
Concept and Evaluation of X-NAS: a Highly Scalable NAS System

Yoshiko Yasuda, Shinichi Kawamoto, Atsushi Ebata, Jun Okitsu, and Tatsuo Higuchi
Hitachi, Ltd., Central Research Laboratory

{yoshikoy, skawamo, ebata, j-okitsu, higuchi}@crl.hitachi.co.jp

Abstract*

X-NAS (eXpandable network attached storage), a
highly scalable, distributed file system designed for entry-
level NAS, has been developed. It virtualizes multiple NAS
systems into a single-file-system view for different kinds
of clients. The core of X-NAS is a multi-protocol
virtualized file system (MVFS), and its key features—a
smart-code wrapper daemon, file-group mapping, and a
file-handle cache—improve X-NAS scalability. X-NAS has
other key features for improving the manageability on
many NAS systems; namely, on-line reconfiguration,
autonomous rebalancing, and automatic migration, in
which files are migrated automatically and dynamically
independently of file-sharing services for clients. To
validate the X-NAS concept, an X-NAS prototype was
designed and tested according to the NFSv2
implementation. These tests indicate that X-NAS attains a
quicker response time and higher throughput than a
conventional single NAS, so its cost-performance
scalability is also higher.

1. Introduction

The advent of broadband networks is rapidly driving
forward the development of services such as business
information systems. Under such circumstances,
companies are promoting the digitization of their data.
Keeping an enormous amount of such digital data means
that the importance of storage systems is rising; thus, the
investment in storage systems in many companies has
reached about three times that for server systems.

Network attached storage (NAS) is a network storage
system—connected to an IP network—for efficiently
managing digital data. NAS has recently been gaining
general acceptance, because it can be managed easily and
share files among many clients that run different
operating systems using different file systems. Among the
various kinds of NAS, an entry-level NAS system is
convenient in terms of cost and ease of management for
offices and departments with no IT (information
technology) experts.

However, an entry-level NAS is not scalable; therefore,
if it becomes filled to capacity, clients must buy another
one. This means that they then have to administer two
NAS systems. Accordingly, the more NAS systems there
are to be administered, the more administration costs will
increase.

To solve the above-described problems, several
scalable distributed file systems have been developed
[1,2,3]. These scalable file systems virtualize many
distributed file systems into a unified one. However, they
can only be used under a UNIX environment. When
clients read or write a file on these file systems, they
usually use file handles (which are file identifiers).
Conventional systems put additional information, which
indicates the file system that stores the file entity, into the
file handles. When they need to rebalance between
several file systems by system reconfiguration, file
migration between several file systems is performed
according to the administrator’s instructions.

The goal of the present work is to introduce a new
concept called X-NAS (where X stands for expandable);
namely, a scalable NAS architecture for NAS
virtualization for reducing the administration cost of
many networked NAS systems. It can be used from
different kinds of clients, such as UNIX and Windows,
like conventional NAS systems. Several key features for
reducing X-NAS overhead can improve the system
scalability while maintaining its manageability. Since X-
NAS is designed for ease of management, it can easily be
reconfigured without stopping file services or changing
setting information, even file handles, in the client
environment. It can also rebalance the available disk
capacity between X-NAS elements automatically and
dynamically in the background (i.e., independently of
file-sharing services for clients).

 This paper also validates an X-NAS concept by using
an X-NAS prototype based on NFSv2 implementation.
The evaluation results indicate that X-NAS incurs a lower
overhead than a conventional entry-level NAS and has
better cost-performance and scalability.

2. System overview

Figure 1 shows an overview of X-NAS, which
includes one P-NAS (parent NAS) node and many C-
NAS (child NAS) nodes. A C-NAS node is equivalent to
a single NAS system, which includes an NFS daemon [4]
and a data partition. Each file system on the data partition
has the same directories tree as that of clients and is used
to store file entities. P-NAS has two special functions: a
multi-protocol virtualized file system, MVFS for short,
and an X-NAS manager. MVFS is a global file system
used for the virtualization and ease of management of
many C-NAS nodes. It distributes each file entity to all
data partitions. The X-NAS manager is responsible for
the X-NAS manageability features such as on-line
reconfiguration, autonomous rebalancing, and automatic
migration facilities (section 4). It adds X-NAS elements
to and deletes them from the X-NAS members by on-line
reconfiguration. It also moves files from one data
partition to the others during X-NAS reconfiguration.

Figure 1. X-NAS overview.

3. X-NAS core

To reduce the administration cost of many NAS
systems, a multi-protocol virtualized file system (MVFS)
has been developed. The MVFS is based on NFS and
distributes all files according to their inode numbers to X-
NAS members. These lower-overhead features enable X-
NAS to achieve effective cost-performance scalability.

3.1. Multi-protocol virtualized file system

The multi-protocol virtualized file system (MVFS), an
X-NAS core, enables the centralized management of
many NAS nodes and provides a unified file system view
for clients. Figure 2 shows the structure of MVFS. It
consists of Xnfsd, Samba [5], the management partition,
an X-NAS configuration table, and a virtual partition
(VP) mapping table.

Xnfsd is a wrapper of the NFS daemon and completely
compatible with NFS (section 3.2.1). It is used for file-
access requests from UNIX clients. Samba is used for
Windows clients. The management partition provides a
unified file system view for clients and is used to specify
the C-NAS nodes that store the file entities. The file
system on the management partition keeps the same files-
and-directories tree as that of clients. However, all files
on the management partition are zero-byte-size dummy
files as shown in Fig. 2. These dummy files are used for
examining the attribute information in the files and
directories. They are also used to specify data partitions to
store the file entities.

The X-NAS configuration table keeps setting
information such as hostnames of X-NAS members and
their export points. The VP mapping table is used to
specify the data partition that stores files entities (section
3.2.2). These tables are updated during X-NAS
reconfiguration.

Figure 2. Structure of MVFS.

The file system on the management partition is
exported to P-NAS and clients. On the other hand, for
security, the file systems on the data partitions are
exported to only P-NAS. When UNIX clients access X-
NAS, they first mount the export point of the
management partition on their mount point directory. As a
result, they can get the root file-handle of the mounted
file system. When they read or write files and directories
by NFS operation, Xnfsd receives the NFS operation in
place of the NFS daemon, and then sends it to the
appropriate NFS daemon.

UNIX (NFS)
client

Windows (CIFS)
client

nfsd nfsd

dir1

dir2 dir3

dir1

dir2 dir3

fileB fileC

nfsd

dir1

dir2 dir3
fileA

LAN

data partition data partitiondata partition

dir1

dir2 dir3

fileA fileB fileC

C-NAS

P-NAS

C-NAS

single file system view

MVFS X-NAS
manager

Samba

Xnfsd

dir1

dir2 dir3

fileA fileB fileC
management partition

VP
mapping

table

X-NAS
configuration

table

Windows clientsUNIX clients

zero-byte-size
dummy file

NFS
daemon

X-NAS
manager

For Windows clients, X-NAS exports the directory on
which the export point for UNIX clients is mounted.
When a Windows client sends a SMB request to X-NAS,
Samba receives the SMB request and sends it to the NFS
daemon via Xnfsd. This method enables X-NAS to be
used by both UNIX and Windows clients at the same time.

3.1.1. Inode-based file-distribution policy. X-NAS
distributes all files into all data partitions according to the
inode numbers of dummy files on the management
partition. The inode number is a unique identifier of
UNIX file systems and has one-to-one correspondence
with the file. In the case of NFS, the file handle includes
the inode number. When Xnfsd receives a file-access
request from UNIX clients, it specifies the inode number
of the dummy file from the file handle. It then specifies
the data partition that stores the file entity by applying a
hashing function, namely, a modulo function, to the inode
number. Inode numbers of dummy files are not random
numbers because they are determined by the file system
on the management partition. However, our file-
deployment policy specifies the data partition by hashing
the inode numbers. All files are therefore distributed
among all data partitions pseudo-randomly. Xnfsd also
uses the inode number to specify the full path name of the
file. The full path name is used to get the local file handle
of the file on the appropriate data partition.

 Using the inode number of the dummy file has two
advantages as given below:
(1) The initial assignment of the file is determined when

that file is created. It is assumed that users and
applications often rename files and directories. Thus,
if the initial assignment of the file is chosen according
to the path name, the file location between many data
partitions may be changed by renaming. In the case of
inode-based assignment, even if clients change the file
name, the inode number of the file stays the same. The
file re-distribution is therefore not needed.

(2) Conventional scalable distributed file systems add
special information to the file handle. This
information is used to specify the file system that
stores that file entity. The conventional systems also
support file or volume migration. If file migration or
volume migration occurs, the file handle must be
revalidated. If clients read or write files by using file
handles, each file-handle can be revalidated. However,
in the case that the file systems are used for a back-up
device, almost all files are accessed only once. In that
case, file systems maintain the correspondence
between the new file handle and the old file handle
permanently. Since disk capacity is limited, it is
difficult to keep the correspondence permanently. X-
NAS solves this problem because it has no additional
information in file handles. Instead of using additional

information, it uses the inode number included in the
file handle to specify the file location.

3.1.2. NFS operations on X-NAS. NFS operations can
be divided into four categories by a file object type and a
process type shown in Table 1. The types of file object
are categorized as files and directories. The types of
process are categorized as read and write.

Table 1: Categories of NFS operations.

Category File object type Process type
1 File Read
2 File Write
3 Directory Read
4 Directory Write

NFS operations belong to categories 1 and 2 are

performed on the management partition and one of the
data partitions, which store the file entities. The NFS
operation of this type is performed as follows. When a
client sends a READ operation to X-NAS, Xnfsd receives
the READ operation in place of the NFS daemon. First,
Xnfsd specifies the data partition that stores the file entity
by using the inode number of the dummy file. Second,
Xnfsd specifies the full path name by tracing the inode
number of the dummy file and the disk blocks. Then, it
sends LOOKUP operations with the full path name to the
appropriate data partition. As the response to the
LOOKUP operations, Xnfsd gets the local file handle of
the file on the data partition. It then sends the READ
operation to the data partition by using this local file
handle. Finally, after Xnfsd gets a response, it sends it
back to the client.

NFS operations belong to category 3 are performed on
only the management partition. When a client sends
LOOKUP operations for a directory to X-NAS, Xnfsd
receives the LOOKUP operations in place of the NFS
daemon. It reads the attribute information about the
directory from the file system on the management
partition, and returns its response to the client.

Since all X-NAS members have the same directries
tree, NFS operations belong to category 4 are performed
on both the management partition and all data partitions.
The flow of MKDIR operation is as follows. When a
client sends a MKDIR operation to X-NAS, Xnfsd
receives the MKDIR operation in place of the NFS
daemon. First, Xnfsd creates a directory on the
management partition. Next, Xnfsd gets the local file
handles from all data partitions by using LOOKUP
operations and the full path name. Xnfsd then sends the
MKDIR operation with the local file handles to all data
partitions. Finally, when Xnfsd gets responses from all
NFS servers, it makes one response from all responses
and sends it back to the clients.

3.2. Scalability

It is difficult to achieve compatibility between simple-
and-unified management and scalability. Accordingly,
although the X-NAS architecture has capacity to scale up
to about a 64 NAS system, we considered the first X-
NAS target market segment to be from entry-level to
midrange NAS. This is because midrange NAS is much
more expensive than an entry-level NAS system and the
cost-and-performance gap between these two NAS
systems is wide. To lower the cost compared with the
expensive midrange NAS, X-NAS uses entry-level NAS
as an X-NAS element. To cover these market segments,
X-NAS provides capacity to scale up to several terabytes.
This is equivalent to the total capacity of ten entry-level
NAS systems. X-NAS can achieve not only capacity
scalability but also cost-performance scalability through
three key features: a smart-code wrapper daemon, file-
group mapping, and a file-handle cache.

3.2.1. Smart-code wrapper daemon. Xnfsd, which is
the heart of MVFS, is implemented as a wrapper of an
NFS daemon. The wrapper daemon receives a file-access
request in place of the NFS daemon from the client, and
sends this request to the appropriate NFS server.
Although Xnfsd emulates the NFS daemon and is
completely compatible with NFS, it has a very simple and
smart structure. Since the X-NAS code makes every
effort to avoid waste, it has only about 10,000 lines of C
code. The quality of X-NAS is therefore higher.
Moreover, Xnfsd does not waste CPU power. By using
this light-weight wrapper daemon, the X-NAS overhead
can thus be reduced.

3.2.2. File-group mapping. Since X-NAS consists of
many NAS systems, it has to manage many more files
than a single NAS system. As the number of files to be
managed increases, more file-mapping information is
needed. To solve this problem, X-NAS manages all files
as a unit of a virtual file group, namely, virtual partition.
Since the virtual partition is a logical unit for managing
files, it has no relevance to the files-and-directories tree
on the management partition. The relation between the
virtual partition and the data partition is stored in a virtual
partition (VP) mapping table. The VP mapping table is
usually located on the memory of P-NAS. It is copied to
the disk space of P-NAS at constant intervals. The VP
mapping table is referred to in order to specify the data
partition that keeps the file entity. It is updated when the
X-NAS configuration is changed (described in section
4.1).

File-group mapping has many advantages. One is that
the amount of mapping information is much smaller than
that of file-level mapping. The second is the short search
time due to the small table size on the memory. The third

is that the VP mapping table is updated rarely, compared
to file-level mapping. These advantages mean that X-
NAS is a low-overhead architecture.

3.2.3. File-handle cache. X-NAS has all information
for specifying the file location on both the management
and data partitions. However, the cost of specifying the
full path name of the file object is high because Xnfsd
traces the disk blocks on the management partition. The
cost of specifying the local file handle on the data
partition by using the LOOKUP operations and the full
path name is also high. To reduce these costs, X-NAS has
a file-handle cache that keeps the correspondence
between the file handle of the dummy file, i.e., the global
file handle, on the management partition and the local file
handle on the data partition. The file-handle cache is
generally kept in memory on P-NAS. As a result of file-
handle tracing, Xnfsd registers the local file handle on the
file-handle cache along with the inode number of the
global file handle and the data partition number that keeps
the file entity. After that, X-NAS can reuse the local file
handle on the memory. The overhead incurred by
accessing the management partition can therefore be
reduced.

4. Key features

Simple administration is a strong sales point of
conventional NAS systems. However, the more NAS
systems there are to be administered, the more
administration costs will increase. To maintain the
manageability of a single NAS while providing a high
level of scalability, X-NAS has three key features: on-line
reconfiguration, autonomous rebalancing, and automatic
migration. These features enable X-NAS reconfiguration
to be easily performed without influencing client
environments.

4.1. On-line reconfiguration

On-line reconfiguration, which can add or remove
NAS nodes easily and transparently without stopping the
client file-sharing services, is a strong feature of X-NAS.
When one of the NAS nodes in X-NAS is unstable, the
administrator removes this NAS node by using a Web
browser. After that, X-NAS automatically moves all
accessible files from the unstable NAS node to the other
nodes.

The core architecture of on-line reconfiguration is two-
layer mapping as shown in Figure 3. The first-layer
mapping correlates the dummy file on the management
partition with the virtual file group, namely the virtual
partition. The second-layer correlates the virtual partition
with the data partition. The relation between the virtual

partition and the data partition is stored in a virtual
partition (VP) mapping table.

Figure 3. File distribution by two-layer
mapping.

All files are handled as a unit of virtual partition,

which is invisible to clients. The number of virtual
partitions N is independent of that of data partitions and is
fixed in advance. In terms of object balancing, using a lot
of virtual partitions in a few data partitions is useful [8,9].
In X-NAS, N is from approximately 100 to 1,000 times
the number of data partitions. A virtual partition ID,
V_ID for short, is calculated by using the inode number
of the dummy file and the virtual partition number N (as
shown in Figure 3). Firstly, each virtual partition is
assigned at data partitions equally. Even if the X-NAS
manager moves the virtual partition from one data
partition to another by on-line reconfiguration, the
correspondence between the file and the virtual partition
to which the file belongs is the same. This is because the
inode number of the dummy file is unchanged and N is a
fixed number. On-line reconfiguration is thus easy; it
simply involves updating the VP mapping table and the
X-NAS configuration table. File migration during on-line
reconfiguration is performed as a unit of virtual partition
in the background, namely, without disturbing the file-
access requests from clients.

4.2. Autonomous rebalancing

The file-distribution policy of X-NAS is based on
inode numbers. According to this distribution policy, the
number of files may be equally distributed among data
partitions. However, each data partition does not use the
same amount of disk space, because each file has a
different size. Moreover, X-NAS can be used in a
heterogeneous environment because the capacity of data
partition may change with shipping year and cost. On-line
reconfiguration, i.e., adding or deleting NAS nodes, also

incurs capacity unbalance. The capacity unbalance
between X-NAS members may cause a concentration of
file-access requests from clients. In response to these
circumstances, X-NAS has an autonomous rebalancing
facility that moves files between data partitions
automatically and dynamically without any client
administration if the available capacity size of each data
partition becomes unbalanced.

Figure 4. Example of autonomous
rebalancing.

The X-NAS manager checks the available capacity

size of each data partition at constant intervals. It moves
some of files in this data partition when the available
capacity size in any data partition is lower than the
threshold chosen in advance. Since files are managed as a
unit of virtual partition, it selects some virtual partitions
randomly on the full data partition according to the VP
mapping table. It then moves files in these virtual
partitions to the other data partitions by NFS operations
such as READ and WRITE. After moving them, the X-
NAS manager updates the VP mapping table. Figure 4
shows an example of autonomous rebalancing. Firstly, the
number of X-NAS members is only two, and all virtual
partitions (in this case N is nine) are mapped to DP1 and
DP2 (step 1). Secondly, X-NAS adds DP3 by on-line
reconfiguration. When the X-NAS manager recognizes
the capacity unbalance, it selects some virtual partitions
(VP1, VP6, and VP9) on both DP1 and DP2 and moves
them to DP3 (step 2). Although there are several
algorithms for selecting which virtual partition to move,
the simplest way is random selection to balance the
available capacity between all data partitions. Since this
autonomous rebalancing facility rebalances data
placement between the X-NAS elements in the
background, clients can continuously access their files on
the X-NAS.

DP1 DP2

DP1 DP2 DP3

step 1

step 2

VP1 VP3

VP5 VP7

VP1 VP3

VP5 VP7

VP2 VP4

VP8 VP9
VP6

VP2 VP4

VP8 VP9
VP6

VP1

VP9
VP6

file

VP1 VP2 VPN

DP1 DPk

virtual partition

data partition

1 2 … N
1 1 … k

VP mapping table
Second-layer mapping

First-layer mapping
V_ID = inode# mod N

 V_ID
data partition

4.3. Automatic migration

Conventional entry-level NAS is not scalable, and it
has no MVFS or on-line reconfiguration functions.
Clients with existing entry-level NAS systems can not
therefore expand their systems. On the other hand, X-
NAS can expand the capacity of the existing NAS by
keeping the files-and-directories tree on the existing NAS
system.

 When the X-NAS manager receives an automatic
migration request from clients, X-NAS stops file-sharing
services on the existing NAS system and mounts the file
system of the existing NAS on X-NAS. Then X-NAS
traces the files-and-directories tree on the existing NAS
and copies this tree to the file system on the management
partition. Just after this copying processing, the VP
mapping table indicates that all virtual partitions belong
to the existing NAS. After X-NAS makes the files-and-
directories tree on the management partition, it restarts the
file-sharing service for clients and moves some virtual
partitions corresponding to the existing NAS to another
data partition in the background. For example, when
using a capacity-rebalancing policy, X-NAS moves the
virtual partitions to balance capacity availability between
all data partitions.

5. Performance evaluation

To validate the X-NAS concept, we implemented an
X-NAS prototype on several 1U Linux servers. (Note that
the X-NAS prototype is now based on the NFSv2
implementation.) All X-NAS functions are provided as a
user-mode process on Linux. Since X-NAS is
independent of the Linux kernel, it is portable.

Evaluation of the overhead and the scalability of X-
NAS were conducted by using the industry-standard
SPECsfs97 benchmark program [6], which measures the
performance of the NFS server, on the X-NAS prototype.
The evaluation index of SPECsfs97 is throughput, that is,
the number of executed NFS operations per second when
the same number of NFS operations is offered. Since
implementation of the X-NAS prototype is based on
NFSv2, an NFSv2 working set was used in the test. Note
that the number of mount points was only one.

5.1. Experimental environment

 Figure 5 shows the experimental environment. Since a
C-NAS only has one data partition, it is the equivalent to
the original NFS server. However, P-NAS has a
management partition in addition to the data partition.
The number of disk accesses to P-NAS is therefore twice
that to C-NAS. To examine the effect by accessing the
management partition, two test cases were performed: one

is that P-NAS has both a management partition and a data
one; the other is that P-NAS has only a management
partition, that is, a redirector.

Linux client
993-MHz 2-way-PentiumIII

LAN

P-NAS C-NAS

D

Management partition
(4 GB)

DDDM

M

Data partition
(20 GB)

D

Scalability: 1-7

100 Megabit Ethernet

X-NAS node

X-NAS node
CPU: 1-GHz Pentium III
Memory: 1 GB
Disk: Ultra 160 SCSI
OS: Kernel 2.4.17

C-NAS C-NAS

MVFS

Figure 5. Experimental environment.

5.2. Experimental results

The performance results from the SPECsfs97 test in
Figure 6 shows the relationship between the offered load
and the average response time of all NFS operations. The
response time of four-way X-NAS is slower than that of
the original NFS server. This is because X-NAS must
access the data partitions on C-NAS via the network. In
the case of a higher offered load, the response time of
four-way X-NAS is dramatically increased. This is
because there is a bottleneck in the disk accesses to P-
NAS. In the case of seven-way X-NAS, the response time
is faster than that of the original NFS because the disk
accesses are distributed between many C-NAS nodes.

NFS

1-way

4-way Redirector-4-way

Redirector-7-way7-way

0.5

0.9

1.3

1.7

2.1

2.5

0 200 400 600 800 1000

Offered load (NFSOPS)

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s/
op

)

Figure 6. Average response time.

Figure 7 shows the relationship between offered load

and delivered load. The delivered load indicates whether
the system can process all NFS operations of an offered
load within a benchmarking time. If the delivered load is
equal to the offered load, it indicates that no bottleneck
occurs in the system. As shown in Figure 7, the peak
delivered load of the original NFS is 700 NFSOPS. On
the other hand, the one- and four-way X-NASs have
lower performance than the original NFS server. However,
when the number of data partitions increases, the
delivered load on X-NAS becomes higher than that on the
original NFS. When the offered load is 1000 NFSOPS,
the delivered load is sustained (i.e., load is saturated).

0

200

400

600

800

1000

0 200 400 600 800 1000
Offered load (NFSOPS)

D
el

iv
er

ed
 lo

ad
 (N

FS
O

PS
)

NFS

1-way

4-way Redirector-4-way

Redirector-7-way7-way

Figure 7. Throughput.

5.3. Discussion

To investigate the above-mentioned load saturation,
the response times for LOOKUP and READ operations
were analyzed. Figure 8 shows the average response time
for LOOKUP operations. It is clear that the average
response times of the one- and four-way X-NASs
dramatically increase. This indicates that the bottleneck is
caused on P-NAS by accessing the management partition.
On the other hand, the response time of seven-way X-
NAS is constant. This is because there is no bottleneck in
the disk accesses to P-NAS. On the other hand, the
average response time of READ operations (shown in
Figure 9) gets longer as the load increases. However, at
1000 NFSOPS, the average response time for READ
operations saturates. This means that the bottleneck is not
disk access.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

NFS
1-way

4-way Redirector-4-way
Redirector-7-way7-way

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s/
op

)

Offered load (NFSOPS)

Figure 8. Average response time for
LOOKUP operations.

 The transfer rate of the network was calculated by

using the workload mix and the average file size to be
accessed on the SPECsfs97 benchmark program. As a
result, it was found that the bottleneck is the network
transfer rate. The evaluation environment consisted of a
100-Mbit Ethernet as the network. However, if the
Gigabit Ethernet were used, this network bottleneck could
be reduced.

Results of the performance evaluation described above
demonstrate that X-NAS attains a quicker response time
and a higher throughput than a single NFS server. This
result verifies that the X-NAS has good cost-performance
scalability.

0

2

4

6

8

10

12

0 200 400 600 800 1000

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s/
op

)

Offered load (NFSOPS)

NFS
1-way

4-way Redirector-4-way
Redirector-7-way7-way

Figure 9. Average response time for
READ operations.

6. Related work

There are several studies on scalable distributed file
systems based on NFS. In particular, DiFFS [1,2] and
Slice [3] resemble X-NAS in terms of their design
principles. DiFFS delivers high performance because it is
distributed among many partitions. It puts additional
information, i.e., the partition ID, into a file handle. File
handles must therefore be revalidated in the case of on-
line reconfiguration. Slice, developed at Duke University,
is also close to X-NAS in terms of its partition approach
and use of directory servers. The partition used in Slice is
a single server. Slice also puts a file ID as a routing key in
each file handle, so it can be easily reconfigured.
However, it must revalidate the file handles when the
system is reconfigured. Furthermore, these scalable
distributed file systems do not correspond to Windows
clients.

As for on-line reconfiguration, several file relocation
algorithms has been proposed. For example, LH* which
is a generalization of Linear Hashing [7], distributes files
among many disks by hashing primary keys of file
objects. When an administrator wants to add a new disk
to a cluster, it moves the half of objects on one disk to the
new disk. The optimal algorithm proposed by Honicky
[8,9] uses a “set” that is similar to a virtual partition of X-
NAS. In this algorithm, each file is mapped to a set that
contains many file objects. When administrators add a
new disk, this algorithm specifies all of the sets that will
be moved from an existing disk, and moves them to the
new one. However, these two algorithms have to send
messages about the update configuration to clients.

Lunar Flare NAS, developed at Tricord, is a Windows-
based scalable NAS system [10]. It can be used both on
UNIX and Windows clients. Its key feature is its Illumina
software, which performs NAS aggregation. Since
Illumina is distributed to all elements, Lunar Flare NAS
has high scalability. However, since it is based on the
unique file system, the members of Lunar Flare NAS are
limited to products by Tricord.

 X-NAS is a scalable architecture based on a standard
file system such as NFS. It can provide file-sharing
services for many kinds of conventional client OS. To
specify the file location, it uses the inode number instead
of using additional information in each file handle. An
autonomous rebalancing facility checks the available
capacities of each data partition at constant intervals. It
moves files as a unit of virtual partition when capacity
unbalancing occurs or administrators add or delete NASs.
These file-migration processes are performed dynamically
and automatically in the background (i.e., independently
of file-sharing services for clients). In addition, X-NAS
allows its elements to be many kinds of NAS systems
with NFS services, since X-NAS elements need no
special information about X-NAS. It can also expand the
capacity of the existing NAS system by keeping the
existing files-and-directories tree; therefore system
reconfigurations are easily performed.

7. Future work

X-NAS has key features for scaling up its capacity
while keeping its performance. It can thus achieve good
cost-performance scalability in our target market segment,
in which there are about ten NAS systems. However,
when the number of NAS systems to be managed by X-
NAS ranges from about 32 to 64, the performance of
current X-NAS is not sufficient. This is because the file-
access requests on the current X-NAS are managed by
one P-NAS. To solve this problem, two approaches are
being considered: hardware and software improvements
to eliminate the network bottleneck; and raising the CPU
frequency and on-chip multiprocessor to eliminate the
CPU bottleneck. In the former approach, applying Gigabit
Ethernet and changing the transmitting policy, which
directly returns the responses of the file-access requests
from the data partitions to the client, are promising. If the
network bottleneck were eliminated, a CPU bottleneck
would occur. However, the CPU usage is less than 30%
on the current P-NAS when the number of X-NAS
members is up to eight. The CPU bottleneck thus can be
reduced by the latter approach.

As for petabytes scalability of X-NAS, a hierarchical
approach is essential. Since there are several methods for
a hierarchical approach, it is not described here in detail.
However, grid architecture will be useful in terms of
security.

Regarding X-NAS reliability, a single point of failure
is also a problem. However, it can be solved by X-NAS
clustering, which will be discussed in detail in another
paper.

8. Conclusions

A new concept, named X-NAS, a highly scalable NAS
system, has been developed. The X-NAS core, named
MVFS, provides a single file system view for clients that
run on the different operating systems and enables
administrators to manage many NAS elements easily.
Three key features of MVFS can improve the X-NAS
cost-performance scalability. Firstly, a smart-code
wrapper daemon with low overhead in place of a NFS
daemon distributes file-access requests into many NFS
servers. The file-distribution policy based on inode
numbers is useful for renaming of files and directories
and the system reconfiguration. Secondly, file-group
mapping can reduce the amount of file-distribution
information. By this mapping, the overhead to search for
the file location can be reduced. Thirdly, the file-handle
cache, which keeps the correspondence between the
global file handle and the local file handle, enables the
overhead for accessing MVFS to be reduced.

To improve the manageability of many NAS systems,
X-NAS’s on-line reconfiguration enables administrators
to add or remove X-NAS elements without stopping file-
sharing services for clients. In addition, autonomous
rebalancing can rebalance the available disk capacity by
moving files between X-NAS members automatically and
dynamically independently of file-sharing services for
clients. Furthermore, automatic migration expands the
capacity of the existing NAS node by keeping the existing
files-and-directories tree.

An X-NAS prototype, which is based on NFSv2
implementation, delivers a quicker response time and a
higher throughput compared to a single original NFS
server running the SPECsfs97 benchmark program. X-
NAS not only maintains the performance of the single
NAS system but also provides a unified file system view
for both UNIX and Windows clients. Consequently, X-
NAS has good cost-performance scalability.

References

[1] Christos Karamanolis et al.: DiFFS: a Scalable Distributed
File System, Technical Report HPL-2001-19, HP
Laboratories Palo Alto, 2001.

[2] Christos Karamanolis et al.: An Architecture for Scalable
and Manageable File Services, Technical Report HPL-
2001-173, HP Laboratories Palo Alto, 2001.

[3] Darrell C. Anderson et al.: Interposed Request Routing for
Scalable Network Storage, ACM Transactions on
Computer Systems, Vol. 20, No. 1, February 2002.

[4] Brent Callaghan: NFS Illustrated: Addison-Wesley
Professional Computing Series: Addison-Wesley, 2000.

[5] Chris Hertel: Samba: An Introduction:
http://us1.samba.org/samba/docs/SambaIntro.html

[6] Standard Performance Evaluation Corporation: SFS3.0
Documentation Version 1.0: http://www.spec.org

[7] Witold Litwin et al.: LH*: a scalable, distributed data
structure, ACM Transactions on Database Systems,
Vol.21, No. 4, 1996.

[8] R. J. Honicky et al.: An Optimal Algorithm for Online
Reorganization of Replicated Data, Technical Report
UCSC-CRL-02-36, University of California, Santa Cruz,
November 2002.

[9] R. J. Honicky et al.: An Optimal Algorithm for Online
Reorganization of Replicated Data, In Proceedings of the
17th International Parallel and Distributed Processing
Symposium (To be published).

[10] Tricord systems: http://www.tricord.com

http://www.sepc.org/

	Introduction
	System overview
	X-NAS core
	Multi-protocol virtualized file system
	Inode-based file-distribution policy. X-NAS distributes all files into all data partitions according to the inode numbers of dummy files on the management partition. The inode number is a unique identifier of UNIX file systems and has one-to-one correspo
	NFS operations on X-NAS. NFS operations can be divided into four categories by a file object type and a process type shown in Table 1. The types of file object are categorized as files and directories. The types of process are categorized as read and wri

	Scalability
	Smart-code wrapper daemon. Xnfsd, which is the heart of MVFS, is implemented as a wrapper of an NFS daemon. The wrapper daemon receives a file-access request in place of the NFS daemon from the client, and sends this request to the appropriate NFS serve
	File-group mapping. Since X-NAS consists of many NAS systems, it has to manage many more files than a single NAS system. As the number of files to be managed increases, more file-mapping information is needed. To solve this problem, X-NAS manages all fil
	File-handle cache. X-NAS has all information for specifying the file location on both the management and data partitions. However, the cost of specifying the full path name of the file object is high because Xnfsd traces the disk blocks on the management

	Key features
	On-line reconfiguration
	Autonomous rebalancing
	Automatic migration

	Performance evaluation
	Experimental environment
	Experimental results
	Discussion

	Related work
	Future work
	Conclusions

