
Design and Implementation of a
Block Storage Multi-Protocol Converter

Irina Gerasimov, Alexey Zhuravlev, Mikhail Pershin, and Dennis V. Gerasimov
TechnoMages, Inc

Baltimore, MD, USA
{ira, alexey, misha, dennis}@technomagesinc.com

Abstract

We present the Block Storage Multi-Protocol
Converter (BSMC) software architecture, which is able to
translate and manage SCSI commands carried by
different SCSI transport protocols, such as SCSI, Fibre
Channel, and iSCSI, to a variety of storage devices. We
discuss the internal organization of BSMC and present
some performance testing results. We describe the variety
of applications in Storage Area Networking that can
benefit from products based on the BSMC architecture,
such as a multi-protocol storage router and a multi-
protocol, multi-RAID-level disk array.

1. Introduction

This paper presents the Block Storage Multi-Protocol
Converter (BSMC) software architecture, which is able to
translate and manage SCSI commands carried by different
SCSI transport protocols, such as SCSI, Fibre Channel,
and iSCSI among many Hosts (Initiators) and Devices
(Targets).

The SCSI Command Set has become the predominant
protocol for disk and tape I/O and device management.
Although the SCSI Parallel Bus is a mature and well-
established transport interface, providing fast access to
storage devices, it has limitations such as distance
(several meters) and scalability (15 devices on a bus).
Fibre Channel (FC), with its mapping of the SCSI
Command Set (as the "Fibre Channel Protocol," or FCP),
has overcome some of the distance and address-space
drawbacks of SCSI, and is currently the dominant
transport protocol for Storage Area Networks (SAN).
Even so, Fibre Channel has its own shortcomings: a
relative lack of access-control security, and limitations in
long-distance capabilities (<500m regular, <10km with
special and costly equipment).

Among emerging SCSI transport protocols, iSCSI
seems to be a very promising mechanism for augmenting
Parallel SCSI and Fibre Channel. In iSCSI, SCSI
commands and data blocks are encapsulated into TCP/IP
protocol messages. Currently, version 1.0 of the iSCSI

specification is in the final stages of approval by the
Internet Engineering Task Force, [1]. The iSCSI protocol
uses TCP flow control, congestion control, segmentation
mechanisms, and IP addressing and discovery
mechanisms. Thus iSCSI allows remote access to SAN
storage devices, for backup, mirroring, and disaster
recovery, among other possible applications.

The BSMC architecture was designed from the very
beginning as a basis for various storage management
products, and has been used to create a multi-protocol
storage router and a disk array subsystem. The BSMC
architecture is organized into three-levels: Front End,
Generic and Back End layers. Such a layered structure has
several advantages. First, it makes it easy to add and
upgrade the interfaces on the Front End layer without
compromising backwards compatibility and data integrity.
Second, it makes it possible to add data management
features to the Back End layer by means of adding or
replacing the modules responsible for handling storage
devices.

The BSMC architecture, when applied to RAID
Arrays, not only makes possible controlled access by
multiple Initiators, but also lets several applications with
different bandwidth or I/O-operations-rate requirements
co-exist together using the same RAID subsystem. For
example, several local mail servers and database servers
can access a BSMC-based RAID via Fibre Channel or
SCSI interfaces, while remote backup can be performed
using an iSCSI interface.

Palekar [2] has built a software suite similar in
function to the BSMC. Their Linux SCSI Target Emulator
was able to process SCSI commands received from SEP
(SCSI Encapsulation Protocol), iSCSI, and Fibre Channel
initiators and handle those commands to corresponding
Linux block device drivers. To our knowledge, no
functional validation or performance evaluation was
reported for that architecture, however.

We have evaluated the performance of the BSMC
architecture in the case where it is used to build a multi-
interface RAID subsystem. Our results for RAID
performance show that, for its SCSI and FibreChannel
interfaces, the BSMC delivers throughputs close to those
reported by vendors of SCSI-attached and Fibre Channel-

attached ATA-disk arrays. In addition, we present iSCSI
performance data.

The paper is organized as follows. In the next section
we discuss the BSMC architecture design. Then we
describe our performance evaluation setup and Iometer
benchmark results. After that we describe how the BSMC
architecture was applied for creating two TechnoMages,
Inc. product lines: the RAID subsystem, called InfoSlice,
and versatile storage router, called Data Transport
Processor. Finally, we offer some concluding remarks.

2. Design

In this section we describe the main components of
the Block Storage Multi-protocol Converter Architecture.
As can be seen from Figure 1, the architecture consists of
three layers: Front End, Generic and Back End SCSI
Target Drivers. These drivers are implemented as
independent Linux kernel modules, which interact with
each other using a common API. The arrows in Figure 1
show the interactions between the various parts of the
BSMC architecture.

Front End layer. The Front End driver of the
BSMC architecture is responsible for receiving and
sending messages coming from and going to the SCSI
transport protocol specific Host Bus Adaptors, or HBAs,
which, in turn, transfer those messages to corresponding
SCSI Initiators. For each type of SCSI transport protocol,
SCSI, Fibre Channel, or iSCSI, Front End contains a
corresponding Target driver, whose implementation is
both protocol- and HBA-type specific. For example,
FibreChannel and SCSI drivers are implemented as a
single thread, while for the iSCSI driver there can be
many threads created, depending on the number of
connected initiators, as specified by iSCSI standard.
Every Target driver contains a message queue, where it
keeps received messages until the commands, which those
messages contain, are completed. If a Target driver
receives a message that is transport protocol specific but
involves no data handling, it processes that message itself.
Otherwise, the message is passed to the Generic SCSI
Target driver using an API that is common for all Front
End Target drivers.

Generic layer. The main functions of the
Generic SCSI Target are to receive SCSI commands from
Front End Target Drivers, place those commands into
generic protocol-independent SCSI command structure,
distribute the commands among a list of SCSI command
queues according to the Access Control Filter, and,
finally, call the Back End Target driver to notify it of a
new command arrival. The Generic Target driver
monitors the status of commands in the queues and upon
command completion, error, or timeout, interacts with the
Front End layer. If the command does not require specific
Back End handling, the Generic Target completes it as
well.

Figure 1. Block Storage Multi-Protocol
Converter Architecture

By organizing SCSI commands into several queues,

and by distributing the commands according to an Access
Control Filter (ACF), the BSMC provides a powerful
security mechanism to Administrators of storage
initiators, devices and device partitions. This mechanism
works as following. For each initiator, device, or device
partition, a separate data structure, called _LUN is
created. Each _LUN structure contains a queue with SCSI
messages, which are intended for the initiator, device, or
partition, corresponding to that _LUN. Further, in order to
control access of Initiators to _LUN command queues
there is ACF, which keeps a set of definitions of Initiators
that can access each _LUN queue. Once a SCSI command
is received, its Initiator is checked with Initiator
definitions for the _LUN queue of the device the
command is intended for. There are several types of
Initiator definitions: SCSI transport protocol, HBA
channel number, and storage protocol specific types such
as SCSI ID (for SCSI), FibreChannel WWN (for Fibre
Channel) and IP address or authenticated user (for iSCSI).

Back End layer. The Back End Target consists of
SCSI Command Processor, which is responsible for a
SCSI command execution and a number of SCSI device-
specific Back End drivers, called BlockIO, CacheIO,
TapeIO, ProcIO, and Router. When one of the _LUN
SCSI command queues receives a new command, the
SCSI Command processor calls the appropriate device-
specific Back End driver to accomplish that command.

BlockIO and CacheIO are the modules that handle
commands intended for any block device. These drivers
interface with the Linux kernel block device layer. Upon
receipt of a SCSI command, the BlockIO driver wraps that

BSMC

Back End SCSI Target

Generic SCSI Target

Front End SCSI Target
iSCSI
Target

FC
Target

SCSI
Target

SCSI Command Processor

to block device driver

Other
Targets

BlockIO

Block Device
Virtualization

Device

Access Control Filter

Generic SCSI Device

to iSCSI HBA to FC HBAto SCSI HBA to Other HBAs

to SCSI
HBA

to iSCSI
HBA

to FC
HBA

CacheIO ProcIOTapeIO Router

RAID
Device

command into a structure recognizable by the Block
Device and then hands that command to the
corresponding device of the Linux kernel Block Device
layer. In addition to functions performed by the BlockIO
driver, the CacheIO driver contains various block caching
and read-ahead optimizations, which dramatically
improve Block Device read/write performance.

In order to implement the partitioning of locally and
remotely attached RAID devices and independent disks, a
new driver called Virtualization Device, or VD, was
implemented as a modular component of the Linux kernel
Block Device layer.

The TapeIO driver was designed for the creation of
tape emulation devices. It is functionally similar to the
BlockIO driver, but it converts stream-oriented SCSI
commands intended for tape drives into commands for
block devices, which are handled by the Linux kernel
Block Device layer. This driver allows the creation of
disk-based backup devices that appear to tape-oriented
host software as tape devices.

The ProcIO driver handles commands primarily used
to manage the enclosure via SCSI Enclosure Services
(SES) or SCSI Controller Commands (SCC), report the
status of system components, and similar tasks. This
driver is also used for an implementation of the SCSI
Extended Copy command [9].

The Router driver handles SCSI commands that are
passed directly between a SCSI target device and an
Initiator. The Router driver interfaces with the Linux mid-
level generic SCSI driver. The Router driver passes SCSI
commands received from the Generic Target layer to the
mid-level SCSI driver, which processes a command and
sends it further to the corresponding SCSI-Target device.

3. Performance Evaluation

To demonstrate the viability of the BSMC
architecture we have evaluated the performance of an
integrated RAID system based on the BSMC. This
integrated system is utilizing the Linux RAID
implementation as the underlying block device. The data
path through BSMC consists of the three Front End
Target drivers, iSCSI, SCSI, and FC, the Generic SCSI
Target, and two Back End Targets: BlockIO and CacheIO.
The results of the evaluation can be compared with the
theoretical maximum performance achievable over any
given interface, and with various performance results
available from many RAID vendors.

3.1. Testing setup

The Initiator machine was built with a Tyan S2510
motherboard (64bit/66MHz PCI bus), one Intel Pentium
III 1GHz processor, and 512MB RAM. For multi-
protocol testing we used an Alteon AceNIC 1000BaseT
Ethernet NIC for iSCSI, an Adaptec 29160 HBA for

SCSI, and a Qlogic QLA2300F HBA for Fibre Channel.
The Initiator machine was running Windows 2000 Server
and the IBM iSCSI driver 1.2.2 [3]. In case if Linux OS
is used on the client, the open source iSCSI driver is
available [4].

The disk array machine was built with a Tyan S2720
motherboard with one Intel 1.8 GHz Xeon processor,
512MB RAM of registered ECC type, and a 64bit/66MHz
PCI bus. For multi-protocol testing we used an Alteon
AceNIC 1000BaseT Ethernet NIC for iSCSI, a
LSI53C1010-66 HBA for SCSI, and Qlogic
QLA2200F/66 (1Gbps) and QLA2300F (2Gbps) HBAs
for Fibre Channel. The disk array contained 16 Western
Digital WD2000JB ATA 7,200 rpm hard disks connected
to a pair of 3Ware 7810 Escalade disk controllers
configured as JBOD. For this testing, the disks were
combined into RAID0 disk set via the Linux RAID
implementation. The disk array machine was running the
TechnoMages proprietary embedded Linux distribution
(2.4.19 kernel). This distribution is a minimal set of
utilities primarily based on BusyBox [5], which fits into
16MB flash card.

3.2. Iometer results

We have evaluated the performance of the above-
described RAID sub-system by testing it with the Iometer
[6] benchmark. Initially developed at Intel and now open-
sourced, Iometer is a standard benchmark used for
measuring server access I/O rates. Iometer measures the
I/O performance of the system while stressing it with a
controlled workload. Iometer can be configured to
simulate the workload of different applications and
benchmarks. Iometer gathers data such as throughput,
latency, and CPU utilization.

For this work we report the 64K Data Sequential
Read and Write throughput, which are presented on Plot
1. We have selected large block size streaming operations
for this work because we are evaluating the performance
of the BSMC architecture, not the seek performance or
other parameters of the particular hard drives used in the
test system. As can be seen on this plot, the performance
of the InfoSlice RAID subsystem, measured for 1Gbps
FibreChannel and 160Ultra SCSI interfaces, is close to
100MBytes per second. These numbers show that the
InfoSlice RAID subsystem, while based on the complex
BSMC architecture, is able to provide the same
performance reported for “pure” FibreChannel or SCSI
RAID sub-systems manufactured by other vendors.

The iSCSI throughput rates of the BSMC-based disk
array are lower then those measured for SCSI and 1Gbps
FibreChannel interfaces. This is explained, in part, by the
overhead introduced by TCP/IP protocol. This overhead
includes the checksum calculations for TCP and IP
headers, the fragmentation and de-fragmentation of IP
datagrams over Ethernet frames, and the

acknowledgement messages for TCP segments require
more CPU involvement and interface bandwidth,
currently, than the Ultra160-SCSI and Fibre Channel
counterparts, and thus reduce iSCSI's sustainable
throughput rates more.

Plot 1. Streaming Read/Write performance
measured by the Iometer benchmark

4. BSMC Applications

The BSMC is a very flexible architecture that can be

applied to create various kinds of block command
converters and management devices. The implementation
of this architecture was used by our company,
TechnoMages, Inc. to create two lines of integrated data
storage products: the InfoSlice RAID subsystem and the
Data Transport Processor SAN management platform.

The InfoSlice line is an integrated storage subsystem
with all the storage management features provided by
BSMC integrated in a turnkey solution. TechnoMages,
Inc. currently offers InfoSlice arrays with either SCSI or
ATA disk drives. The BSMC architecture enables any
combination of SCSI, Fibre Channel or iSCSI interfaces
to be included in an InfoSlice array. The ability of the
BSMC to represent any block device as a SCSI LUN
enables InfoSlice to have a very flexible set of storage
management features, such as storage virtualization and
access control.

Various RAID configurations can be created on the
InfoSlice. These RAID volumes, in turn, can be
partitioned into user-visible SCSI LUNs on the fly. These
LUNs can then be dynamically resized, if needed. For
example, all InfoSlice disk space can be configured as one
large RAID 5 volume, which is then partitioned (via the
previously discussed VD driver) into several partitions
according to the needs of several projects. These
partitions can then be exported as independent LUNs and
used by respective projects as unrelated disks. If, at a later
date, one project no longer needs the storage, this

partition can be deleted, and storage space, which was
previously used by it, can be reallocated to other projects
by growing their LUNs.

Access to any InfoSlice LUN can be configured in a
very flexible way based on the interface type and
capabilities [7]. For example, on a Fibre Channel
interface, any LUN can be made visible to either all
attached initiators or just particular WWNs. Using the
example of several projects sharing the InfoSlice storage
space, one may want to set up access control in such a
way that each of the projects server on a Fibre Channel
network can only access his dedicated LUN, and cannot
even see the other ones.

InfoSlice features several high availability features,
such as hot-swappable power supplies, hot-swappable
disks (yes, even ATA disks are hot-swappable), and hot-
swappable cooling fans. Moreover, it is completely
reconfigurable on the fly. However, the trademark of the
InfoSlice product line is not the high-availability, but
rather flexibility. The flexibility of the InfoSlice line
defines type of user group, which get the most benefits
from this product. The primary user group of InfoSlices
might very well be the research community (whether
government, university, or commercial), which can fully
appreciate the unprecedented versatility of this device.
Low cost per gigabyte, ability to upgrade disks and
interfaces (which extends the initial investment in a
BSMC-based appliance) coupled with the ability to
reconfigure the storage in a multitude of ways makes it
very attractive to rapidly changing scientific and
engineering research environments.

Another application area where InfoSlice might
provide significant benefits to the research community is
data archival and secondary near-line storage. In the
section 2 of this paper, we have discussed a “TapeIO”
module of the BSMC, which makes it possible to
represent a disk device as a tape device to the initiator.
We call this function “Tape Emulation”. Tape Emulation
allows one to easily augment or replace an existing tape
library with a faster disk device without any changes in
the software that manages data archival. Tape Emulation
can also be used to reduce the time it takes to make
system backups.

The second product line created by TechnoMages,
Inc. from the BSMC is the Data Transport Processor
(DTP) line. This family of devices does not have any
integrated storage; it is used to manage access to other
storage devices. Our paper [8] describes various DTP
applications.

One of the DTP models, called the FibreFire, is a
Fibre Channel firewall. It is a filtering device with
multiple Fibre Channel interfaces that can control traffic
between two or more Fibre Channel networks. This
device can selectively pass SCSI commands based on
source and destination WWNs. This capability is
particularly useful when connecting large SANs with

0

20

40

60

80

100

120

140

160

180

FC,2Gbps FC,1Gbps SCSI,U160 iSCSI,1Gbps

Storage Protocol

Th
ro

ug
hp

ut
, M

Bp
s

64K Sequential
Read, MBps
64K Sequential
Write, MBps

complex switching structures, to prevent the connected
SANs from affecting each other's switches, particularly
zoning. Another application of the FibreFire is to
interconnect between SANs which do not want to give
full access to each other. It can provide respective SAN
administrators a common checkpoint for access policies.

Another model of the DTP can interconnect multiple
SCSI devices into a pseudo-SAN. Acting as a “SCSI
switch”, this model can be used to provide and manage
direct access to SCSI devices, such as an automated tape
library, to several computers, using only SCSI cabling and
HBAs. The common backup configuration (Figure 2)
involves passing all data over LAN from the backup
client to the server, which has the tape library attached
directly to it.

Figure 2. Backup over LAN

Figure 3. Backup over SCSI SAN

An alternative setup shown on Figure 3 includes DTP

router, to which tape library and disk storage are
connected. In this configuration the tape library can be
used directly by the client for backups without passing

traffic through a LAN. Using the SCSI Extended Copy
command, implemented in the DTP, can further enhance
this by moving data directly from the disk storage to tape
devices without passing it through the backup server.

This setup, depending on the configuration, may
provide for significantly faster backups than backups over
LAN. Its speed is comparable to a Fibre Channel
configuration, and may even exceed it for some
configurations. At the same time, it is significantly less
expensive than a Fibre Channel SAN. In this
configuration, DTP may also perform storage
virtualization and management functions for all or some
of the attached disk storage.

The Data Transport Processor with iSCSI interfaces
is useful for applications that need remote storage.
Bridging distant SAN islands, remote mirroring, remote
backup and remote SAN debugging are just a few
examples. Even where directory- and file-serving
protocols (e.g., NFS, SMB, CIFS) have already been
deployed for long-distance data storage and retrieval,
iSCSI might provide some benefits. In another paper
[10], we reported iSCSI and NFS performance
comparison, and found that iSCSI can provide multi-fold
performance advantages over NFS in certain applications.
Replacing NFS with iSCSI moves file system handling
from the storage-server to the storage-client, which makes
it possible to cache data in a more efficient way. The
protocol overhead of iSCSI, although significant, is still
much smaller then that of NFS, especially when accessing
small files. Where NFS is only used as a convenient
method of remote storage access, iSCSI is a valid
replacement for NFS, and may be a preferred method (not
only for performance reasons, but perhaps for data-
confidentiality reasons as well).

5. Conclusions

In this work we have presented the Block Storage
Multi-Protocol Converter (BSMC), a novel modular SCSI
Target architecture capable of handling SCSI commands
carried by different SCSI transport protocols: Parallel
SCSI, Fibre Channel and iSCSI/Ethernet. The three-
layered modular nature of the architectural design enables
the easy addition of such advanced features as device
virtualization and access control. At the same time, the
BSMC architecture is very conservative in its usage of the
resources and performs quite well.

The BSMC architecture naturally lends itself as a
basis for the creation of several data storage products. In
conjunction with Linux RAID code and a collection of
hard drives in one integrated unit, it makes a very
versatile and adaptable RAID storage subsystem. When
integrated with a collection of interface adapters it can
serve as a SCSI/SAN router providing a rich set of storage
management features in addition to protocol conversion.

SC
SI

Disk Storage

Tape Library

Ta
pe
Lib
rar
y

SC
SI

LAN

Backup
Server

Server

1
0

SC
SI

Storage

Backup
Server

Tape Library

Ta
pe
Lib
rar
y

SCSI

LAN

Server

SCSI SCSI

SCSI SAN
Router

References

[1] Internet Engineering Task Force,

http://www.ietf.org/html.charters/ips-charter.html
[2] Palekar, A.; Ganapathy N., Chadda, A.; Russel, R. D.;

“Design and Implementation of a Linux SCSI Target for
Storage Area Networks,” 5th Annual Linux Showcase and
Conference, Oakland, CA, November 5-10, 2001.

[3] IBM iSCSI Initiator drivers, http://www-1.ibm.com/support
[4] Open Source iSCSI Initiator driver for Linux,

http://www.sourceforge.net/projects/linux-iscsi/
[5] BusyBox software. http://www.busybox.net/
[6] see http://sourceforge.net/projects/iometer/
[7] “InfoSlice Security and Access Control overview”,

TechnoMages, Inc. white paper,
http://www.technomagesinc.com/papers/IS_ACL_config.ht
m

[8] “Data Transport Processor applications,” TechnoMages, Inc.,
http://www.technomagesinc.com/papers/DTP_Apps.html

[9] SCSI-3 Primary Commands (SPC-2), Section 7.2: Extended
Copy Command.
ftp://ftp.t10.org/t10/drafts/spc2/spc2r20.pdf

[10] “Performance Comparison of iSCSI and NFS IP
Storage protocols,” TechnoMages, Inc. white paper,
http://www.technomagesinc.com/papers/ip_paper.htm

