
Using Multiple Predictors to Improve the Accuracy of File Access Predictions

Gary A. S. Whittle Jehan-François Pâris1 Ahmed Amer2 Darrell D. E. Long 2 Randal Burns
U. of Houston U. of Houston U. of Pittsburgh U. C. Santa Cruz Johns Hopkins U.

gwhittle@hess.com paris@cs.uh.edu a.amer@acm.org darrell@cs.ucsc.edu randal@cs.jhu.edu

Abstract

Existing file access predictors keep track of previous
file access patterns and rely on a single heuristic to pre-
dict which of the previous successors to the file being
currently accessed is the most likely to be accessed next.
We present here a novel composite predictor that applies
multiple heuristics to this selection problem. As a result,
it can make use of specialized heuristics that can make
very accurate predictions when access patterns are
observed to meet their particular criteria. Simulation
results involving a total of seven file access traces indi-
cate that our predictor delivers more correct predictions
and less inaccurate guesses than predictors relying on a
single heuristic for selecting a successor.

1. Introduction

One of the most difficult problems facing operating
systems designers is finding the best way to manage
memory hierarchies consisting of devices with widely
different access times. The problem is not new and is in
fact worsening as gains in main memory access times
have dramatically outpaced gains in disk access times.12

Two main techniques can be used to mitigate this
problem, namely caching and prefetching. Caching keeps
in memory the data that are the most likely to be used
again while prefetching attempts to bring data in memory
before they are needed. Prefetching is inherently more
difficult to implement than caching because prefetched
data that are not needed can have a direct negative imp act
on system performance while keeping in a cache data that
will not be reused only reduces the cache effectiveness.
As a result, most systems err on the side of caution and do
not exploit the full potential of the technique. In particu-
lar, no existing system implements anticipatory file
prefetching, that is, prefetching entire files before they are
accessed.

1 Supported in part by the Texas Advanced Research Program under
grant 003652-0124-1999 and the National Science Foundation under
grant CCR-9988390.
2 Supported in part by the National Science Foundation under grant
CCR-9972212 and the USENIX Association.

One of the key requirements for a successful imple -
mentation of anticipatory file prefetching is a good file
access predictor. This predictor should have reasonable
space and time requirements, make as many successful
predictions as possible and as few bad predictions as fea-
sible.

Most early file access predictors [14, 5, 9, 8] relied on
sophisticated heuristics that required maintaining a large
amount of information about past references to each file.
Two more recent contributions [1, 2] have shown that
very simple predictors requiring much less context
information could provide surprisingly accurate
predictions. We propose a novel approach. Rather than
relying on a single predictor we apply several
independent heuristics to the same context information
and select the one that is the most likely to deliver an
accurate prediction. This approach has two major
advantages. First, we do not have to rely on a single
general-purpose method and can make use of several
more specialized heuristics that return very accurate pre-
dictions when some specific access pattern is present.
Second, having all heuristics sharing the same context
information means that we do not incur any additional
overhead.

Simulation results involving a total of seven file access
traces have corroborated the soundness of our approach:
combining several heuristics increases the number of
good predictions while reducing the number of incorrect
guesses.

The remainder is organized as follows. Section 2
reviews previous work on file access prediction. Section
3 introduces the effective-miss-ratio criterion that we used
in our study. Section 4 presents the four heuris tics com-
prising our predictor and discusses their individual
performances. Section 5 introduces our predictor and
compares its performance with that of other predictors,
namely Last Successor, Stable Successor and Recent
Popularity. Finally, Section 6 states our conclusions.

2. Previous Work

Palmer et al. [11] used an associative memory to
recognize access patterns within a context over time.
Their predictive cache, named Fido, learns file access
patterns within isolated access contexts. Griffioen and

Appleton presented in 1994 a file prefetching scheme
relying on graph-based relationships [5]. Shriver et al.
[13] proposed an analytical performance model to study
the effect of prefetching for file system reads.

Tait et al. [14] investigated a client-side cache man-
agement technique used for detecting file access patterns
and for exploiting them to prefetch files from servers. Lei
and Duchamp [9] later extended this approach and in-
troduced the Last Successor predictor. More recent work
by Kroeger and Long introduced more effective schemes
based on context modeling and data compression [8].

Two much simpler predictors, Stable Successor (or
Noah) [1] and Recent Popularity [2], have been recently
proposed. The Stable-Successor predictor is a refinement
of the last-successor predictor that attempts to filter out
noise in the observed file reference stream. Noah
maintains the id of the last file that was a successor to the
current file (the “last successor”), as well as a current
“stable successor.” The stable successor is updated with
the id of the last successor only if the last successor is the
same for a “stability” count number of references. The
Recent Popularity or j-out-of-k predictor maintains the k
most recently observed successors of each file. When
attempting to make a prediction for a given file, recent
popularity searches for the most popular successor from
the list. If the most popular successor occurs at least j
times then it is submitted as a prediction. When more
than one file qualifies as “most popular,” recency is used
as the tiebreaker.

Finally, Yeh et al. investigated a simple but effective
successor model that identifies the relationships between
files through identification of the programs accessing
them [17].

3. Evaluating the Performance of a File
Predictor

When comparing the effectiveness of file predictors,
one is often confronted with two primary metrics,
success-per-reference and success-per-prediction.
Because of the dependent nature of these metrics, it is not
possible to use either of them alone when assessing the
performance of any given predictor. For example, a
predictor that has a 99% success-per-prediction rate
would be considered impractical if it could only be used
on 5% of the references. Conversely, predictors that have
a high success-per-reference rate may also give rise to a
high number of incorrect predictions that may tax the file
system to an extent that outweighs any improvements due
to predictive prefetching. Another disadvantage of
success-based metrics is that they discount the perform-
ance improvement achieved by increasing the success rate
of a predictor from, say, 86 to 93%. It makes this
improvement appear marginal, even though it represents a
50% reduction in the number of misses .

We propose a third metric integrating both aspects of
the predictor performance. Consider first the two possi-

ble outcomes of an incorrect prediction. If we assume no
preemption, the next file access will have to wait while
the predicted file is loaded into the cache. The cost of the
incorrect prediction is thus one additional cache miss.
Allowing preemption would reduce this delay and
decrease the penalty. Note that the incorrect prediction
will have no other adverse effect on the cache perform-
ance as long as the cache replacement policy expels first
the files that were never accessed.

We define the effective-miss-ratio of a predictor as the
ratio:

ref

incorrcorrref

N
NNN α+−

where corrN is the number of correct predictions, incorrN
the number of incorrect predictions and refN the number
of references and the α factor represents the impact of file
fetch preemption on the performance of the predictor. A
zero value for α corresponds to the situation where incor-
rect predictions incur no cost because all predicted file
fetches can be preempted when found to be incorrect
without any further delay. A unit value assumes that
there is no fetch preemption, and all ongoing fetches must
be completed, whether correctly predicted or not. An
intermediate α value corresponds to situations where pre-
emption is possible, but at some cost less than the cost of
a file fetch. Computing the effective-miss-ratio for α
values of, say, 0.0, 0.5 and 1.0 will permit us to compare
predictors for a realistic range of file-system implementa-
tions. Predictors that perform well for all α values will be
said to be α-stable and assumed to be more likely to live
up to expectations once implemented.

4. The Four Base Heuristics

As observed by the authors [2, 16], between 80% and
90% of successors for any file reference are present
among the last 10 to 20 successors of that file. We can
safely reduce the problem of file prediction to that of
selecting the next successor from a limited successor
history. If the actual successor is not present in that
history, it is unlikely that it will occur in an extended suc-
cessor history, even we increase this history to
impractical lengths.

We investigated several possible heuristics and
selected four that we evaluated by simulating their opera-
tion on two sets of file traces. The first set consisted of
four file traces collected using Carnegie Mellon Univer-
sity’s DFSTrace system [10]. The traces include mozart,
a personal workstation, ives, a system with the largest
number of users, dvorak , a system with the largest
proportion of write activity, and barber, a server with the
highest number of system calls per second. These traces
provide information at the system-call level, and

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Consecutive Successors

S
uc

ce
ss

 P
er

 P
re

di
ct

io
n

(%
)

barber
dvorak
ives
mozart
instruct
research
web

Figure 1: Performance of Most Recent Consecutive Successors Heuristic

represent the original stream of access events not filtered
through a cache. They include between four and five mil-
lion file accesses. Our second set of traces was collected
in 1997 by Roselli [12] at the University of California,
Berkeley over a period of approximately three months.
To eliminate any interleaving issues, these traces were
processed to extract the workloads of an instructional
machine (instruct), a research machine (research) and a
web server (web).

It should be pointed out that we based our evaluation
of the four heuristics on the success-per-prediction
metric. For any given reference, we want to determine
which heuristic, if it causes a prediction to be made, pre-
dicts most successfully. Heuristics that cannot be applied
often are still of importance if they predict well, as they
can be used in conjunction with other heuristics to
achieve the lowest possible effective-miss-ratio. This is
the main advantage of using several heuristics in our pre-
dictor: we do not have to limit ourselves to general-
purpose heuristics, but can take advantage of more accu-
rate models when the criteria for their use are met.

4.1. Most recent consecutive successors

The most intuitively powerful heuristic for successor
selection is the presence of most recent consecutive suc-
cessors in the successor history. If we encounter the file
reference sequence “ABCBCBCB,” it is quite probable
that the next reference will also be to file “C.” The suc-
cessor history for file B at this point will end in “CCC.”
Note that we are interested in the abil ity of this heuristic
to predict the next reference, not references beyond that.

We tested this heuristic against all of the file system
traces to derive the relationship between success-per-
prediction and the number of most recent consecutive
successors. The results are shown in Figure 1. For the
sequence “ABCBCBCB,” the success-per-prediction
percentage if we assume that “C” will be referenced next
is between 63% and 80%, depending on the trace. For the
sequence “ABCBCBCBCBCBCBCB” this increases to
between 87% and 92%. On the whole, the success-per-

prediction curve increases linearly as the number of con-
secutive successors increases from one through three,
after which it begins to reduce to a fairly shallow slope
beyond about six successors. For all traces, more than six
most recent consecutive successors are a strong indicator
that this successor will be referenced next.

4.2. Predecessor position

Several studies of file prediction have hypothesized
that there is considerable correlation between file prede-
cessors and their corresponding successors [11, 15, 4, 6,
7, 3, 8]. If the file reference sequence “ABC” occurred in
the recent past, then the reappearance of the sequence
“AB” in the present could lead us to expect that a
reference to file “C” would fo llow. We tested this
heuristic against all of the file system traces to derive the
relationship between success-per-prediction and the
position of the first predecessor in the history that
matches the predecessor of the current reference (if such a
match is found). To achieve this, we kept a 20-element
successor list and a 20-element predecessor list per file,
maintained on a most-recent basis. This is equivalent to a
most recent context model of depth equal to one.

The results are shown in Figure 2. Position 1 on the
graph represents the most recent element in the list. The
graph suggests that use of a predecessor heuristic can
yield prediction accuracies between 55 percent and 90
percent. There is no apparent relationship between the
position of the predecessor in the history and the predic-
tion accuracy, although the accuracy is improved for
positions 1 and 2 (most recent) for all traces except Web.

4.3. Pre-predecessor position

The predecessor position heuristic was extended to
include one additional level of depth. If the file reference
sequence “ABCD” occurred in the recent past, then the

50
55

60
65

70

75
80

85
90

95
100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Predecessor Position in History

S
u

cc
es

s
P

er
 P

re
d

ic
ti

o
n

 (
%

)

barber
dvorak
ives
mozart
instruct
research
web

Figure 2: Performance of Predecessor Position Heuristic

50
55
60
65
70
75
80
85
90
95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pre-Predecessor Position in History

S
u

cc
es

s
P

er
 P

re
d

ic
ti

o
n

 (
%

)

barber
dvorak
ives
mozart
instruct
research
web

Figure 3: Performance of Pre-Predecessor Position Heuristic

reappearance of the sequence “ABC” in the present could
lead us to expect that a reference to file “D” would fol-
low. We tested this heuristic against all of the file system
traces to derive the relationship between success-per-
prediction and the position of the first pre-predecessor
and predecessor in the history that matches the pre-
predecessor and predecessor of the current reference (if
such a match is found). To achieve this, we kept a 20-
element successor list, a 20-element predecessor list and a
20 element pre-predecessor list per file, maintained on a
most-recent basis. This is equivalent to a most recent
context model of depth equal to two.

The results are shown in Figure 3. Position 1 on the
graph represents the most recent element in the list. The
graph suggests that use of a pre-predecessor heuristic can
yield prediction accuracies between 65 percent and 95
percent. As we found for the predecessor position
heuristic, there is no apparent relationship between the
position of the pre-predecessor in the history and the
prediction accuracy, although there is a marked improve-
ment in prediction accuracy for positions 1 through 3
(most recent).

4.4. j-out-of-k ratio for most frequent successor

The last heuristic that was analyzed relates to the depend-
ence of prediction accuracy on the distribution of the
most frequent successor in the successor history. This
heuristic can be parameterized as a j-out-of-k Ratio heu-
ristic, where j is the number of occurrences of the most
frequent successor, and k is the successor history length.
We tested this heuristic against all of the file system
traces to derive the relationship between success-per-
prediction and values of j/k . k was varied between 1 and
20. For each value of k , j was permitted to vary between
1 and k – 1. Cases where j was equal to the history
length k were excluded, as these cases are more effec-
tively subsumed by the most recent consecutive
successors heuristic analyzed earlier. The results are
shown in Figure 4.

Vertical alignment of data points on the graph is seen
to occur at the more frequent quotients resulting from

y = 104.83x - 9.9606
R2 = 0.9315

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

j/k Ratio

S
uc

ce
ss

 P
er

 P
re

di
ct

io
n

(%
)

Figure 4: Performance of j/k Ratio Heuristic.

permuted integer ratios (1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4).
The graph shows a linear regression line fit to the data
points. Although there are a moderate number of outliers,
the results suggest that there is a high degree of linear
correlation between the j/k ratio and the success-per-
prediction (regression coefficient of 0.9315). Variation
from the linear trend is seen to increase towards the center
of the distribution, around a j/k ratio of 0.5. We hypothe-
size that this is a natural departure of the data from our
underlying linear model, towards the point of maximum
uncertainty in the outcome.

5. Our Composite Predictor

Results of the previous sections allowed us to make
two hypotheses:
1. Each heuristic, when applied to any given successor

history, may give rise to a different success-per-
prediction measurement. The heuristics are assumed
to be largely independent.

2. Success-per-prediction measurements can be directly
related to the probability of a successful prediction.

If we assume the validity of these hypotheses, we should
be able to devise a composite predictor using the outputs
of these heuristics to produce more accurate predictions
of the successor of the current file.

Our composite predictor uses a very simple approach:
1. It applies first each of the four analyzed heuristics to

obtain independent predictions of the successor of a
given file.

2. Any heuristic that can be applied to the current
context will return a prediction of the next file id and
a heuristic weight estimating the probability of suc-
cess of that prediction.

3. The predictor selects the prediction that came with
the highest heuristic weight and compares this weight
with a fixed probability threshold.

4. If the weight of the prediction is greater than or equal
to the threshold, our composite predictor accepts the
prediction. Otherwise, it declines to make any pre-
diction.

5.1. Use of Heuristic Weights in Estimating File
Occurrence Probabilities

An earlier stated hypothesis was that success-per-
prediction measurements could be directly related to the
probability of a successful prediction. Analysis
performed in Section 4 related success-per-prediction,
and hence occurrence probability, to variation in the
parameters controlling each of four heuristics. From this,
we can obtain from the use of each heuristic, not only a
predicted file, but also an estimate of its probability of
occurrence.

The analysis performed in Section 4 utilized data from
all seven traces. When obtaining heuristic weights from
this data, that relate variation in heuristic parameters to
file reference probability, we must eliminate the possibil-
ity of a-priori information from distorting the objective-
ness of our results. To this end, we estimated the heuris -
tic weights using multiple methods prior to running
simula tions to measure the effectiveness of our composite
predictor. These methods include:
1. Cross-Training: Only mean heuristic weights from

the CMU file system traces were used in simulations
run on the Berkeley traces. Simulations for the CMU
file system traces only used mean weights derived
from the Berkeley traces.

2. Mean-Weights: The same set of mean heuristic
weights from all seven traces was used in simulations
for all traces.

3. Adjusted Mean-Weights: The mean heuristic weights
from all seven traces were adjusted by plus or minus
10 percent and 20 percent. The resulting heuristic
weights were used in simulations for all traces.

4. For the j-out-of-k ratio heuristic, a simple ratio of j/k
was used to estimate the prediction probability for all
simulations.

5.2. Selecting a probability threshold

The probability threshold utilized in our composite
predictor is used to improve its overall performance (as
measured by effective-miss-ratio) in situations where
there are penalties for missed predictions. When there is
no penalty for a missed prediction (the case when
α = 0.0), the algorithm should always predict, so the
threshold is set to zero. When the penalty for a missed
prediction is equal to one successful prediction (the case
when α = 1.0), it is necessary to set the probability
threshold to 0.5 in order to exc lude predictions that would
otherwise reduce the overall effective-success-per-
reference. In a similar manner, when α is equal to 0.5,
the probability threshold is set to one third.

5.3. Experimental results

We simulated the execution of our composite predictor
using the seven file system traces, for α values of 0.0, 0.5
and 1.0. Simulations were run using heuristic weights
computed using the cross-training, mean-weights and
adjusted-mean-weights methods described previously.
All simulations used a successor history length of twenty
file identifiers.

As shown in Figure 5, performance of our composite
predictor is quite insensitive to the heuristic weight com-
putation method, even when the weights are derived from
other file system traces, or when they are adjusted up or
down by as much as 20%. The weights derived from a
mean of the weights of all of the file system traces gave
the best performance in almost all cases, so these will be
used in subsequent simulations.

5.4. Use of a Confidence Measure to Improve
Performance

Regardless of the file prediction scheme used, it is
unlikely that it will be able to predict a successor for all
files at all times. For this reason, we added to our pre-
dictor a confidence measure, whose purpose is to restrict
its use to the files that are most benefited by it.

The confidence measure is a simple 0.0 to 1.0 saturat-
ing counter that is maintained for each file. It is initial-
ized to a value of 0.5. It is incremented by 0.1 on a

α=0.0

0

10

20

30

40

50

60

70

80

90

100

Ba
rbe

r

Dvor
ak Ive

s

Moza
rt

Ins
truc

t

Rese
arc

h Web

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (%

) Cross-Training
Mean-Weights (-20%)
Mean-Weights (-10%)
Mean-Weights
Mean-Weights (+10%)
Mean-Weights (+20%)

α=0.5

0
10
20
30
40
50
60
70
80
90

100

Ba
rbe

r

Dv
ora

k Ive
s

Moza
rt

Ins
tru

ct

Rese
arc

h Web

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (%

)

Cross-Training
Mean-Weights (-20%)
Mean-Weights (-10%)
Mean-Weights
Mean-Weights (+10%)
Mean-Weights (+20%)

α=1.0

0

10

20

30

40

50

60

70

80

90

100

Ba
rbe

r

Dvor
ak Ive

s

Moza
rt

Ins
truc

t

Rese
arc

h Web

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (%

) Cross-Training
Mean-Weights (-20%)
Mean-Weights (-10%)
Mean-Weights
Mean-Weights (+10%)
Mean-Weights (+20%)

Figure 5: Effect of Heuristic Weight Computation

Method on Performance.

α=0.5

0

10

20

30

40

50

60

70

80

90

100

Ba
rbe

r

Dv
ora

k Ive
s

Moza
rt

Ins
tru

ct

Rese
arc

h Web

E
ff

ec
tiv

e
M

is
s

R
at

io
 (

%
) No Confidence Measure

With Confidence Measure

α=1.0

0

10

20

30

40

50

60

70

80

90

100

Ba
rbe

r

Dv
ora

k Ives
Moza

rt

Ins
truc

t

Rese
arc

h W
eb

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (

%
) No Confidence Measure

With Confidence Measure

Figure 6: Effect of Use of Confidence Measure on
Performance.

successful prediction and is decremented by 0.05 on an
incorrect prediction. It is always updated, even if a pre-
diction was not used because the prediction probability
failed to exceed the probability threshold. For α values
greater than 0.0, the prediction is rejected whenever the
current value of the confidence measure is less than 0.5.

Figure 6 shows the performance of our composite pre-
dictor for α values of 0.5 and 1.0 using the mean heuristic
weights and a successor history length of 20 file identifi-
ers, without and with the use of a confidence measure.
The confidence measure has no impact when α is zero, as
there is no penalty for a missed prediction.

Use of the confidence measure improved performance
of the predictor in all cases when α was greater then zero.
For the case when α was 0.5, the average improvement in
effective-miss ratio was 1.13 percent. For the case when
α was 1.0, this increased to 3.23 percent.

5.5. Effect of Successor History Length on
Performance of the Composite Predictor

Figure 7 shows the effect of successor history length
on the performance of our composite predictor for all
seven file system traces and α values of 0.0, 0.5 and 1.0.

The composite predictor used mean heuristic weights
and incorporated a confidence measure. As we can see,
using a successor history length of nine file identifiers
will result in effective-miss-ratio measures for all cases
that are within one percent of the values obtained with a
successor history length of 20 file identifiers. Consider-
ing the savings in time and space complexity resulting
from using a shorter successor history length, with mini-
mal reduction in prediction performance, we decided to
use nine file identifiers in the successor history for subse-
quent simulation.

5.6. Effect of Heuristic Combinations on
Performance of the Composite Predictor

Figure 8 shows the effect of heuristic combinations on
the performance of our composite predictor for all seven
file system traces and α values of 0.0, 0.5 and 1.0. The
letters CS denote the consecutive successors heuristic,
PR the predecessor position heuristic, PP the pre-
predecessor position heuristic and JK the j-out-of-k ratio
heuristic.

A surprising result of this analysis was that the heuris -
tic combination CS-PP-JK gave results that were
marginally better in most of the cases than using all four
heuristics, CS-PR-PP-JK. Our current thinking is that the
PR (predecessor position) heuristic is probably assigned
heuristic weights that are slightly higher than they should
be. We believe that this is causing it to control predic-
tions that would be better left to one of the other
heuristics. More work is still needed in this area.

5.7. Performance of the Composite Predictor
When Compared to Others Tested

Figure 9 compares the performance of our composite pre-
dictor to that of the Last Successor, Stable Successor and
Recent Popularity (j-out-of-k) predictors for all seven file
traces and α values of 0.0, 0.5 and 1.0. Our composite
predictor used all four heuristics, mean heuristic weights,
a successor history length of 9 file identifiers, and incor-
porated a confidence measure.
Note that the results for the Recent Popularity predictor
represent the best that could be achieved by manual
selection of the optimal parameters. This could explain
why Recent Popularity always outperforms Last Succes-
sor and outperforms Stable Successor in 20 of the 21
experiments.

α=0.0

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Successor History Length

E
ff

ec
tiv

e
M

is
s

R
at

io
 (%

)

Barber
Dvorak
Ives
Mozart
Instruct
Research
Web

α=0.5

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Successor History Length

E
ff

ec
tiv

e
M

is
s

R
at

io
 (%

)

Barber
Dvorak
Ives
Mozart
Instruct
Research
Web

α=1.0

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Successor History Length

E
ff

ec
tiv

e
M

is
s

R
at

io
 (%

)

Barber
Dvorak
Ives
Mozart
Instruct
Research
Web

Figure 7: Effect of Successor History Length on Performance of the Composite Predictor.

α=0.0

-10

0

10

20

30

40

50

60

70

80

90

100

Barber Dvorak Ives Mozart Instruct Research Web

File System Trace

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (

%
) CS

CS-PR

CS-PP

CS-PR-PP

CS-PR-JK

CS-PP-JK

CS-PR-PP-JK

α=0.5

-10

0

10

20

30

40

50

60

70

80

90

100

Barber Dvorak Ives Mozart Instruct Research Web

File System Trace

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (

%
) CS

CS-PR

CS-PP

CS-PR-PP

CS-PR-JK

CS-PP-JK

CS-PR-PP-JK

α=1.0

-10

0

10

20

30

40

50

60

70

80

90

100

Barber Dvorak Ives Mozart Instruct Research Web

File System Trace

E
ff

ec
tiv

e
M

is
s

R
at

io
 (

%
) CS

CS-PR

CS-PP

CS-PR-PP

CS-PR-JK

CS-PP-JK

CS-PR-PP-JK

Figure 8: Effect of Heuristic Combinations on Performance of our Composite Predictor.

α=0.0

0

10

20

30

40

50

60

70

80

90

100

Barber Dvorak Ives Mozar t Instruct Research Web

File System Trace

E
ff

ec
tiv

e
M

is
s

R
at

io
 (

%
)

Last Successor

Stable Successor

Recent Popularity

Composite

α=0.5

0

10

20

30

40

50

60

70

80

90

100

Barber Dvorak Ives Mozar t Instruct Research Web

File System Trace

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (%

)

Last Successor

Stable Successor

Recent Popularity

Composite

α=1.0

0

10

20

30

40

50

60

70

80

90

100

Barber Dvorak Ives Mozar t Instruct Research Web

File System Trace

E
ff

ec
ti

ve
 M

is
s

R
at

io
 (%

)

Last Successor

Stable Successor

Recent Popularity

Composite

Figure 9: Comparing the Performance of our Composite Predictor to those of the Last Successor, Stable
Successor and Recent Popularity Predictors.

As we can see, our hybrid predictor always performs
better than the three other predictors: Across all traces
and for all values of α, when compared to the best of the
three other predictors examined, the minimum reduction
in effective-miss-rate was 5.09%, the maximum was
44.79% and the average reduction was 13.7%. This is a
very satisfactory result as our hybrid protocol operates
on the same successor history as the Stable Successor
and the Recent Popularity predictors and, unlike Recent
Popularity, does not require any manual tuning.

Comparing the performance of our hybrid predictor
with that of the Last Successor predictor is somewhat
more difficult because Last Successor requires a much
shorter successor history than our hybrid protocol and
has thus a lower overhead. We will only note that this
lower overhead comes at a significant cost as our hybrid
protocol always outperforms Last Successor by at least
22.96%.

6. Conclusions

Existing file access predictors keep track of previous
file access patterns and rely on a single heuristic to pre-
dict which of the previous successors to the file being
currently accessed is the most likely to be accessed next.
We have presented a composite predictor that applies
multiple heuristics to this selection problem. As a result,
it can make use of specialized heuristics that make very
accurate predictions when some specific access pattern
is present.

We simulated the execution of our predictor on seven
file access traces and found that our predictor delivered
more correct predictions and less inaccurate guesses than
Last Successor, Stable Successor and Recent Popularity
(j-out-of-k). This is a very satisfactory result as our
hybrid protocol operates on the same successor history
as the Stable Successor and the Recent Popularity pre-
dictors and, unlike Recent Popularity, does not require
any manual tuning.

We are now investigating the use of more sophisti-
cated methods for selecting the best prediction from the
outcomes of our heuristics. We are also planning to use
our predictor to define stable clusters of files that could
then be co-located on the storage device, allowing for
the reduction of data access latencies.

References

[1] A. Amer and D. D. E. Long, Noah: Low-cost file
access prediction through pairs, in Proc. 20th Inter-
national Performance, Computing, and
Communications Conference pp. 27–33, April 2001.

[2] A. Amer, D. D. E. Long, J.-F. Pâris, and R. C. Burns,
File access prediction with adjustable accuracy, in
Proc. 21st International Performance of Computers
and Communication Conference, pp. 131-140, April
2002.

[3] I. C. K. Chen, J. T. Coffey, and T. N. Mudge,
Analysis of branch prediction via data compression,
in Proc. International Conference on Architectural
Support for Programming Languages and Operating
Systems, pp. 128–137, Oct. 1996.

[4] K. M. Curewitz, P. Krishnan, and J. S. Vitter,
Practical prefetching via data compression, in Proc.
1993 ACM SIGMOD Conference on Management of
Data, pp. 257–266, May 1993.

[5] J. Griffioen and R. Appleton, Reducing file system
latency using a predictive approach, in Proc. 1994
Summer USENIX Conference, pp. 197–207, 1994.

[6] P. Krishnan, Online prediction algorithms for
databases and operating systems, PhD Thesis, Dept.
of Computer Science, Brown University, 1995.

[7] T. M. Kroeger and D. D. E. Long, The case for
efficient file access pattern modeling, in Proc. 1996
USENIX Technical Conference, pp. 14–19, Jan.
1996.

[8] T. M. Kroeger and D. D. E. Long, Design and
implementation of a predictive file prefetching
algorithm, in Proc. 2001 USENIX Annual Technical
Conference, pp. 105–118, June 2001.

[9] H. Lei and D. Duchamp, An analytical approach to
file prefetching, in Proc. 1997 USENIX Annual
Technical Conference, Jan. 1997.

[10] L. Mummert and M. Satyanarayanan, Long term
distributed file reference tracing: implementation and
experience, Technical Report, School of Computer
Science, Carnegie Mellon University, 1994.

[11] M. L. Palmer and S. B. Zdonik, FIDO: a cache that
learns to fetch, in Proc. 17th International Confer-
ence on Very Large Data Bases, pp. 255–264, Sept.
1991.

[12] D. Roselli, Characteristics of file system workloads,
Technical. Report CSD-98-1029, University of
California, Berkeley, 1998.

[13] E. Shriver, C. Small, and K. A. Smith, Why does file
system prefetching work? in Proc. 1999 USENIX
Technical Conference, pp. 71–83, June 1999.

[14] C. Tait and D. Duchamp, Detection and exploitation
of file working sets, in Proc. 11th International Con-
ference on Distributed Computing Systems, pp. 2–9,
May 1991.

[15] J. S. Vitter and P. Krishnan, Optimal prefetching via
data compression, in Proc. 32nd Annual IEEE Sym-
posium on Foundations of Computer Science, pp.
121–130, Oct. 1991.

[16] G. A. S. Whittle, A hybrid scheme for file system
Reference prediction. MS Thesis, Dept. of Com-
puter Science, University of Houston, Texas, May
2002.

[17] T. Yeh, D. Long, and S. Brandt, Performing file
prediction with a program-based successor model, in
Proc. 9th International Symposium on Modeling,
Analysis, and Simulation on Computer and Tele-
communication Systems, pp. 193–202. Aug. 2001.

