In the case of a file-level CFS, data structures must

P ki
Gomposile GComposite

Hashes

Composite

Atamig Atomig

CFS Object Tree Structure

Figure 2.

accommodate reconstruction of files from atomics, storage
of directory structures, and reconstruction of filesystems.
In a similar manner to the familiar block-level inode
structures used in filesystems, Avamar has designed the
data structures for its CFS to accommodate both atomic
and composite data in a hierarchical structure we term the
“hash file system (HFS)”. This tree-like structure (see
Figure 2. above) allows the atomic representation of an
entire filesystem to be “rolled up” into a single identifier,
termed the root hash. In a recursive fashion, interpretation
of the root hash permits reconstruction of arbitrarily large
filesystems. In our initial application of CFS to
filesystem backup, the 160-bit root hash for a backed up
filesystem image may represent a full backup image of a
multi-terabyte filesystem.

Similarly, metadata must be stored and reconstructed.
For filesystem applications, metadata is filesystem
dependent and typically consists of ownerships,
permissions, access controls, and other information such
as encryption or compression.

To complement its CFS design, Avamar has developed
a unique storage architecture. The first application of the
resultant system provides a solution for disk-based backup
and for nearline storage of static content data.

3. Design of a Storage Architecture
Utilizing a CFS

Avamar’s CFS design incorporates the needed elements
for modern filesystems, including composite structures for
storage of large files and hierarchical directory structures,
and mechanisms for storage and reconstruction of

metadata. A storage repository for the CFS data was
needed. Avamar’s design goals for the storage repository
included the following:
* Asingle repository should be scalable in size to at
least 100 exabytes
* The repository should be distributed
* It should be possible to start with a modest sized
repository and to scale gracefully to very large
data stores without issues of data migration or
data management
* The repository should present a single system
image and be managed as such
* The repository should have reliability,
availability, maintainability, and fault tolerance
features appropriate for nearline store of mission
critical data
* Read, write, and query performance should meet or
exceed nearline storage application needs
* Performance should be independent of repository
size
* To be cost effective, the repository overhead
associated with data storage must be low, without
impacting performance
To meet these stringent goals, Avamar has designed and
implemented a distributed storage repository (see Figure 3.
below). The repository is implemented as a server with a
scalable number of computational nodes: there are no
practical limits to the number of nodes that

Axion Administrator

il
= Any Web Browser = Command Line Interface (CLI)
I:J «Java Console GUI + SHMP Management Conscle
—
|

Backup Client

[Apawe\f\feb Senﬂerul Ianagement }

(CGI, Javascript) n Console Servces Client Agent

E3

Management Console Services Node &

|— - | AvTar {Client)
DPN Module(s) v [E:m: Pugns ;

Axian Senaer
LDAP Server

LCAP
Authentication

|

NIS and NT Domain
Bupport via LDAP

Figure 3. Axion System Architecture

may be configured, and additional nodes may be added
dynamically. Each node is running identical software —
there is no central controller with the associated fault
tolerance and performance issues. Nodes themselves have
a uniform and consistent view of the repository as a
whole. This is achieved with a loosely synchronized

distributed architecture based on message passing and a
few small global data structures. Two major benefits of
this approach are that clients may contact any server node
with requests, and the system is managed as a single
image. The Avamar distributed server provides a single
global pool of “data stripes”. Stripes are logical fault-
tolerant storage units which are mapped to a set of
distributed files similar to a RAID volume. A stripe ID
and offset are used to determine the location of any data
element.

The Avamar storage repository has the following
features:

e Use of 160 bit hashes [1] as identifiers for both

atomics and composites

e Content addressability using these hashes

* An innovative addressing scheme with

dynamically variable stripe/offset masking

* Virtualized global stripe pool across a potentially

very large distributed server farm

The combination of these elements results in a storage
architecture that scales to petabytes while maintaining
performance, with bit-level error probabilities below those
of hardware raid controllers. When combined with CFS,
the result is a scalable repository with excellent
commonality factoring, making large-scale, long-term
nearline storage of data on hard disk useful and cost
effective.

Ability to delete data from a shared repository is
desirable both to support data retention policies and to
reclaim disk space. In a large-scale shared repository with
a CFS implementation, atomic data may be shared by
applications knowing nothing of one another. These
clients of the repository may have differing retention
policies. It is up to the server to ensure that a variety of
data retention policies may be supported, without
requiring application coordination. Storage repository
architectures that leave knowledge of data on the client
side increase application complexity and are unable to
fully manage the repository. Avamar has solved this
difficult issue by providing an automated ‘“‘garbage
collection” capability which is able to identify and remove
data which is no longer referenced. Applications may
independently manage their retention policies with
confidence that data integrity will be maintained.

Repositories for mission-critical data must have robust
fault-tolerance. Avamar’s approach to fault-tolerance is
three-fold:

* Ageneralized approach to stripe parity and

recovery from physical media failures

* Arepository checking utility similar to familiar

file system integrity checking

* Automated checkpointing with rollback

capabilities.

4. Applications of the Technology

In this section we discuss the applications of a CFS-
based storage repository. Avamar’s initial product offering
based upon this technology is Axion. Axion provides a
solution for disk-based backup and for nearline storage.
Development of Axion has involved supplementing the
core technology with clients for specific platforms and
applications, integrating an account management system,
and providing a management console for backup. The
management console provides a single point of
administration for the system, enabling backup policies
and schedules to be defined and clients to be managed.

120L00% |
9745

100L00%

B0L00%
-'._é
2 60.00%
5 46.27%
o

40005

200005

0.00%
Average Initial Snapup Average Snapup
Figure 4. Typical System Commonality

Initial experience with Axion has been positive. For
backup applications, Axion’s underlying technology
means that each system backup appears as a full system
image, while consuming less bandwidth and storage than
traditional incrementals: to distinguish the Avamar
approach, these images are termed “snapups”. The
resultant system simplifies traditional backup
administration in several ways:

* No need to define and manage a hierarchy of

incremental and full backups

* No need for tape management and for managing

“offline” vs. “online” backups

* Single system interface and single repository

image for all enterprise backups

* Online access to all backup data

In addition, CFS eliminates redundancy in data, greatly
reducing the cost of disk storage.

Referring to Figure 4. above, it is apparent that both
initial and day-to-day commonality is dramatic in the
Microsoft Windows environment. (Unix commonality is
similarly dramatic.) These results, which are typical for
nearly every site tested thus far, lead to striking
reductions in bandwidth and space required for snapups.
Those sites that have not achieved this degree of
commonality are (predictably) those that have a significant
influx of unique data such as satellite imagery or other

physical phenomena. However, even these sites have
excellent day-to-day commonality for existing data.

Having archived data available on disk has other
benefits. Much larger amounts of data may be kept in
near-line storage. This makes such data accessible to
users and applications without the inefficiencies and
latency inherent in tape systems. Unlike other approaches
to fixed content store, Axion provides a global index, and
manages data aging and deletion policies without the need
to build logic into the data applications.

Other areas such as data communications can benefit
from application of these technologies.

5. Related work

Others have discussed storage systems with some
similar characteristics, including Venti [2], SFSRO [3],
Centera [4], and OceanStore [5].

References

[1] FIPS 180-1. Secure Hash Standard. U.S. Department
of Commerce/NIST, National Technical Information
Service, Springfield, VA, April 1995.

[2] Sean Quinlan and Sean Dorward, "Venti: a new
approach to archival storage," USENIX File and
Storage Techniques (FAST), 2002.

[3] Kevin Fu, M. Frans Kaashoek, and David Mazieres,
"Fast and secure read-only file system," 4" USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2000.

[4] EMC Centera Product Description Guide, EMC
Corporation, 2002.

[5] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris Wells, and
Ben Zhao. “OceanStore: An Architecture for Global-
Scale Persistent Storage,” Proceedings of the Ninth
international Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2000), November 2000.

