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Abstract 

Existing file access predictors keep track of previous 
file access patterns and rely on a single heuristic to pre-
dict which of the previous successors to the file being 
currently accessed is the most likely to be accessed next.  
We present here a novel composite predictor that applies 
multiple heuristics to this selection problem. As a result, 
it can make use of specialized heuristics that can make 
very accurate predictions when access patterns are 
observed to meet their particular criteria. Simulation 
results involving a total of seven file access traces indi-
cate that our predictor delivers more correct predictions 
and less inaccurate guesses than predictors relying on a 
single heuristic for selecting a successor. 

1. Introduction 

One of the most difficult problems facing operating 
systems designers is finding the best way to manage 
memory hierarchies consisting of devices with widely 
different access times.  The problem is not new and is in 
fact worsening as gains in main memory access times 
have dramatically outpaced gains in disk access times.12 

Two main techniques can be used to mitigate this 
problem, namely caching and prefetching.  Caching keeps 
in memory the data that are the most likely to be used 
again while prefetching attempts to bring data in memory 
before they are needed.  Prefetching is inherently more 
difficult to implement than caching because prefetched 
data that are not needed can have a direct negative imp act 
on system performance while keeping in a cache data that 
will not be reused only reduces the cache effectiveness.  
As a result, most systems err on the side of caution and do 
not exploit the full potential of the technique.  In particu-
lar, no existing system implements anticipatory file 
prefetching, that is, prefetching entire files before they are 
accessed.   
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One of the key requirements for a successful imple -
mentation of anticipatory file prefetching is a good file 
access predictor.  This predictor should have reasonable 
space and time requirements, make as many successful 
predictions as possible and as few bad predictions as fea-
sible. 

Most early file access predictors [14, 5, 9, 8] relied on 
sophisticated heuristics that required maintaining a large 
amount of information about past references to each file.  
Two more recent contributions [1, 2] have shown that 
very simple predictors requiring much less context 
information could provide surprisingly accurate 
predictions.  We propose a novel approach.  Rather than 
relying on a single predictor we apply several 
independent heuristics to the same context information 
and select the one that is the most likely to deliver an 
accurate prediction.  This approach has two major 
advantages.   First, we do not have to rely on a single 
general-purpose method and can make use of several 
more specialized heuristics that return very accurate pre-
dictions when some specific access pattern is present.  
Second, having all heuristics sharing the same context 
information means that we do not incur any additional 
overhead. 

Simulation results involving a total of seven file access 
traces have corroborated the soundness of our approach: 
combining several heuristics increases the number of 
good predictions while reducing the number of incorrect 
guesses.   

The remainder is organized as follows.  Section 2 
reviews previous work on file access prediction.  Section 
3 introduces the effective-miss-ratio criterion that we used 
in our study.  Section 4 presents the four heuris tics com-
prising our predictor and discusses their individual 
performances.  Section 5 introduces our predictor and 
compares its performance with that of other predictors, 
namely Last Successor, Stable Successor and Recent 
Popularity.  Finally, Section 6 states our conclusions. 

2. Previous Work 

Palmer et al. [11] used an associative memory to 
recognize access patterns within a context over time.  
Their predictive cache, named Fido, learns file access 
patterns within isolated access contexts.  Griffioen and 



Appleton presented in 1994 a file prefetching scheme 
relying on graph-based relationships [5].  Shriver et al. 
[13] proposed an analytical performance model to study 
the effect of prefetching for file system reads.  

Tait et al. [14] investigated a client-side cache man-
agement technique used for detecting file access patterns 
and for exploiting them to prefetch files from servers.  Lei 
and Duchamp [9] later extended this approach and in-
troduced the Last Successor predictor.  More recent work 
by Kroeger and Long introduced more effective schemes 
based on context modeling and data compression [8]. 

Two much simpler predictors, Stable Successor (or 
Noah) [1] and Recent Popularity [2], have been recently 
proposed.  The Stable-Successor predictor is a refinement 
of the last-successor predictor that attempts to filter out 
noise in the observed file reference stream.  Noah 
maintains the id of the last file that was a successor to the 
current file (the “last successor”), as well as a current 
“stable successor.”  The stable successor is updated with 
the id of the last successor only if the last successor is the 
same for a “stability” count number of references.  The 
Recent Popularity or j-out-of-k predictor maintains the k 
most recently observed successors of each file.  When 
attempting to make a prediction for a given file, recent 
popularity searches for the most popular successor from 
the list.  If the most popular successor occurs at least j 
times then it is submitted as a prediction.  When more 
than one file qualifies as “most popular,” recency is used 
as the tiebreaker. 

Finally, Yeh et al. investigated a simple but effective 
successor model that identifies the relationships between 
files through identification of the programs accessing 
them [17]. 

3. Evaluating the Performance of a File 
Predictor 

When comparing the effectiveness of file predictors, 
one is often confronted with two primary metrics, 
success-per-reference and success-per-prediction.  
Because of the dependent nature of these metrics, it is not 
possible to use either of them alone when assessing the 
performance of any given predictor.  For example, a 
predictor that has a 99% success-per-prediction rate 
would be considered impractical if it could only be used 
on 5% of the references.  Conversely, predictors that have 
a high success-per-reference rate may also give rise to a 
high number of incorrect predictions that may tax the file 
system to an extent that outweighs any improvements due 
to predictive prefetching.  Another disadvantage of 
success-based metrics is that they discount the perform-
ance improvement achieved by increasing the success rate 
of a predictor from, say, 86 to 93%.  It makes this 
improvement appear marginal, even though it represents a 
50% reduction in the number of misses . 

We propose a third metric integrating both aspects of 
the predictor performance.  Consider first the two possi-

ble outcomes of an incorrect prediction.  If we assume no 
preemption, the next file access will have to wait while 
the predicted file is loaded into the cache.  The cost of the 
incorrect prediction is thus one additional cache miss.  
Allowing preemption would reduce this delay and 
decrease the penalty.  Note that the incorrect prediction 
will have no other adverse effect on the cache perform-
ance as long as the cache replacement policy expels first 
the files that were never accessed. 

We define the effective-miss-ratio of a predictor as the 
ratio: 

ref

incorrcorrref

N
NNN α+−

 

where corrN  is the number of correct predictions, incorrN  
the number of incorrect predictions and refN  the number 
of references and the α factor represents the impact of file 
fetch preemption on the performance of the predictor.  A 
zero value for α corresponds to the situation where incor-
rect predictions incur no cost because all predicted file 
fetches can be preempted when found to be incorrect 
without any further delay.  A unit value assumes that 
there is no fetch preemption, and all ongoing fetches must 
be completed, whether correctly predicted or not.  An 
intermediate α value corresponds to situations where pre-
emption is possible, but at some cost less than the cost of 
a file fetch.  Computing the effective-miss-ratio for α 
values of, say, 0.0, 0.5 and 1.0 will permit us to compare 
predictors for a realistic range of file-system implementa-
tions.  Predictors that perform well for all α values will be 
said to be α-stable and assumed to be more likely to live 
up to expectations once implemented. 

4. The Four Base Heuristics 

As observed by the authors [2, 16], between 80% and 
90% of successors for any file reference are present 
among the last 10 to 20 successors of that file.  We can 
safely reduce the problem of file prediction to that of 
selecting the next successor from a limited successor 
history.  If the actual successor is not present in that 
history, it is unlikely that it will occur in an extended suc-
cessor history, even we increase this history to 
impractical lengths. 

We investigated several possible heuristics and 
selected four that we evaluated by simulating their opera-
tion on two sets of file traces.  The first set consisted of 
four file traces collected using Carnegie Mellon Univer-
sity’s DFSTrace system [10].  The traces include mozart, 
a personal workstation, ives, a system with the largest 
number of users, dvorak , a system with the largest 
proportion of write activity, and barber, a server with the 
highest number of system calls per second.   These traces 
provide information at the system-call level, and  
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Figure 1: Performance of Most Recent Consecutive Successors Heuristic 

represent the original stream of access events not filtered 
through a cache. They include between four and five mil-
lion file accesses. Our second set of traces was collected 
in 1997 by Roselli [12] at the University of California, 
Berkeley over a period of approximately three months.  
To eliminate any interleaving issues, these traces were 
processed to extract the workloads of an instructional 
machine (instruct), a research machine (research) and a 
web server (web). 

It should be pointed out that we based our evaluation 
of the four heuristics on the success-per-prediction 
metric.  For any given reference, we want to determine 
which heuristic, if it causes a prediction to be made, pre-
dicts most successfully.  Heuristics that cannot be applied 
often are still of importance if they predict well, as they 
can be used in conjunction with other heuristics to 
achieve the lowest possible effective-miss-ratio.  This is 
the main advantage of using several heuristics in our pre-
dictor: we do not have to limit ourselves to general-
purpose heuristics, but can take advantage of more accu-
rate models when the criteria for their use are met. 

4.1. Most recent consecutive successors  

The most intuitively powerful heuristic for successor 
selection is the presence of most recent consecutive suc-
cessors in the successor history.  If we encounter the file 
reference sequence “ABCBCBCB,” it is quite probable 
that the next reference will also be to file “C.”  The suc-
cessor history for file B at this point will end in “CCC.”  
Note that we are interested in the abil ity of this heuristic 
to predict the next reference, not references beyond that. 

We tested this heuristic against all of the file system 
traces to derive the relationship between success-per-
prediction and the number of most recent consecutive 
successors.  The results are shown in Figure 1.  For the 
sequence “ABCBCBCB,” the success-per-prediction 
percentage if we assume that “C” will be referenced next 
is between 63% and 80%, depending on the trace.  For the 
sequence “ABCBCBCBCBCBCBCB” this increases to 
between 87% and 92%.  On the whole, the success-per-

prediction curve increases linearly as the number of con-
secutive successors increases from one through three, 
after which it begins to reduce to a fairly shallow slope 
beyond about six successors.  For all traces, more than six 
most recent consecutive successors are a strong indicator 
that this successor will be referenced next. 

4.2. Predecessor position 

Several studies of file prediction have hypothesized 
that there is considerable correlation between file prede-
cessors and their corresponding successors [11, 15, 4, 6, 
7, 3, 8].  If the file reference sequence “ABC” occurred in 
the recent past, then the reappearance of the sequence 
“AB” in the present could lead us to expect that a 
reference to file “C” would fo llow.  We tested this 
heuristic against all of the file system traces to derive the 
relationship between success-per-prediction  and the 
position of the first predecessor in the history that 
matches the predecessor of the current reference (if such a 
match is found).  To achieve this, we kept a 20-element 
successor list and a 20-element predecessor list per file, 
maintained on a most-recent basis.  This is equivalent to a 
most recent context model of depth equal to one. 

The results are shown in Figure 2.  Position 1 on the 
graph represents the most recent element in the list.  The 
graph suggests that use of a predecessor heuristic can 
yield prediction accuracies between 55 percent and 90 
percent.  There is no apparent relationship between the 
position of the predecessor in the history and the predic-
tion accuracy, although the accuracy is improved for 
positions 1 and 2 (most recent) for all traces except Web. 

4.3. Pre-predecessor position 

The predecessor position heuristic was extended to 
include one additional level of depth.  If the file reference 
sequence “ABCD” occurred in the recent past, then the  
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Figure 2: Performance of Predecessor Position Heuristic 
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Figure 3: Performance of Pre-Predecessor Position Heuristic

reappearance of the sequence “ABC” in the present could 
lead us to expect that a reference to file “D” would fol-
low.  We tested this heuristic against all of the file system 
traces to derive the relationship between success-per-
prediction and the position of the first pre-predecessor 
and predecessor in the history that matches the pre-
predecessor and predecessor of the current reference (if 
such a match is found).  To achieve this, we kept a 20-
element successor list, a 20-element predecessor list and a 
20 element pre-predecessor list per file, maintained on a 
most-recent basis.  This is equivalent to a most recent 
context model of depth equal to two. 

The results are shown in Figure 3. Position 1 on the 
graph represents the most recent element in the list.  The 
graph suggests that use of a pre-predecessor heuristic can 
yield prediction accuracies between 65 percent and 95 
percent.  As we found for the predecessor position 
heuristic, there is no apparent relationship between the 
position of the pre-predecessor in the history and the 
prediction accuracy, although there is a marked improve-
ment in prediction accuracy for positions 1 through 3 
(most recent). 

4.4. j-out-of-k ratio for most frequent successor 

The last heuristic that was analyzed relates to the depend-
ence of prediction accuracy on the distribution of the 
most frequent successor in the successor history.  This 
heuristic can be parameterized as a j-out-of-k Ratio heu-
ristic, where j is the number of occurrences of the most 
frequent successor, and k  is the successor history length.  
We tested this heuristic against all of the file system 
traces to derive the relationship between success-per-
prediction and values of j/k .  k was varied between 1 and 
20.  For each value of k , j was permitted to vary between 
1 and k   – 1.  Cases where j was equal to the history 
length k  were excluded, as these cases are more effec-
tively subsumed by the most recent consecutive 
successors heuristic analyzed earlier.  The results are 
shown in Figure 4. 

Vertical alignment of data points on the graph is seen 
to occur at the more frequent quotients resulting from  
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Figure 4: Performance of j/k Ratio Heuristic. 

permuted integer ratios (1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4).  
The graph shows a linear regression line fit to the data 
points.  Although there are a moderate number of outliers, 
the results suggest that there is a high degree of linear 
correlation between the j/k ratio and the success-per-
prediction (regression coefficient of 0.9315).  Variation 
from the linear trend is seen to increase towards the center 
of the distribution, around a j/k ratio of 0.5.  We hypothe-
size that this is a natural departure of the data from our 
underlying linear model, towards the point of maximum 
uncertainty in the outcome. 

5. Our Composite Predictor 

Results of the previous sections allowed us to make 
two hypotheses: 
1. Each heuristic, when applied to any given successor 

history, may give rise to a different success-per-
prediction measurement.  The heuristics are assumed 
to be largely independent. 

2. Success-per-prediction measurements can be directly 
related to the probability of a successful prediction. 

If we assume the validity of these hypotheses, we should 
be able to devise a composite predictor using the outputs 
of these heuristics to produce more accurate predictions 
of the successor of the current file.   

Our composite predictor uses a very simple approach:   
1. It applies first each of the four analyzed heuristics to 

obtain independent predictions of the successor of a 
given file. 

2. Any heuristic that can be applied to the current 
context will return a prediction of the next file id and 
a heuristic weight  estimating the probability of suc-
cess of that prediction. 

3. The predictor selects the prediction that came with 
the highest heuristic weight and compares this weight 
with a fixed probability threshold. 

4. If the weight of the prediction is greater than or equal 
to the threshold, our composite predictor accepts the 
prediction.  Otherwise, it declines to make any pre-
diction. 

5.1.  Use of Heuristic Weights in Estimating File 
Occurrence Probabilities 

An earlier stated hypothesis was that success-per-
prediction measurements could be directly related to the 
probability of a successful prediction.  Analysis 
performed in Section 4 related success-per-prediction, 
and hence occurrence probability, to variation in the 
parameters controlling each of four heuristics.  From this, 
we can obtain from the use of each heuristic, not only a 
predicted file, but also an estimate of its probability of 
occurrence. 

The analysis performed in Section 4 utilized data from 
all seven traces.  When obtaining heuristic weights from 
this data, that relate variation in heuristic parameters to 
file reference probability, we must eliminate the possibil-
ity of a-priori information from distorting the objective-
ness of our results.  To this end, we estimated the heuris -
tic weights using multiple methods prior to running 
simula tions to measure the effectiveness of our composite 
predictor.  These methods include: 
1. Cross-Training: Only mean heuristic weights from 

the CMU file system traces were used in simulations 
run on the Berkeley traces.  Simulations for the CMU 
file system traces only used mean weights derived 
from the Berkeley traces. 



2. Mean-Weights: The same set of mean heuristic 
weights from all seven traces was used in simulations 
for all traces. 

3. Adjusted Mean-Weights: The mean heuristic weights 
from all seven traces were adjusted by plus or minus 
10 percent and 20 percent.  The resulting heuristic 
weights were used in simulations for all traces. 

4. For the j-out-of-k ratio heuristic, a simple ratio of j/k 
was used to estimate the prediction probability for all 
simulations. 

5.2.  Selecting a probability threshold  

The probability threshold  utilized in our composite 
predictor is used to improve its overall performance (as 
measured by effective-miss-ratio) in situations where 
there are penalties for missed predictions.  When there is 
no penalty for a missed prediction (the case when 
α = 0.0), the algorithm should always predict, so the 
threshold is set to zero.  When the penalty for a missed 
prediction is equal to one successful prediction (the case 
when α = 1.0), it is necessary to set the probability 
threshold to 0.5 in order to exc lude predictions that would 
otherwise reduce the overall effective-success-per-
reference.  In a similar manner, when α is equal to 0.5, 
the probability threshold is set to one third. 

5.3. Experimental results  

We simulated the execution of our composite predictor 
using the seven file system traces, for α values of 0.0, 0.5 
and 1.0.  Simulations were run using heuristic weights 
computed using the cross-training, mean-weights and 
adjusted-mean-weights methods described previously.  
All simulations used a successor history length of twenty 
file identifiers.   

As shown in Figure 5, performance of our composite 
predictor is quite insensitive to the heuristic weight com-
putation method, even when the weights are derived from 
other file system traces, or when they are adjusted up or 
down by as much as 20%.  The weights derived from a 
mean of the weights of all of the file system traces gave 
the best performance in almost all cases, so these will be 
used in subsequent simulations. 

5.4. Use of a Confidence Measure to Improve 
Performance 

Regardless of the file prediction scheme used, it is 
unlikely that it will be able to predict a successor for all 
files at all times.  For this reason, we added to our pre-
dictor a confidence measure, whose purpose is to restrict 
its use to the files that are most benefited by it. 

The confidence measure is a simple 0.0 to 1.0 saturat-
ing counter that is maintained for each file.  It is initial-
ized to a value of 0.5.  It is incremented by 0.1 on a 
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Figure 5: Effect of Heuristic Weight Computation 

Method on Performance. 
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Figure 6: Effect of Use of Confidence Measure on 
Performance. 

successful prediction and is decremented by 0.05 on an 
incorrect prediction.  It is always updated, even if a pre-
diction was not used because the prediction probability 
failed to exceed the probability threshold.  For α values 
greater than 0.0, the prediction is rejected whenever the 
current value of the confidence measure is less than 0.5. 

Figure 6 shows the performance of our composite pre-
dictor for α values of 0.5 and 1.0 using the mean heuristic 
weights and a successor history length of 20 file identifi-
ers, without and with the use of a confidence measure.  
The confidence measure has no impact when α is zero, as 
there is no penalty for a missed prediction. 

Use of the confidence measure improved performance 
of the predictor in all cases when α was greater then zero.  
For the case when α was 0.5, the average improvement in 
effective-miss ratio was 1.13 percent.  For the case when 
α was 1.0, this increased to 3.23 percent. 

5.5. Effect of Successor History Length on 
Performance of the Composite Predictor 

Figure 7 shows the effect of successor history length 
on the performance of our composite predictor for all 
seven file system traces and α values of 0.0, 0.5 and 1.0.   

The composite predictor used mean heuristic weights 
and incorporated a confidence measure.  As we can see, 
using a successor history length of nine file identifiers 
will result in effective-miss-ratio measures for all cases 
that are within one percent of the values obtained with a 
successor history length of 20 file identifiers.  Consider-
ing the savings in time and space complexity resulting 
from using a shorter successor history length, with mini-
mal reduction in prediction performance, we decided to 
use nine file identifiers in the successor history for subse-
quent simulation. 

5.6. Effect of Heuristic Combinations on 
Performance of the Composite Predictor 

Figure 8 shows the effect of heuristic combinations on 
the performance of our composite predictor for all seven 
file system traces and α values of 0.0, 0.5 and 1.0.  The 
letters CS denote the consecutive successors heuristic, 
PR the predecessor position heuristic, PP the pre-
predecessor position heuristic and JK the j-out-of-k ratio 
heuristic. 

A surprising result of this analysis was that the heuris -
tic combination CS-PP-JK gave results that were 
marginally better in most of the cases than using all four 
heuristics, CS-PR-PP-JK.  Our current thinking is that the 
PR (predecessor position) heuristic is probably assigned 
heuristic weights that are slightly higher than they should 
be.  We believe that this is causing it to control predic-
tions that would be better left to one of the other 
heuristics.  More work is still needed in this area. 

5.7. Performance of the Composite Predictor 
When Compared to Others Tested 

Figure 9 compares the performance of our composite pre-
dictor to that of the Last Successor, Stable Successor and 
Recent Popularity (j-out-of-k) predictors for all seven file 
traces and α values of 0.0, 0.5 and 1.0.  Our composite 
predictor used all four heuristics, mean heuristic weights, 
a successor history length of 9 file identifiers, and incor-
porated a confidence measure.   
Note that the results for the Recent Popularity predictor 
represent the best that could be achieved by manual 
selection of the optimal parameters.  This could explain 
why Recent Popularity always outperforms Last Succes-
sor and outperforms Stable Successor in 20 of the 21 
experiments. 
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Figure 7: Effect of Successor History Length on Performance of the Composite Predictor.
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Figure 8: Effect of Heuristic Combinations on Performance of our Composite Predictor. 
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Figure 9: Comparing the Performance of our Composite Predictor to those of the Last Successor, Stable 
Successor and Recent Popularity Predictors.



As we can see, our hybrid predictor always performs 
better than the three other predictors:  Across all traces 
and for all values of α, when compared to the best of the 
three other predictors examined, the minimum reduction 
in effective-miss-rate was 5.09%, the maximum was 
44.79% and the average reduction was 13.7%.  This is a 
very satisfactory result as our hybrid protocol operates 
on the same successor history as the Stable Successor 
and the Recent Popularity predictors and, unlike Recent 
Popularity, does not require any manual tuning.   

Comparing the performance of our hybrid predictor 
with that of the Last Successor predictor is somewhat 
more difficult because Last Successor requires a much 
shorter successor history than our hybrid protocol and 
has thus a lower overhead.  We will only note that this 
lower overhead comes at a significant cost as our hybrid 
protocol always outperforms Last Successor by at least 
22.96%. 

6. Conclusions  

Existing file access predictors keep track of previous 
file access patterns and rely on a single heuristic to pre-
dict which of the previous successors to the file being 
currently accessed is the most likely to be accessed next.  
We have presented a composite predictor that applies 
multiple heuristics to this selection problem. As a result, 
it can make use of specialized heuristics that make very 
accurate predictions when some specific access pattern 
is present. 

We simulated the execution of our predictor on seven 
file access traces and found that our predictor delivered 
more correct predictions and less inaccurate guesses than 
Last Successor, Stable Successor and Recent Popularity 
(j-out-of-k). This is a very satisfactory result as our 
hybrid protocol operates on the same successor history 
as the Stable Successor and the Recent Popularity pre-
dictors and, unlike Recent Popularity, does not require 
any manual tuning.   

We are now investigating the use of more sophisti-
cated methods for selecting the best prediction from the 
outcomes of our heuristics.  We are also planning to use 
our predictor to define stable clusters of files that could 
then be co-located on the storage device, allowing for 
the reduction of data access latencies. 
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