A Scalable Architecturefor Clustered Network Attached Storage

Jonathan D. Bright
Sgma Storage Corporation
jon@brightconsulting.com

Abstract

Network attached storage systems must provide highly
available access to data while maintaining high perfor-
mance, easy management, and maximum scalability. In this
paper, we describe a clustered storage system that was de-
signed with these goals in mind. The system provides a
unified file system image across multiple nodes, which al-
lows for simplified management of the system. Availabil-
ity is preserved with multiple nodes and parity-striped data
across these nodes. This architecture provides two key con-
tributions: the ability to use low-cost components to deliver
scalable performance and the flexibility to specify redun-
dancy and performance policy management on a file-by-file
basis. The file system is also tightly integrated with stan-
dard distributed file system protocols thereby allowing it to
be used in existing networks without modifying clients.

1. Background

The traditional storage solution has typically been direct
attached storage (DAS) where the actual disk hardware is
directly connected to the application server through high-
speed channels such as SCSI or IDE. With the prolifera-
tion of local area networks, the use of network file servers
has increased, leading to the development of several dis-
tributed file systems that make the local server DAS file
system visible to other machines on the network. These in-
clude AFS/Coda [17, 25], NFS [23], Sprite [20], CIFS [14],
amongst others. The desire to increase the performance and
simplify the administration of these file servers has led to
the development of dedicated machines known as network-
attached storage (NAS) appliances by companies such as
Network Appliance, Auspex, and EMC. In addition to spe-
cialized file systems [12], these NAS appliances are also
characterized by specialized hardware components to ad-
dress scalability and reliability [3].

In an effort to remove the bottleneck of the single server
model of NAS servers, there has lately been significant
work in the area of distributed or clustered storage systems.

John A. Chandy
University of Connecticut
john.chandy@uconn.edu

These include distributing data amongst dedicated stor-
age nodes as with storage area networks (SANS), virtual
disks [15] and network-attached secure disks (NASD) [10],
or distributing the data amongst the clients themselves in
so-called serverless storage systems [1, 11]. The migration
to these systems has been driven by the need to increase
concurrent access to shared data. However, all these ar-
chitectures require new client-to-storage transfer protocols
meaning that client software must be modified and stan-
dard distributed file systems such as NFS or CIFS are not
supported. In addition, some of the architectures require
specialized and typically expensive hardware to implement
the required functionality.

Another significant issue with NAS systems is their re-
liability and the most failure prone component of NAS sys-
tems is their disk subsystem. The most common and cost
effective solution to improve the availability of disk sys-
tems is the use of Redundant Array of Independent Disks
(RAID) [21]. A RAID system stripes data across multi-
ple hard disks that appear to the user as a single disk. The
various levels of RAID specify different methods of redun-
dancy, such as parity and mirroring, to provide reliability.
The most commonly used forms of RAID are RAID-1 for
mirroring and RAID-5 for parity-rotated striping.

Although RAID improves the reliability compared to
single disk data storage systems, NAS systems with RAID
still have other significant limitations. For example, the
disk arrays are generally embodied in a single NAS server,
and are therefore susceptible to machine level failures (e.g.,
power failure, network connection failure, etc.). Addition-
ally, it is difficult to incrementally increase the storage ca-
pacity of a NAS server, because an additional single disk
cannot generally be added to a RAID system. Further, NAS
systems are typically connected to a network via a lim-
ited set of network connections, thereby limiting the data
transfer bandwidth to/from the server. Additionally, sin-
gle machine systems have practical limits on the number
of processing units that can be implemented (e.g., to run
server processes, parity calculations, etc.), thereby limiting
the number of clients that can be effectively served.

In addition to providing potential scalability gains, clus-

Clients Clients

v

7/

Server A Server B eI Server B

X

}dundanl

/O Channels
%\:

RAID RAID

Redundant
1/0 Channels

normal operation after failover

Figure 1. NAS with Failover.

tered storage can also prove to be a solution to the ma-
chine level failure problem. In a simple configuration, two
servers are connected to a common RAID array through re-
dundant I/O channels, with only one server actively serving
clients (Figure 1). If the server stops operating, the system
“fails over” to the second server which will then resume
serving clients. However, the system requires specialized
hardware to handle failover seamlessly, and the cost paid
for an extra server does not buy extra throughput. In ad-
dition, the disk array subsystem is still a potential single
point of failure that must be addressed again with expen-
sive hardware by providing redundant components — con-
trollers, power supplies, fans, etc.

A higher-end clustering solution involves using multiple
servers serving clients simultaneously and sharing a pool of
SAN block storage devices connected by a high speed con-
nection fabric (Figure 2). The block storage devices may
be FibreChannel disks directly connected to the intercon-
nect or intelligent servers servicing block requests through
FibreChannel or emerging IP protocols such as iSCSI [24].
Specialized file systems must be used to present a unified
and consistent view of the file system to clients and also
manage the SAN storage pool from the clustered servers.
The multiple servers can provide scalable growth for clients
unlike the failover solution. SAN storage backends, how-
ever, are very expensive and typically difficult to manage.

It is possible to create a cluster where each server has
local storage, thereby eliminating the need for a dedi-
cated storage network and specialized block storage de-
vices. Such an architecture allows for the use of standard
servers without any specialized hardware. However, it also
necessitates specialized software to aggregate the storage
on the multiple nodes into a unified file system.

In this paper, we describe a architecture with local stor-
age called the Sigma Cluster Storage Architecture that ad-
dresses some of the shortcomings of existing distributed
storage systems. In particular, the system delivers the scal-
ability of a clustered storage system while remaining com-
patible with existing distributed file systems, and the sys-
tem uses no specialized hardware to realize the functional-

Clients
LAN | |
Server A Server B Server C Server D Server E
SAN
Cluster
Switch
Storage Storage Storage Storage
Devices Devices Devices Devices
Figure 2. Clustered NAS using a SAN.
Clients
LAN

S e S e

Server A Server B Server C Server D

= === =

Local Local Local Local
Storage Storage Storage Storage
Devices Devices Devices Devices

Figure 3. Clustered NAS.

ity. The other distinguishing contribution of the system is
the ability to make redundancy and striping decisions on a
file-by-file basis.

2. SigmaCluster File System

2.1. Overview

The Sigma Cluster Storage Architecture is an example
of a clustered NAS architecture. The physical layout is
shown in Figure 3. As with a NAS, clients can connect
to the Sigma cluster using a distributed file system protocol
such as NFS or CIFS. However, unlike a traditional NAS,
the client can connect to any of the nodes in the cluster and
still see the same unified file system. The multiple nodes
in the cluster also allow the Sigma system to eliminate the
single-server bottleneck of a NAS system. NFS or CIFS
data requests are translated into requests to the Sigma clus-
ter file system, which is distributed across the nodes of the
cluster. The file system is responsible for file management

as well as data distribution, i.e. striping data across nodes
using varying redundancy policies.

Though, the physical layout of the Sigma system is sim-
ilar to the backend of a SAN layout, the difference is ap-
parent at higher levels. The data transfer protocol between
clients and the Sigma storage system is at the file level
while with SANs, the data transfer protocol is at the block
level. The implication, of course, is that with a SAN, the
file manager and block allocation must reside at the client,
whereas with the Sigma system, the file system resides at
the storage system.

Acrchitecturally, the closest comparison to the Sigma
system is the NASD system where clients talk directly to
“smart” disks. The data transfer protocol between clients
and NASD devices is an object, which can be approximated
as a file. The smart disks are the equivalent of the storage
nodes in the Sigma architecture. The key difference is that
the storage manager in a NASD system is located in a unit
separate from the smart disks, while the equivalent of the
storage manager in a Sigma system is integrated into the
file system on the cluster itself. Also, whereas redundancy
management is done at the client in the NASD system, the
Sigma system integrates redundancy management into the
cluster file system. These two differences allow the Sigma
system to be compatible with existing distributed file sys-
tems.

There are two main components to our clustered file sys-
tem. The first component is the distributed file system layer
that implements the NFS and CIFS protocols. The second
is the cluster file system layer referred to as the Sigma Clus-
ter File System (SCFS). Both layers run on the server and
require no modifications of the client residing on the net-
work.

The interface between the two layers is defined by an
API that is similar to POSIX 10 library calls with addi-
tional support for NFS and CIFS locking semantics. We
have called this API the clientlib. It should be noted that
client in this context refers to the distributed file system
layer, i.e. NFS or CIFS, as a client of the SCFS. For con-
venience we call each instance of a NFS and CIFS server
that uses the clientlib API a clientlib instance or process. A
network client will connect to one of the nodes in the clus-
ter using NFS or CIFS file protocols. The distributed file
system layer will handle the request, and translate the NFS
or CIFS request into a SCFS request through the clientlib.
The clientlib is responsible for resolving any directory path
names specified in a NFS and CIFS request. Path resolution
can involve lookups in multiple directories, and in such a
case, the clientlib would perform the necessary communi-
cations to each directory object. To avoid excessive com-
munication, the clientlib caches these directory lookups
and uses leases to handle cache consistency. Path resolu-
tion is also an example of how the clientlib coordinates

accesses when a network client request involves multiple
SCFS objects. As another example, a rename operation
can involve modifications to two different directories, and
the clientlib again performs the calls to each directory ob-
ject. The clientlib supports distributed locking maintaining
consistency between network file system daemons running
on different servers as well as differing network file system
protocols. We omit the details of the clientlib’s distributed
cache and lock management as they are beyond the scope
of this paper.

2.2. Virtual Devices

Whereas the distributed file system layer deals with
files, the SCFS is concerned with virtual devices. A vir-
tual device is an abstract container for a file or group of
files. In the current implementation, each virtual device
contains only one file and likewise each file is mapped to
exactly one virtual device. The SCFS is responsible for the
data striping of each virtual device. With the virtual device
construct, the SCFS is able to assign different striping poli-
cies to each virtual device and thereby each file. Striping
policies include deciding the number of nodes over which
to distribute the data, and whether to use parity or mirror-
ing for the redundancy strategy. Without the use of virtual
devices, all files would be striped across all the nodes and
the choice of redundancy strategy would be the same across
all files. Virtual devices, however, allow certain files to be
mirrored because they might require high performance and
reliability while other files may be striped with no parity
because they are not critical.

In the current implementation, each virtual device con-
tains one file along with the metadata for that file. By
grouping the file data along with its metadata, we are able
to benefit from locality properties. Since directories are
treated as special files, they get their own virtual device as
well. The distribution of metadata into virtual devices also
improves the scalability with respect to metadata operation.
In general, most metadata operations can be done directly
to a virtual device rather than through a centralized locking
resource that can prove to be a bottleneck.

Each virtual device is identified by a 64-bit identifier
known as the GID. This is the equivalent of an inode num-
ber. While, on most file systems, the inode number is suffi-
cient to locate a file in the inode table and from there the ac-
tual data blocks, with the Sigma file system, the GID must
also be grouped with a locator that identifies the virtual de-
vice. This locator specifies the type of striping — parity
or mirroring — as well as the machines on which the data
is located. The GID and locator information are stored in
the directory entry that refers to the file, so a centralized
database is not needed to maintain this information.

For the purpose of comparison, an entry in the UNIX

5234.0-511
5234.2049-2559

n

5234.1536-2047
5234.3584-4095

0-511 Server 1
0-4095
512-1023
5234.0-2047 Parity 5235.0-4095
1024-1535 5234.2048-4095 Parity 5235.8192-12287
4096-8191
1536-2047 Server 2
2048-2559 5235.0-4095 Mirror 4 616912267
2560-3071 5235.8192-12287 Mirror
3072-3583 S 3
12288-16383
3584-4095 5234.512-1023 5235.4096-8191 Mirror
5234.2560-3071 5235.12288-16383 Mirror.
Server 4

5234.1024-1535
5234.3072-3583

5234-(0,4,5,1,2)-512-P-1

(@

M(MO
)
=
<
)
=
(61

([

erver 0

5235.4096-8191
5235.12288-16383

5235-(2,3,5,4)-4096-M-1

Figure 4. Virtual Device Data Distribution.

internal directory format contains two data fields, file name
and inode number. The inode number is an index into a
table stored on disk that allows a UNIX file system to locate
the actual disk data blocks for this file. An entry in the
SCFS internal directory format consists of the file name,
the GID of the virtual device, and the locator. The locator
gives the SCFS the information that allows it to locate the
machines on which the data for the particular virtual device
are located.

The format of the locator specification is as follows:
(GID-(MSPEC)-BLKSIZE-TYPE-REDUNDANCY), where
GID is the GID of the virtual device, MSPEC is a tuple
representing the machines hosting the data, BLKSIZE is
the block size of the stripe, TYPE identifies the redundancy
mode (P for parity striping, M for mirroring, and N for no
redundancy), and REDUNDANCY specifies the level of re-
dundancy. For parity striping, the redundancy level speci-
fies the number of parity blocks per stripe. For mirroring,
the redundancy level means the number of mirrors. The
flexibility of this specification allows us to vary the redun-
dancy level and striping mode per virtual device and thus
on a file-by-file basis. Changing the block size also allows
us to tailor performance characteristics depending on the
usage patterns of the file. For example, large files with

streaming access would have larger block sizes and smaller
files could have smaller block sizes. It is also possible to re-
distribute files to a different set of machines if the file policy
has changed — for example, a file has become higher prior-
ity and thus needs mirroring redundancy instead of parity.
The example in Figure 4 shows the data distribution
for two virtual devices whose specifications are given as
follows: (5234-(0,4,5,1,2)-512-P-1) and (5235-(2,3,5,4)-
4096-M-1). The file on the left has been divided into 512
byte blocks and parity striped across servers 0,4,5,1, and
2. For parity striping, the last machine is reserved for par-
ity. The file on the right has been striped into 4096 byte
blocks and mirrored across servers 2,3,5, and 4. Note that
the order of machines in the MSPEC tuple need not be se-
quential. For parity striping, this is significant; since dif-
ferent virtual devices will have different MSPEC distribu-
tions, the machine reserved for parity differs for all virtual
devices. Therefore, even though we use a RAID-4 type
parity scheme for each virtual device, across all virtual de-
vices we do not suffer from the typical RAID-4 parity bot-
tleneck. For mirroring, the mirrors are assigned dependent
on the redundancy level. With a redundancy level of one,
the cardinally odd machines in the tuple are the primary
data machines and the even machines are the mirrors. In

the example shown, the data is striped across machines 2
and 5 with mirrors on 3 and 4.

The use of virtual devices also enables easy addition of
new machines into the cluster. When a new machine is
added into the cluster, there is no need to do a reformat as
is necessary when adding single drives to a RAID-5 array.
The new machine will initially have no data located on it,
but as new files are created, the associated virtual devices
will include the new machine. If the cluster is particularly
unbalanced, whereby the existing machines have no storage
space left, virtual devices can be rebalanced to include the
new machine. This rebalancing process can proceed with a
live system — i.e. the system does not have to be brought
down while the rebalancing takes place.

Rebalancing will cause the locator information to
change and the corresponding directory entry copy of the
virtual device locator may be out of date. After a failure,
during reconstruction of data, the same situation may arise
causing invalid directory entry copies of locator informa-
tion. The SCFS has the ability to determine if locator in-
formation is invalid, and then automatically find the correct
locator information and update the incorrect directory en-
tries.

The SCFS is implemented using a collection of process
objects which provide various system services. Of par-
ticular importance is the Virtual Device Controller (VDC)
object which performs the actual striping functions for a
virtual device. A VDC or set of VDCs is instantiated on
each node and at any point in time, a VDC may host zero,
one, or more virtual devices. However, a critical point is
that a virtual device will be hosted by only VDC at a time.
This allows us to avoid the difficult issues associated with
concurrent access/modification to a block device across a
storage area network. For performance reasons, a virtual
device is usually hosted by a VDC running on the same
machine as the distributed file system process accessing it.
Since there is one virtual device per file, there could poten-
tially be millions of virtual devices in the system. To avoid
the overhead of a VDC managing a million virtual devices,
in practice only “active” virtual devices are managed by a
VDC, where active is defined as a virtual device having re-
cent activity.

To further describe the SCFS, we examine the flow of
an NFS read request. Assuming that the client has already
mounted the cluster file system locally, it sends a read re-
quest to any node in the cluster. The node, which we will
call the receiving node can be arbitrary since all nodes
present the same view of the file system. In particular, with
NFS, any subsequent requests could also be sent to a dif-
ferent node, since the NFS protocol is stateless. The read
request contains a unique filehandle identifying the file to
be read, an offset into the file, and the number of bytes to
read.

The NFS layer on the receiving node will query the
SCFS to identify which virtual device contains the re-
quested file. In addition, the SCFS will return an identifier
specifying which VDC is responsible for the particular vir-
tual device. The NFS layer will then translate the NFS read
request into a read request for the VDC. The VDC respon-
sible for the file need not be located on the receiving node,
and in such a case the VDC read request must be sent to a
remote node. In practice, because of locality, the VDC is
almost always on the same node as the receiving node.

The VDC upon receiving the request will determine the
actual location of the data. Since the data has been striped
across multiple nodes, it must fetch the data from each of
those nodes. Which nodes to contact is determined by the
striping policy associated for the particular virtual device.
After receiving the data from the nodes, the data is gathered
and reconstituted and then returned to the NFS layer which
then forwards it on to the NFS client.

In the context of a distributed system, writes are more
interesting — particularly on parity striped writes. Concur-
rent access to shared data introduces difficulties in man-
aging consistency of data, and in the presence of failures,
these difficulties become even more challenging. In a typi-
cal RAID-5 disk array care must be taken such that partial
writes do not occur. As an example, consider the situation
where we are writing data that spans disks A, B, and C with
parity on disk D. Since it is not possible to atomically write
to all disks simultaneously, it is possible that the parity disk
D may be updated before the data disks. If there is a system
failure during the writes, the data will be corrupted, since
the write has been only partially completed. Because the
parity is inconsistent, the data will be irrecoverable on a
subsequent disk failure.

With a clustered system, this problem is magnified. To
solve this problem, we use a modified two-phase write-
commit protocol. In the first phase, the VDC will issue
write commands to the appropriate nodes. The parity is
calculated and sent to the node hosting the parity for this
device. However, the nodes do not actually flush the data to
stable storage at this time. They hold on to the data waiting
for a commit from the VDC. After sending the data to the
node, the VDC will then notify a “shadow” VDC running
on another node that a write has been initiated to a particu-
lar set of nodes. Then, the primary VDC will issue commit
commands to all the involved nodes, which will then com-
plete the write. See Figure 5. If the primary VDC fails
during the commit phase, the shadow VDC will notice this
and will finish issuing the commits. If at any point during
the commit phase, any of the involved nodes fail, the pri-
mary VDC will notice this and mark that particular region
dirty in its local memory. This dirty region information
is also conveyed to a SCFS service called the fact server
that persistently maintains this information across the dis-

hado

RC

. RC sends commit commands to |0 nodes
. 10 nodes commit data to disk
. RC notifies Shadow RC that write is complete

OUTRAWNE

=G> @

. NFS receives write request and through clientlib forwards request to RC responsible for file
. RC splits write data and sends it to appropriate 10 nodes
. RC notifies Shadow RC which 10 devices are involved in write

Figure 5. Two-phase Write Commit Protocol.

tributed cluster. If during a subsequent read, the VDC sees
that the requested data has been marked dirty, the VDC can
then retrieve the data using the parity.

2.3. System Services

In addition to the VDC, the SCFS is implemented with
the use of a collection of system processes or services that
run on the cluster machines. These processes communicate
with each other as well as with the distributed file system
layer to provide full file system functionality. The main
cluster file system services are the Global Controller, the
IO Daemon, Status Monitor, and the File System Integrity
Object. Each server may run multiple or no instances of
particular services.

2.3.1. Global Controller The Global Controller (GC)
ensures that access to each virtual device is granted exclu-
sively to only one VDC at a time. This is not a potential
source of deadlocks, because the assignment of a virtual
device to a particular VDC does not restrict access to the
virtual device. Rather, all access to the virtual device will
now be serialized through the VDC to which it is assigned.

In order to be sure that there are no access conflicts be-
tween VDCs running on different machines, the GC runs
on only one machine. At start-up, the cluster machines en-
gage in a multi-round election protocol to determine which
will host the GC. In order to avoid potential bottlenecks,
multiple GCs can be used. Access conflicts can be success-
fully avoided when using multiple GCs by assigning each
of the virtual devices to only one GC according to some de-
terministic hash function. For example, it is possible to use
two GCs, by assigning the odd numbered virtual devices to
one of the GCs, and assigning the even numbered virtual
devices to the other.

In the event of a GC failure, the cluster machines will
once again engage in an election protocol to determine the
new GC machine. Any new requests to the GC will stall
until the new election is complete and the new GC has been
able to determine the existing assignment of virtual devices
to VDCs in the cluster.

2.3.2. 10 Daemon The IO daemon handles the actual
transfer of data from the disk storage system. The cur-
rent implementation uses the underlying file system to store
data. The only services that the 10 daemon requires from
its underlying file system are random access to file data a
single level name space, the ability to grow files when writ-
ten to past the EOF, and the only required metadata is file
size. Thus, the 10 daemon could use a simplified file sys-
tem to write to raw disk to provide a more efficient imple-
mentation.

2.3.3. Status Monitor The Status Monitor determines
the status (up or down) of the servers comprising the clus-
ter and makes this information available to other processes
running on the same server. The status of the other servers
is determined by polling special monitors running on those
machines. The shadow VDC makes use of the status mon-
itor to determine the status of the primary VDC.

2.3.4. File System Integrity Object The File System
Integrity Layer (FSI) performs two functions. First, it
prevents two clientlibs from performing conflicting File
System Madification (FSM) operations, for example, both
clientlibs renaming the same file at the same time. Before
the clientlib performs an FSM, it attempts to lock the nec-
essary entries with the FSI. After the necessary File Sys-
tem Objects have been modified, the clientlib unlocks the
entries. Second, it acts as a journaling layer, by replaying
operations from clientlibs that are on machines that fail. In

the current implementation, there is only one FSI for the
entire cluster and this is clearly a scalability issue as clus-
ter sizes get very large. We anticipate that we will have to
support multiple FSIs by partitioning the file system.

2.4. Performance Characterization

As with any storage system, performance is a critical
feature of the system. However, striping data across servers
for reliability is in potential conflict with performance. The
overhead of communicating with multiple servers to satisfy
data access can be significant. To address this, the system
uses data caching at three levels: the block layer, the VDC
layer, and the distributed file system layer.

The lowest level of caching is in the underlying file sys-
tem. The 10 daemon takes advantage of the page block
caching present in most file systems. On writes, the 10
daemon also uses caching and does not force a sync to
disk. We do not need to do a sync because both the VDC
and shadow VDC will monitor the 10 machine. If the 10
machines fails before the underlying file system flushes its
caches (typically 30 seconds), the VDC will mark any re-
gions to which writes are pending as dirty, thus alerting
future reads to reconstruct the data from the parity or mir-
ror.

The second level of caching is at the VDC layer. All
reads are cached and the hit rate using common bench-
marks was seen to be over 95% using a 10 megabyte cache.
Writes are cached using three different synchronization
policies: cluster sync, local sync, and async. Cluster Sync
means writing through the cache all the way to the cluster;
in other words, all writes are committed to the destination
machines through the 10 daemon as described above.

Local sync means that the write data is committed only
to the local disk. The local disk sync data is flushed to the
cluster storage every few seconds. This presents the pos-
sibility of possible data loss if the local machine suffers
complete failure before the data has been flushed. The data
is still recoverable if the local disk is recoverable through
RAID. However, there is no corruption of the cluster stor-
age and data is still sequentially consistent. Also, the file
will be inaccessible if any local sync data has not been
flushed to the cluster. Depending on the application, this
synchronization policy may be acceptable. Since this pol-
icy is set on a per-write basis, not on a file system or file
basis, it is possible to tune this as the application demands.

Asynchronous synchronization is the highest perfor-
mance synchronization scheme, since the write data is only
kept in memory and not pushed to any form of stable stor-
age. As with local sync, data loss is possible if the local
machine completely fails before the data has been flushed.
In this case, even if the disk is recoverable, the data is still
completely lost. In certain applications, this behavior may

be acceptable. For example, NFS (version 3) allows for
asynchronous writes whereby writes need not be sent to
stable storage until a commit command has been issued.

The highest level of caching is done at the clientlib
level. The first form of caching is to allow the clientlib
to cache directory and meta-data information in its local
address space with the server process promising to incre-
ment a counter maintained in shared memory when the in-
formation becomes stale. When the invalidation occurs, the
network clientlib process communicates to the server pro-
cesses to get the updated information. An alternative to
maintaining only cache invalidation information in shared
memory would be to maintain the metadata and directory
information itself in shared memory, though these data
structures are complicated to implement.

The network client processes are also allowed to obtain
leases for the file system objects on which they are work-
ing. When there is contention among several network client
processes for the same file system object, the network client
releases its lease, and both client processes then use the
standard mechanisms to access the file system object. This
reduces potential context switching between network client
processes and processes providing system services.

The most aggressive form of clientlib caching is what is
known as preborn caching. We take advantage of the fact
that many files are very short lived. This is what is observed
in typical office environments as evidenced by the VeriTest
NetBench benchmark [30] and also in development envi-
ronments as seen in the BSD and Sprite studies [4] and
HP/UX studies [22]. The NetBench benchmark is a simu-
lation of typical office usage drawn from actual traces. Dur-
ing runs of the benchmark, we saw that 90% of files were
deleted within 10 seconds of being created. Likewise, the
Sprite trace-driven study showed that 50 to 70% of file life-
times are less than 10 seconds, and the HP/UX study found
up to 40% of block lifetimes were less than 30 seconds.
This short-livedness property allows us to use a form of lo-
cal sync caching where the clientlib creates new files on the
local storage system and then pushes them to the LCC after
10 seconds. By doing so, we avoid making costly metadata
updates and directory operations. The same caveats that
apply for local sync apply here as well, in that files may
not be accessible if the server hosting the preborn file fails
before the file has been pushed to the LCC.

2.5. Implementation

In keeping with the low cost philosophy of the sys-
tem, the target architecture chosen for the cluster servers
was off-the-shelf x86 PCs running the 2.4 Linux kernel.
However, because of the portability of the file system, the
software has also been effectively ported to Solaris and
OpenBSD as well and can be ported to any POSIX OS with

minimal difficulty. Interprocess communication is accom-
plished using the SUnRPC remote procedure call library.
The software architecture is very modular allowing for the
replacement of specific modules for more machine-specific
implementation if appropriate. For example, the RPC mod-
ule could be easily replaced if the target architecture sup-
ports a higher performance IPC mechanism. Likewise, the
IO daemon could be replaced to take advantage of low-
level 1/O calls that may be available in the host system.

The current version of the software contains support for
both the CIFS and the NFS protocol. As NFS is a fairly
simple protocol, we implemented our own NFS server,
which accessed the Sigma Cluster File System using the
clientlib. Our support for CIFS was provided by imple-
menting a module (again using the clientlib interface) that
plugs into Samba, an open-source CIFS implementation.
Our clientlib used a VFS style API that was introduced in
Samba, as of version 2.2. However, this VFS API has some
shortcomings. For example, CIFS "oplocks” are not suffi-
ciently exposed in the API, and it required some additional
work to get oplocks and other features working in a cluster
setting.

Each system service is implemented as a separate pro-
cess, but individual services are themselves multithreaded.
We chose to keep services as processes rather than threads
to improve reliability. If one process used many threads to
provide several system services, an errant system service
taking an exception could crash the entire process thereby
bringing down several system services. While the file sys-
tem could temporarily tolerate the absence of some system
services, the scenario does open the system to additional
failures while the downed system services are brought back
up. By putting each system service in a separate process,
errors are localized to a particular service. As the reliabil-
ity of the code improves to the point where fatal exceptions
are nonexistent, we will gradually move to a fully multi-
threaded system.

The entire system was implemented in user space, us-
ing standard POSIX interfaces. This was a natural decision
for several reasons. First, the file system was distributed,
and the kernel is not the best place to write network client
code. Secondly, the file system was designed to support
access from NAS clients only as opposed to applications
running on the local system. In addition, while there was
a temptation to implement the file system according to the
Linux kernel VFS API as opposed to developing our own
clientlib interface, forcing data bound for the CIFS world
to pass through the Linux Kernel VFS would have made
implementation of some CIFS semantics more difficult.

The potential drawback to a user space implementation
is performance, with the primary concern being potentially
excessive context switching between the UNIX processes
dedicated to serving network clients and the UNIX pro-

800
700 |
600 |
500 |
400 |

Mb/s

300 |
200 |
100

0 10 20 30 40 50 60
Number of Clients

Figure 6. NetBench Results

cesses dedicated to serving requests to the file system ob-
jects. Context switching can also be apparent between the
various file system service processes as well. In a file sys-
tem implemented in the kernel, all network client processes
would just switch to kernel mode and access and modify
the data in the kernel data structures, protected by locks
as appropriate. The mechanisms that we have used to do
clientlib leasing of file system objects drastically reduces
the context switches since the clientlib is able to do most
operations without involving the file system service pro-
cesses. While a kernel implementation would provide some
additional performance benefits, since we were in a clus-
ter setting, we felt it was more important to first focus on
protocols and scalability rather than maximizing the per-
formance of a single box. As we move to a fully multi-
threaded system service model, the cost of context switch-
ing between system service processes should decrease as
well.

3. Performance Results

For the purpose of our experiments, we constructed a
small cluster with five equivalent dual Pentium-I1l 1GHz
PCs running a version of the 2.4 Linux kernel. Each PC was
equipped with a single gigabit network card as well as a
single 40G IDE drive to provide storage. No special kernel
optimizations were done to optimize 1/0 or inter-process
communications. One server was dedicated to servicing
FSI requests and the other four servers were available to
service clients. Each was running a distributed file system
layer for the CIFS protocol as well as the SCFS layer and
all its required services. Each client was a Windows PC
running the NetBench suite of enterprise tests. NetBench is
a standard CIFS network file system benchmark published
by VeriTest [30].

As the results in Figure 6 show, we were able to scale
linearly to 750 Mb/s until 40 clients. After that, the servers
became saturated, but throughput was maintained without

Peak Throughput (Mbps)
Base Performance 24.91
No VDC caching 23.76
No preborn caching 21.77

Table 1. Single Client Results

dropping. The single machine throughput for each server
is 200 Mb/s, so the efficiency with four active servers was
nearly linear as well. Since we moved the FSI, the primary
potential bottleneck, to a separate server, we were able to
measure the effect as clients increased. The load on the
FSl is also a good measure of the system’s metadata scal-
ability. At maximum throughput, the FSI machine experi-
enced only 15% CPU load, so it is expected that we could
comfortably expand the cluster size by a factor of six with
little impact on scalability. A cluster of 24 machines could
potentially provide over 4 Gb/s of throughput.

For further analysis, we also adjusted various features
in the file system to see the effects on performance. For
this set of tests, we used a single client with the Net-
Bench benchmark. These single client results aren’t com-
parable with the above because we decreased the waiting
time between client requests. The results are shown in Ta-
ble 1. The base performance is 24.91 Mbps for the single
client. When we turn off VDC data caching or the preborn
caching, we see that performance does not decrease signif-
icantly. Since NetBench is very cache intensive, it can be
argued that the above numbers were achieved because of
the cache. The numbers in Table 1 show that even when the
cache is turned off in the Sigma system, the performance is
not affected appreciably.

4. Reated Work

Since a key differentiator of the SCFS is the notion of
virtual devices, it may be instructive to compare virtual de-
vices to similar concepts in the storage area, such as logical
devices, NASD objects [10], derived virtual devices [29],
and virtual disks [15].

A logical device is a common layer underneath most
modern file systems that presents a single monolith block
device view of a collection of block devices. As far as the
file system is concerned, the logical device looks like a sin-
gle large device from which it can allocate blocks. In con-
trast, a virtual device is a file oriented abstraction rather
than block oriented, and as such it is an integrated part of
the file system. In other words, a traditional file system re-
sides on a single logical device, but the SCFS is composed
of multiple virtual devices. With a logical device, redun-
dancy and file system caching are implemented at the de-
vice level, meaning policy decisions about caching behav-
ior and redundancy levels can only be made for the entire

file system not on a file-by-file basis. Virtual devices allow
these decisions to be made on a file-by-file basis.

NASD and derived virtual devices are similar in that
they both are proponents of the “smart” disk concept.
NASD objects exhibit properties similar to virtual devices,
in that they may act as a collection of files. However, virtual
devices lie above the striping layer, whereas a NASD ob-
ject falls below the striping layer. By doing so, in a NASD
system, the client is responsible for doing data distribution
for striping. Since NASD objects are block based and thus
requires changes to the client software, it is not appropriate
for NAS environments.

A similar idea is seen in the evolving T10 SCSI Object
Based Storage specification [2]. Using Object Storage De-
vices (OSD), the lower level of a traditional file system, i.e.
block allocation and mapping to physical storage, is moved
from the server to the actual storage device. The specifi-
cation also allows for the aggregation of OSDs to provide
striping and redundancy on an object by object basis. How-
ever, the current understanding of the OSD specification
is that it is directed to DAS systems, though it could be
easily moved to a network setting using protocols such as
iSCSI [24]. The SCFS would be an ideal backend for such
a system because of the natural mapping between OSD ob-
jects and virtual devices.

Petal introduced the concept of “virtual disks” which
can aggregate storage from multiple servers into a single
unified block disk. The virtual disks allow for varying re-
dundancy policies such as mirroring, parity, level of redun-
dancy, etc. Virtual disks differ from Sigma’s notion of vir-
tual devices in that Petal’s virtual disks are block-oriented
while virtual devices are file based. This is due to Petal’s
separation of the file system into the separate Frangipani
layer that sits at the client [28].

File systems such as GFS [5, 27], Calypso [9], and
CXFS [26] have been created to enable multiple servers
to share a pool of SAN block storage. CXFS offers jour-
naling capabilities built upon SGI’s commercial journaling
XFS file system. GFS maps the clustered file system across
a non-homogeneous “network storage pool” from which
space is allocated. Calypso has a sophisticated recovery
protocol to reconstruct state in the case of failure. Unlike
the Sigma architecture, all these file systems depend on an
architecture where the storage devices are expected to pro-
vide redundancy, usually RAID, to maintain data availabil-
ity. This increases the cost of the system.

In the parallel computing arena, there has been a lot of
work in providing file systems for supercomputing appli-
cations. Initial I/O architectures dedicated nodes in a mas-
sively parallel processor (MPP) to storage. File systems
such as PVFS [7], PIOUS [18], PPFS [13], Galley [19]
and RAMA [16] provide the mechanisms to distribute 1/0
across the MPP. These file systems typically assume local

storage at each node in the MPP, and the data is distributed
across the nodes. However, unlike the Sigma system, data
is not striped with parity across the nodes, meaning less re-
liability. Though each node may use redundant storage, if
the node has lost connectivity to the rest of the MPP, the
data from that node is no longer available.

Serverless storage file systems offer the closest compar-
ison to the Sigma system. Previous work on such architec-
tures include Zebra [11], XFS [1], and LegionFS [31]. Ze-
bra and xFS both stripe data across the nodes in the cluster
using a log-structured approach. xFS is a more scalable ar-
chitecture because of its distributed metadata management.
As with Petal/Frangipani, neither allow for file-level redun-
dancy policy management. LegionFS is an object-based
distributed file system, but it has no redundancy features.

None of these file systems have been designed with stan-
dard network file systems in mind. Either the applications
are required to run on the cluster nodes as with GFS and
the MPP file systems, or the network clients must support
a non-native distributed file system such as with xFS or
Frangipani. As such, they are not easily integrated with
standard network file systems such as NFS or CIFS, par-
ticularly with respect to the locking semantics of these file
systems.

5. Conclusions and Future Directions

In this paper, we have described a highly scalable and
reliable system for network-attached clustered storage. We
are able to achieve throughput of 750 Mb/s for a modest
4-machine cluster and a theoretical 4 Gb/s throughput for
a 24-machine cluster. Because of the design, we are able
to use low cost components to achieve these numbers and
still maintain high availability. The new contributions are
the ability to provide file-by-file redundancy management
and seamless ability to add new nodes. In addition, unlike
many other clustered file systems, the Sigma file system
is not dependent on client modifications since it is fully
compatible with common distributed file systems such as
NFS and CIFS.

As we move to larger clusters, the FSI object becomes
more of a bottleneck. We plan to provide mechanisms to
partition the file system so that multiple FSI objects can
be instantiated to improve scalability. Another issue is
that most intra-cluster communications is done using Sun-
RPC over TCP. The overhead of TCP can be quite signifi-
cant. We are in the process of investigating the use of low-
latency communications protocols such as Myrinet [6] and
VIA [8].

Another candidate for replacement is the SunRPC re-
mote procedure call mechanism. In the context of a homo-
geneous cluster such as we have targeted, some of the fea-
tures of RPC, particularly XDR, are not relevant and could

be removed. Moreover, RPC is an inherently synchronous
communications mechanism. This limits the scalability
since it causes all interprocess communications to block.
Using multiple processes to service requests can partially
offset this effect. However, increasing the number of pro-
cesses can tax the available resources on a server. We are
investigating asynchronous communication libraries to re-
place the use of RPC.

There is also room for improvement in the protocols be-
tween various parts of the cluster file system. For example,
the VDC hosting a virtual device might detect that all ac-
cesses to the virtual device are read only. In this case, the
VDC could grant the readers the right to contact the 10
daemons directly. A method to revoke this access when
necessary would need to be provided.

6. Acknowledgments

We are indebted to the support of the Sigma Storage
Corp. team including Matthew Ryan, Eric Fordelon, Neil
DeSilva, Charles Katz and Brian Bishop. We are also
grateful to Quantum/Snap Appliances, particularly Luciano
Dalle Ore, for providing access to their QA lab so we could
conduct the NetBench testing.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang. Serverless network file systems. In Pro-
ceedings of the Symposium on Operating System Principles,

pages 109-126, Dec. 1995.
[2] ANSI. Information Technology - SCSI Object Based Storage

Device Commands (OSD), Mar. 2002.
[3] Auspex Systems. A Storage Architecture Guide, 2000.
[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,

and J. K. Ousterhout. Measurements of a distributed file sys-
tem. In Proceedings of the Symposium on Operating System

Principles, volume 25, pages 198-212, Oct. 1991.
[5] A. Barry and M. O’Keefe. Storage clusters for Linux.

Whitepaper, Sistina Software, 2000.
[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,

C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29-36, 1995.

[7] P.H. Carns, W. B. L. lll, R. B. Ross, and R. Thakur. PVFS:
A parallel file system for linux clusters. In Proceedings
of the Annual Linux Showcase and Conference, pages 317-

327, Oct. 2000.
[8] Compag Computer Corporation, Intel Corporation, and Mi-

crosoft Corporation. Virtual Interface Architecture Specifi-

cation, Dec. 1997.
[9]1 M. Devarakonda, A. Mohindra, J. Simoneaux, and W. H.

Tetzlaff. Evaluation of design alternatives for a cluster file
system. In Proceedings of the USENIX Technical Confer-

ence, Jan. 1995.
[10] G. A. Gibson and R. Van Meter. Network attached storage

architecture. Commun. ACM, 43(11):37-45, Nov. 2000.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

J. H. Hartman and J. K. Ousterhout. The Zebra striped net-
work file system. ACM Trans. Comput. Syst., 13(3):274—

310, Aug. 1995.
D. Hitz, J. Lau, and M. Malcolm. File systems design for

an NFS file server appliance. In Proceedings of Winter

USENIX, Jan. 1994.
J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S.

Blumenthal. PPFS: A high performance portable parallel
file system. In Proceedings of the ACM International Con-

ference on Supercomputing, pages 385-394, July 1995.
P. J. Leach and D. C. Naik. A common internet file sys-

tem (CIFS/1.0) protocol. Draft, Network Working Group,

Internet Engineering Task Force, Dec. 1997.
E. K. Lee and C. A. Thekkath. Petal: Distributed virtual

disks. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Op-

erating Systems, pages 84-92, Oct. 1996.
E. L. Miller and R. H. Katz. RAMA: An easy-to-use, high-

performance parallel file system. Parallel Computing, 23(4—

5):419-446, 1997.
J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.

Howard, D. S. Rosenthal, and F. D. Smith. Andrew: A dis-
tributed personal computing environment. Commun. ACM,

29(3), Mar. 1986.
S. A. Moyer and V. S. Sunderam. Pious: A scalable paral-

lel 1/0 system for distributed computing environments. In
Proceedings of the Scalable High-Performance Computing

Conference, pages 71-78, 1994.
N. Nieuwejaar and D. Kotz. The Galley parallel file system.

Parallel Computing, 23(4):447-476, June 1997.
J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and

B. Welch. The Sprite network operating system. IEEE Com-

puter, pages 23-36, Feb. 1988.
D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for re-

dundant arrays of inexpensive disks (RAID). In Proceedings
of the ACM SIGMOD International Conference on Mange-

ment of Data, pages 109-116, June 1988.
D. Roselli, J. Lorch, and T. E. Anderson. A comparison

of file system workloads. In Proceedings of the USENIX

Technical Conference, June 2000.
R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and

B. Lyon. Design and implementation of the Sun Network
Filesystem. In Proceedings of the Summer 1985 USENIX

Technical Conference, pages 119-130, June 1985.
J. Satran, D. Smith, K. Meth, O. Biren, J. Hafner,

C. Sapuntzakis, M. Bakke, R. Haagens, M. Chadalapaka,
M. Wakeley, L. Dalle Ore, P. Von Stamwitz, and E. Zeidner.

iSCSI. Internet Draft, IPS, Apr. 2002.
M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,

and D. C. Steere. Coda: A highly available file system for a
distributed workstation environment. IEEE Transactions on

Computers, 39(4):447-459, Apr. 1990.
Silicon Graphics, Inc. SGI CXFS Clustered Filesystem, July

2000.
S. Soltis, G. Erickson, K. Preslan, M. O’Keefe, and

T. Ruwart. The design and implementation of a shared disk
file system for IRIX. In Proceedings of the NASA Goddard
Space Flight Center Conference on Mass Storage Systems

and Technologies, Mar. 1999.
C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scal-

able distributed file system. In Proceedings of the Sympo-
sium on Operating System Principles, pages 224-237, 1997.

[29]

[30]
[31]

R. Van Meter, S. Hotz, and G. Finn. Derived virtual devices:
A secure distributed file system mechanism. In Proceedings
of the NASA Goddard Conference on Mass Storage Systems

and Technologies, Sept. 1996.
VeriTest. NetBench 7.0.2. "http://www.veritest.com/bench-

marks/netbench/netbench.asp”, 2001.
B. S. White, M. Walkder, M. Humphrey, and A. S.

Grimshaw. LegionFS: A secure and scalable file system
supporting cross-domain high-performance applications. In
Proceedings of Supercomputing 2001, 2001.

