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Abstract

Disk drives are now available with capacities on the or-
der of hundreds of gigabytes. What has not become avail-
able is an easy way to manage storage. With installed ma-
chines located across the enterprise, the backup, manage-
ment of application installation, and maintenance of sys-
tems have become a nightmare. An increasing trend in the
storage industry is to virtualize storage resources, main-
taining a central repository that can be accessed across
the network. We have designed a network block storage
device, Peabody, that exposes virtual disks. These virtual
disks provide mechanisms to: recover any previous state of
their sectors and share backend storage to improve cache
utilization and reduce the total amount of storage needed.

Peabody is exposed as an iSCSI target, and is mount-
able by any iSCSI compatible initiator. Using our imple-
mentation of Peabody, we show that for our workloads, up
to 84% of disk sectors written, contain identical content to
previously written sectors, motivating the need for content-
based coalescing. The overhead for writing in a simple im-
plementation is only 20 percent of the total write speed.

This paper describes our early experiences with the
Peabody implementation. We quantify how rapidly storage
is consumed, examine optimizations, such as content-based
coalescing and describe how recovery is currently imple-
mented. We conclude with future plans based on these mea-
surements.

1. Introduction

Disk space on desktop computers has increased in size
1000 fold in the last ten years [7]. With the increasing ca-
pacity and reduced costs of storage, management has be-
come one of the largest costs in storage and information
systems outstripping hardware costs 3 to 1 [14]. Recovery
and rollback provide ways to “undo” changes to a system.
Much work has been done on the notion of “undo” at the
file system layer, but few of these file systems are in wide-
spread use. The problem is, writing file systems is com-

plex and providing support for “undo” must be designed
into the file system from the beginning. Logical Volume
Managers (LVM) [21, 10, 6, 22] have included support for
snapshotting, while the system is online, typically to sup-
port backup. The Network Appliance uFiler [15] provides
periodic snapshots of its file system which is exported via
NFS and CIFS. These two mechanisms are commonly used
for high availability servers, but rarely applied to worksta-
tions because of high cost, high complexity (workstation
users will typically not spend significant time designing
their local storage architecture) or a lack of availability on
certain platforms. Moving the “undo” mechanism into the
block layer overcomes these problems by providing undo
to any file system that implements a consistency checking
mechanism, and utilizes network-based storage as its data
store.

By virtualizing the disk, we can provide several bene-
fits to any client operating system or application that can
mount an iSCSI target. Virtual disks provide the illusion
of a very large disk to the client. Peabody provides a cen-
tralized repository of sectors that allows for coalescing of
replicated sectors across virtual disks to reduce space re-
quirements. Finally in addition to storage virtualization and
sector sharing, we also provide a mechanism for recovering
any previous state of Peabody’s exposed virtual disks. By
maintaining previous versions of sectors and keeping a log
of this state, we are able to roll the virtual disk state back to
an arbitrary point in time, independent of the overlaying file
system. The Peabody block storage system provides com-
plete undo history and easy-to-manage virtualized storage
for any file system or raw block device application (such as
a database) that has a consistency checking mechanism.

The network-based storage device we have designed,
Peabody, is implemented as an iSCSI target, and is mount-
able by any iSCSI compatible initiator. Peabody records a
fine-grained log of each write transaction received. We im-
plement semantic level “undo”, (i.e. the ability to roll back
an operation performed at a level above the disk, such as the
file system), by noting that most file systems have been de-
signed with mechanisms to recover when in an inconsistent
state. For example, the FAT file system uses “scandisk”



and Unix file systems use “fsck” to recover lost files and
ensure meta data information is consistent. By maintaining
a log of all writes to each virtual disk, we can create a mir-
ror of the current state of any virtual disk, and then replay
the log in reverse order to recover the state of the disk in
the past. We then use the file system recovery mechanisms
to make that mirror disk consistent. If the file system can
not be made consistent at that point in the write log, the
pre-consistency check mirror disk can be moved forward
or backward in time and the consistency check reapplied.
Rather than use the rolled back disk for data recovery, it
can replace the current system disk, in effect, becoming the
system disk at an earlier point in time.

We have successfully booted Linux from a Peabody disk
and run Windows 2000 Professional Edition with Peabody
as the system disk. (We ran the Windows system under
the VMWare Professional Workstation virtualization en-
vironment since current iSCSI HBA’s and client libraries
do not allow us to boot Windows systems from an iSCSI
target.) We have used Sherman, the Peabody virtual disk
manager, to rollback changes on Linux systems using the
ext2, reiserfs, xfs and jfs file systems. We have
also recovered disks using the NTFS and fat32 file sys-
tems for Windows installations.

Virtualizing disks and maintaining a long-lived write log
incurs additional overhead. There may be properties of the
way that drives are used that can be exploited to reduce
those overheads. In this paper, we report on early exper-
iments with our initial Peabody implementation. We find
that, although Peabody reduces disk write bandwidth by
up to 20%, application performance is virtually unaffected.
We show that, for our workloads, up to 71% of disk sec-
tors written to two virtual disks, contain identical content to
previously written sectors, when two disks share the same
Peabody server. Additionally, up to 84% of disk sectors
written contain identical content to previously written sec-
tors within a given virtual disk. This commonality can be
exploited by physically storing a single copy of shared sec-
tors. We also found that many writes are “silent writes”,
writing sectors to disk, for which the content is the same
as the existing sectors. Maintaining information about the
content of individual sectors can also eliminate the need to
perform these “silent writes”.

The remainder of this paper is organized in four sec-
tions. In Section 2 we examine the detailed experimental
setup, our workloads, and our measurement methodology.
We then discuss our results in Section 3. In Section 4 we
detail related work and how it compares to our current re-
search. Finally, we offer some conclusions in Section 5.

(Past Versions of this Block)
New Write
to this Block

Current LUN State

Transaction
Log with MD 5
of Block

Transaction Log Describing Blocks

Write Log for this block

Figure 1. Peabody Write Log Design

2. Peabody Prototype: Design and Imple-
mentation

The goal of our first implementation of Peabody was
to quantify how different file systems and operating sys-
tems use underlying storage systems. Other groups, such
as the Storage Systems Program at HP Labs, have provided
long traces describing the access patterns of disk drives
used by different workgroups [18]. This data was collected
by instrumenting the SCSI subsystem of workstations and
recording a transaction log. In addition to type of access
(read or write), and the sector offset, which Wilkes et al
collected, we also need to know properties of the content
of the data being stored.

We modified the Intel iSCSI reference implementa-
tion [12] to implement Peabody. The Intel reference im-
plementation provides an iSCSI target as a user space pro-
cess. Virtual disks are provided by exporting appropriately
sized files or block devices as the “backing store” for a vir-
tual disk. We modified that implementation to support 64-
bit file system sizes up to 2 TB in size. We also modified
the iSCSI target to record the contents of each write to a
write log and to record various meta-data to a transaction
log. This meta-data includes the location being written,
time stamps and content summary hashes; See Figure 1.

In this paper, the content summary is used to determine
if two sectors have identical content. We used the MD5
algorithm to compute the 128 bit content summary hash
of each 512 byte sector. We chose MD5 because it is a
universal hash with good hash distribution, and very low
probability of collision; no hash collisions (i.e. the same
hash for different content) were found in our traces. The
OpenSSL [16] implementation of MD5 on an Intel Pen-



Table 1. Workloads used in evaluation of Peabody. Disk Sector size is 512 bytes. Workloads D-K use
the ext3 file system, while workloads L-Q use the NTFS file system.

Name Workload Disk Sector Write Count
A XFS Application compile 1,400
B EXT2 Application compile 1,560
C VFAT Application compile 2,914
D Mandrake 9.0 Application Install 347,874
E Mandrake 9.0 Idling 1,130,580
F Mandrake 9.0 System Install 4,647,918
G Mandrake 9 kernel build 752,414
H Red hat 8.0 Application Install 337,674
I Red hat 8.0 Idling 330,272
J Red hat 8.0 System Install 6,389,226

K Red hat 8.0 kernel build 2,426,756
L Windows 2000 #1 Application Install 1,155,216

M Windows 2000 #1 System Install 1,540,234
N Windows 2000 #2 Application Install 1,170,044
O Windows 2000 #2 System Install 1,538,558
P Windows 2000 #1 System Usage 260,146
Q Windows 2000 #2 System Usage 128,644

tium 3 Coppermine Processor consumes 4021 cycles per
MD5, and at 1 GHz can consume disk sector data at 127
MB/sec, or 261 thousand MD5s/sec. This scales with pro-
cessor speed, because 512 byte disk sectors fit in cache.
The Intel Pentium 4 Xeon processor consumes 5041 cycles
per MD5, and at 2.4 GHz can consume disk sector data at
250 MB/sec or 511 thousand MD5s/sec. A 2.6 GHz P4
Xeon gets 270 MB/sec. (The MD5 library and/or the gcc
compiler used to test the speed of computation of MD5s
are likely still optimized for the P3 leading to the larger
number of instructions on the P4.)

We evaluated a number of iSCSI initiators; however, all
measurements shown in this document were taken using
an unmodified Cisco iSCSI initiator, provided as part of
the Linux kernel. The target system was a single-processor
866MHz IA-32 system with 256MB of RAM, 20GB disk.
The initiator system was a dual-processor 866MHz IA-32
system with 256MB RAM and two 20GB local disks. The
systems were interconnected using a Dell PowerConnect
3024 100Base-T ethernet switch.

2.1. Workload Descriptions

To test our hypothesis that content similarity exists at the
disk sector level (the minimum write granularity to modern
magnetic disks, 512 bytes in our case), we took several disk
sector write traces of various operations, (see Table 1). We
used iSCSI as our disk infrastructure because it gives us
direct access to the sector level transactions, and has en-
joyed widespread support among operating system devel-
opers and hardware vendors. For this paper, we took sec-

tor level traces of simple file system tasks under Linux, as
well as full system installation and application-level tasks
on two different Linux distributions and Windows 2000.
All Linux installation and application level tasks were per-
formed using the ext3 file system [11], while all Windows
tasks were performed using the NTFS file system.

Using the Intel iSCSI target and the Cisco initiator, we
were able to mount targets as standard SCSI disks under
Mandrake Linux 8.2 (with a 2.4.19 Linux kernel). For the
first three traces, we created a partition on the disk, for-
matted it with the XFS, EXT2 and then VFAT file systems.
We then ran a script that compiles an application, makes
a small modification and then recompiles the application,
and similarly runs LATEX twice for slightly different inputs.
These are traces “A”, “B” and “C” and represent a simple
micro-benchmark which we could use to evaluate sector
level coalescing with the same workload but differing file
systems.

For a more realistic test of sector level similarity, we
then created a partition on the disk and used that partition
as the first system disk when installing different operating
systems. Since we were unable to directly boot a computer
using iSCSI, we use the VMWare [23] server virtualization
software when installing the operating systems. We were
able to install both Red hat 8.0 and Mandrake 9.0 as well
as two installations of Windows 2000 using this VMWare
on Peabody iSCSI disk method.

We were able to record sector traces of the entire instal-
lation process for these three operating systems. These are
traces “F”, “J”, “M” and “O” (See Table 1.) In addition, on
the two Linux installations, we downloaded, compiled and



Table 2. Performance of Peabody Implemen-
tation vs. Intel iSCSI

Configuration Read Bandwidth Write Bandwidth
TCP/IP (netperf) 11.8 MBytes/s
Intel iSCSI 9.4 MB/s 6.7 MB/s
Peabody 7.6 MB/s 5.3 MB/s
Native Disk 29.6 MB/s 28.1 MB/s

installed a 2.4.19 Linux kernel from ftp.kernel.org. These
are traces “G” and “K”.

We also performed several application installations on
the four systems. On the two Linux installations (’D’ and
’H’) we downloaded Netscape 7.0 and Yahoo Messenger
and installed them. For the two Windows traces (’L’ and
’N’), we installed Netscape, Yahoo Messenger, Microsoft
Office XP, Frontpage 2002, and Winzip 8.1. We left the
Linux systems to run overnight, collecting trace data for
approximately 12 hours. The Linux cron jobs, which do se-
curity housekeeping and file indexing, ran during this time.
No other applications were launched besides the X server.
These are traces “E” and “I”. Finally, we used the Win-
dows installations as our desktops for one workday, and
performed normal operations such as email, web browsing,
instant messaging and document editing. These are traces
“P” and “Q”.

In addition to testing sector level similarity, we eval-
uated the basic performance characteristics of our proto-
type. We compared Peabody read and write performance
vs. both a standard software-based iSCSI implementation,
and the raw network throughput from the initiator to the
target. Table 2 shows the peak network performance for
a TCP connection between the two computers using the
netperf network performance toolkit [5]. It also shows the
full line network to disk bandwidth achieved when read-
ing and writing 1 Gbyte of data to and from the raw iSCSI
block device when using the unmodified Intel iSCSI and
our Peabody implementation, as well as the bandwidth for
the same operation to the raw IDE disk used as the backing
store.

This prototype implementation is robust but has poor
performance. The Peabody implementation has about 20%
lower bandwidth for both read and write requests than the
Intel iSCSI target. The Intel target commits all changes to
disk prior to sending a write acknowledgement to the initia-
tor; this synchronous activity maintains SCSI semantics but
reduces performance. Peabody currently, must also write
the contents to the write log, compute the content hash
and write the transaction log. This increases the time un-
til a write is acknowledged. Since the Intel iSCSI target is
a user-space process, this configuration has the additional
overhead of copying I/O requests between the kernel and
the user-mode process.

Recovery is managed by a user interface, called Sher-
man, that allocates a new virtual disk and traverses the write
log in reverse order, writing the old contents back to the vir-
tual disk.

This initial implementation is designed to be flexible
rather than high performance. This implementation has
sufficient performance to provide a usable system for long-
term studies of I/O activity.

3. Results and Analysis

The goals of our initial study are to determine how dif-
ferent file and operating systems use the underlying iSCSI
storage and how those commonalities and differences can
be exploited when implementing a more robust version of
Peabody.

Our prototype implementation of rollback and recovery
uses a single write-log to record write transactions and uses
a single file equal in size to the virtual disk as the backing
store. While this mechanism works well for the case of an
iSCSI target, it is likely ill-suited for the additional com-
plexity associated with Peabody. For example, because we
keep old versions of sectors, and also would like to coa-
lesce sectors that have identical content, using a flat file
would add the additional overhead of copying data for each
write. A tree data structure would be more efficient for
writes, but slower for reads. Also, inter-LUN sharing will
require a layer of indirection between the sector storage and
the LUN/offset associations.

One goal of this paper is to answer the question of what
data structures are appropriate when fully implementing
Peabody. An important datum necessary to answer this
question is how often the contents of different sectors and
I/O requests are the same. It may be that many sectors of
data contain the same contents, either within a disk or be-
tween disks. If this could be exploited, it may be possible
to maintain a single copy of those sectors in any I/O cache
on the iSCSI target or to suppress writing duplicate sectors
by using references to existing sectors with the same con-
tents. To quantify the maximum amount of disk space and
sector writes we could eliminate in an implementation of
Peabody which performs content-based coalescing, we use
the metrics of “silent writes” (described below), and “sec-
tor coalescing”. Sectors which are available to be coalesced
are those which have been written at some previous time,
during this trace, someplace on the disk. Using this defini-
tion, we cannot coalesce 100% of the sectors written over
the course of an entire trace because at least one sector must
be written with content not already on disk for that trace.
(The first sector written in the trace is fresh, if all sectors
write the same content.)

Figure 2 schematically shows three common scenarios
that can be exploited by the Peabody storage server. The
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Figure 2. Three common scenarios for coa-
lescing sectors. The initial state of the virtual
disks is displayed in the two arrays of rect-
angles along the top of the figure. The only
content initially is content “A” in sector #1 of
virtual disk #1.

two arrays of boxes across the top represents the initial state
of the two virtual disks:

1. Sector #1 of the first disk initially contains the content
labelled “A”; a later write to this sector also contains
the same content. This is a “silent write” and does not
need to actually be performed.

2. Two sectors with identical content “B” are written to
sectors #3 and #5. These two sectors can be “coa-
lesced” into a single write operation and an update
to the “virtual disk” meta-data that indicates that sec-
tors three and five are shared. This is an example of
“intra-LUN coalescing”, and is counted as one coa-
lesced sector. Any sector with content “B” which is
subsequently written to the first disk is counted as an
“intra-LUN” coalesced sector as well.

3. Two sectors with identical content “C” are written to
sector #8 of the first disk and sector #2 of the second
disk. These two sectors can also be coalesced into a
single write operation and an update to the virtual disk
meta-data of both drives to indicate that those sectors
are shared. This is an example of “inter-LUN coalesc-
ing”, and is counted as one coalesced sector. Any sec-
tor with content “C” which is subsequently written to
either disk ( e.g. the write of “C” to sector #1 on disk
two ) is, by definition, counted as an “intra-LUN” co-
alesced sector because that disk has already seen that
content.

How often do similar contents occur? (I.e. what per-
centage of writes are “silent writes” and what percentage

of sectors are available for “sector coalescing”?) To an-
swer this question, we used a micro-benchmark designed
to see how different file systems affect sector content simi-
larity. We also installed and ran several operating systems
on Peabody to determine the affect of differing content and
differing operating systems on sector content similarity.

3.1. File System Micro Benchmark

To determine the effectiveness of coalescing, we copied
files onto the filesystems on the disk, ran a compilation
with the Gnu C compiler (“gcc”) two times and built a doc-
ument using the LATEX text processing system two times,
each with slightly different input. These simple bench-
marks produced repeated content, and we recorded whether
this repeated content resulted in intra-LUN “sector coalesc-
ing”, and/or intra-LUN “duplicate transactions”. We define
a “duplicate transaction” to mean that all of the sectors in
the transaction were “coalesced sectors” and all of the sec-
tors in the transaction had been written as a single transac-
tion before. Note that this similarity is at the level of a sin-
gle command to the disk, encompassing one or more con-
tiguous sectors. We record “duplicate transaction” statistics
for the file system benchmark to determine what granular-
ity we will have to record content information at. Finally,
this simple benchmark gives a hint as to whether or not re-
peated content will be sector aligned (and so available to
be coalesced using fixed size 512 byte disk sectors as the
quantum for coalescing) or not. We ran this benchmark
for three different file systems xfs (Workload “A”), ext2
(Workload “B”), and vfat (Workload “C”).

Table 3 shows the results of this experiment.
For example, in workload “A”, the xfs journaling file

system caused 33 unique iSCSI write commands; of these,
three transactions were “duplicate transactions”. For work-
load “A”, this results in 716,800 bytes of data being writ-
ten in 33 transactions, of which 238,000 bytes were written
in three “duplicate transactions”. Because of file system
implementation differences, the percentage of “duplicate
transactions” varies between 3% and 30% for this work-
load.

The disk system actually stores data using 512 byte sec-
tors on the disk. The percentage of sectors available for
“sector coalescing” when measured in 512 byte sectors is
very similar for each file system – about 97-98% for this
workload, indicating that the common content is indeed be-
ing written in disk sector aligned chunks. However, the
different file systems use distinct buffering and sector allo-
cation strategies resulting in different sizes of iSCSI write
command transactions. For example, the VFAT file sys-
tem allocates files using 512 byte blocks (as hinted at by
the large number of 512 byte iSCSI write commands for
VFAT in Figure 3) while ext2 uses 4096 byte blocks (as



Table 3. Intra-LUN Write Coalescing For Sample Workload – Coalesced operations are those that
write content, which has already been written to the disk during that workload, either at the same
offset, or another offset. Sectors are 512 bytes.

Workload Total Transactions Coalesced Transactions Total Sectors Coalesced Sectors
“A” 33 3 1,400 1,373
“B” 62 11 1,560 1,538
“C” 54 16 2,914 2,847
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Figure 3. iSCSI write command size his-
togram for VFAT file system.
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Figure 4. iSCSI write command size his-
togram for EXT2 file system.

indicated by the correspondingly large 4Kbyte iSCSI write
commands in Figure 4). For this workload, the results indi-
cate that maintaining fine-grained content summaries (ı.e.
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Figure 5. iSCSI write command size his-
togram for XFS file system.

for each 512 byte disk sector) will be necessary to achieve
high content sharing.

This high degree of similarity is not surprising - in an
earlier study, Ruemmler and Wilkes [18] found that disk
writes only constituted � 30% of disk requests and � 60%
of those writes were to file system meta data rather than file
contents. Although our results are for different file systems,
the results of Ruemmler and Wilkes may explain some of
the duplicate writes. For example, our traces indicate that
the ext2 file system issues seven writes when creating a
1KByte file; one of these writes the actual file contents
while the other writes update the directories and file system
meta-data. The meta data is written in 4KByte blocks, al-
though only a few bytes are modified. If we can efficiently
represent these writes at the level of 512 byte sectors, this
set of seven 4KByte blocks may increase the write log by
seven 512 byte sectors rather than the 28KByte that would
be indicated by the I/O transactions.

3.2. General System usage

The micro-benchmark tells us something about what
we need to track to find common sectors (sectors avail-
able for “sector coalescing”) – content summaries should



Table 4. Total 512 byte sector writes for each workload, showing how much I/O Peabody is capable of
eliminating. Coalesced sectors are writes for which, the content exists already on disk, and represent
possible disk space savings. Silent writes are writes for which, not only does the content exist already
on disk, but it exists at the same LUN/Offset for the write being committed, and represent writes which
can be completely suppressed. Total eliminated I/O is the sum of silent writes and coalesced sectors.

Workload Total Writes Total Eliminated I/O Silent Writes Coalesced Sectors
D 347,874 26.8% 2.0% 24.8%
E 1,130,580 84.2% 1.3% 82.9%
F 4,647,918 30.7% 13.6% 17.1%
G 752,414 41.6% 5.2% 36.4%
H 337,674 24.6% 2.3% 22.3%
I 330,272 72.3% 2.5% 69.8%
J 9,143,056 26.6% 9.2% 17.4%
K 2,426,756 53.3% 2.3% 51%
L 1,155,216 22.6% 1.4% 21.2%
M 1,540,234 19.1% 9.8% 9.3%
N 1,170,044 22.1% 8.0% 14.1%
O 1,538,558 19.2% 9.7% 9.5%
P 260,146 18.3% 1.9% 16.3%
Q 128,644 28.4% 2.1% 26.3%

be recorded for disk sectors and not transactions. To de-
termine how much commonality occurs in practice we in-
stalled several operating systems, and ran normal work-
loads through the system. The results for each of these
workloads are in Table 4.

The number of disk sectors available to be coalesced is
impressive for workloads ’D’, ’E’, ’G’, ’I’, and ’K’, with a
maximum of 84.2% sectors written already being on disk,
for workload ’D’ (Mandrake 9.0 idling). These are all
Linux system usage traces. These results are encouraging
because systems (at least Linux systems) appear to provide
significant opportunities for write coalescing. Much of this
coalescing arises because the Linux operating system usu-
ally performs 4KByte I/O operations.

While the two Windows installations(’M’ and ’O’) and
one windows usage trace (’P’) had relatively low write co-
alescing, the minimum is still above 18%. This lower write
coalescing occurs because the Windows filesystems appear
to perform I/O operations using 512 byte sectors rather than
the 4KByte sectors used in Linux. These results indicate
that the technique of content-based coalescing may result
in significant savings across operating systems.

A hint as to why there is such a difference in “sector
coalescing” may be seen in Figure 6, which shows the dis-
tribution of iSCSI write sizes for trace ’D’ (Mandrake 9.0
installation), and Figure 7 which shows the same distribu-
tion for trace ’N’ (Windows 2000 Application Installation).
A significant percentage of the data written in trace ’N’
is the maximum iSCSI transaction size of 128 Kilobytes
(631,190 of the 512 byte sectors written or 54%). Notice
also that the vertical scales are different for the two graphs

by a factor of four. There may be some consequence of
writing large transactions which reduces instances of “sec-
tor coalescing”. We will be investigating this phenomenon
further in future work.

However, even the modest 18% minimum achieved by
the lowest scoring workload still saves a significant amount
of disk space over a long period of time. For example, the
trace which resulted in the maximum rate of sectors written
across all of our traces is trace J, which wrote 6,389,226
sectors. The minimum amount of coalescing observed for
a single LUN workload was 18% for trace ’P’. If a user has
a write stream that “looks like” trace ’J’ in size and trace ’P’
in the rate of coalescing, then that user will write 2.5 GB of
unique data to a storage array. With these assumptions, and
if this is an average daily write rate, a 1TB storage array
(which can be constructed using five 320MB disks) would
be filled after a year – in practice, we expect much less
space will be used.

In their earlier study, Ruemmler and Wilkes found that
85% of sectors that are written will be over-written within
an hour, and 25-38% of sectors written will be updated
within a second. We have seen similar behavior in our ini-
tial tests, and this indicates that we may make a trade-off
between the growth rate of the write transaction log and
the granularity of available filesystem recovery points.

The Elephant File System [19] keeps landmark versions
of files around permanently, and deletes intervening ver-
sions of files over time to recover space. We may be able to
sustain recovery over longer periods by performing a simi-
lar coarsening of writes to disk. For example, if a file sys-
tem always performs the same set of operations on a disk
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Figure 6. Trace D (Linux System Install) Figure 7. Trace N (Windows System Install)

when opening and closing a file system for write access, we
can use these operations as cues as to when the file system
is in a stable state and record this information as a land-
mark disk state. This information can then be confirmed
using the normal filesystem verification tools.

On a more fine-grained level, we may be able to discard
intervening writes to a sector, thereby recovering the stor-
age associated with those sectors as well as increasing the
recovery window for those sectors. By discarding interven-
ing writes to a sector, recovery to the earliest time frame
will still be supported, but the detailed log of changes to
the disk will not be kept. Consider a Peabody system used
over a period of a year. Normally all disk writes would be
saved – the user could “roll back” the disk to any point in
time during that year. However, the user may decide that
they no longer need to be able to roll back to any specific
millisecond in June. In this case, only the last write to any
sector needs to be maintained between June and July. This
“garbage collection” mechanism should save considerable
space, but it needs to be integrated with the checks for file
system consistency.

Finally, as an added benefit, all traces exhibited non-
zero levels of silent writes, some above 10%. These are
writes for which the content already exists on disk at the
offset being written. An implementation which can track
content, even a modest amount of tracking using an in-
memory buffer cache, can eliminate a fraction of these
silent writes, improving system performance.

3.3. Multiple Virtual Disks

After testing individual traces, for intra-LUN coalesc-
ing potential, we wanted to see if there was any inter-LUN
sharing which occurred. We hypothesized that content sim-
ilarity would exist for two distinct but identically executed
Windows 2000 installations (Traces “M” and “O”), or even

running similar workloads on two different workstations
(Traces “G” and “K”).

Sector categorizations can be: a fresh sector (not seen
before in any LUN), an intra-LUN coalesced sector (seen
before by the LUN with the reference), or an inter-LUN
coalesced sector (not seen before by the LUN with the ref-
erence but seen before by another LUN). These are disjoint
sets, so each sector is only counted in one category. Each
time a sector is counted as an inter-LUN “coalesced sec-
tor” it is guaranteed to have different content than other
inter-LUN sectors. Therefore, finding a significant amount
of inter-LUN “coalesced sectors” indicates a significant
amount of sharing of content, not just that there are lots
of references to shared content between the virtual disks.

Another possible characterization would be to count a
sector as an inter-LUN “coalesced sector” each time it is
referenced, once there has been a reference in another LUN
for that sector. This would give an indication of the num-
ber of references to shared data between virtual disks, but
it does not give information about the number of actual dis-
tinct sectors shared between those disks. (Because a single
sector which is shared between disks and then referenced
repeatedly would show as a large number of references, but
it is only a single shared disk sector.) Also, unfortunately,
every time the sector is referenced after the first reference
for that LUN, the sector is an intra-LUN “coalesced sec-
tor”, and so the sector would be counted in more than one
category using the above scheme.

An example clarifies these categorizations: a sector ap-
pears with content “1” in Trace “M”, and then subsequently
appears in Trace “O”. The first reference to “1” in Trace
“M” would be a fresh sector. Normally, the first reference
to “1” in Trace “O” would also be a fresh sector, however
when the traces are combined, we can find the sector “1”
already on disk when it first appears in Trace “O”, and this
reference is recorded as an inter-LUN “coalesced sector”.



Table 5. Total 512 byte sector writes for each combined workload. The “percentage of coalescing”
column shows the fraction of sector writes that can be coalesced with earlier sector writes. The
column labeled “InterLUN” are coalescing between LUN 0 and LUN 1. The columns labeled “LUN 0”
and “LUN 1” are sector writes coalesced within a single LUN only. The column labeled “Total” is the
sum of the interLUN, LUN 0 and LUN 1 columns. This table is sorted by the percentage of sectors
common to both workloads (InterLUN percentage).

Percentage of Coalescing
Workload Total Writes Total InterLUN LUN 0 LUN 1

DH 685,548 58.8% 33.1% 13.6% 12.1%
MO 3,078,792 51.5% 32.3% 9.6% 9.6%
LN 2,325,260 54.3% 32.0% 11.2% 11.1%
GK 3,179,170 61.1% 10.6% 9.8% 40.7%
FG 5,400,332 35.9% 3.6% 26.4% 5.8%
FK 7,074,674 41.2% 2.7% 20.2% 18.3%
GJ 7,141,640 40.8% 2.3% 4.4% 34.1%
PQ 388,790 23.1% 1.5% 12.2% 9.4%
HI 667,946 49.1% 0.9% 12.4% 35.8%
IK 2,757,028 56.2% 0.7% 8.7% 46.9%
DE 1,478,454 71.2% 0.5% 6.3% 64.4%
DG 1,100,288 37.3% 0.4% 8.5% 28.4%
EG 1,882,994 67.6% 0.4% 50.6% 16.6%
LP 1,415,362 22.1% 0.3% 18.4% 3.4%
NP 1,430,190 21.7% 0.3% 18.1% 3.3%
NQ 1,298,688 23.0% 0.3% 19.9% 2.8%
LQ 1,283,860 23.4% 0.3% 20.3% 2.8%
EF 5,778,498 41.4% 0.3% 16.5% 24.7%
HK 2,764,430 50.0% 0.2% 3.0% 46.8%

All subsequent writes of content “1” in “M” or “O” are
counted as intra-LUN “coalesced sectors”.

The results for the several semantically similar pairs, as
well as some semantically dissimilar pairs are given in Ta-
ble 5. For example, workload “DH” has 685,548 sector
writes, of which 13.6% can be eliminated by doing con-
tent coalescing on LUN 0, 12.1% can be eliminated by do-
ing content coalescing on LUN 1, and 33.1% can be elimi-
nated by doing content coalescing across LUN 0 and LUN
1. Therefore, 58.8%, (the sum of the three above percent-
ages), of the sectors written during trace “DH” can be elim-
inated by doing inter-LUN content sharing and coalescing
on all sectors.

Table 5 is sorted by the amount of inter-LUN sharing ob-
served for the traces. The highest level of sharing occurred
when we executed the same operation, on the same file sys-
tem, on the same operating system. The top three examples
are DH, which represents installing Netscape and Yahoo
Messenger on ext3 under Linux and shares 33.1% of its
sectors between LUNs; MO, which represents the two Win-
dows 2000 installations, which were performed as iden-
tically as possible, and exhibited 32.3% sharing between
LUNs. Finally, trace ’LN’, which represents the appli-
cation installation traces under Windows, shared 32% be-

tween LUNs. These results are in line with previous work
done at the file system layer with up to 550 machines [2].

This also makes intuitive sense, and provides a good ar-
gument for doing inter-LUN sharing when the operating
systems and file systems used between LUNs are similar.
Even when there is very little inter-LUN sharing, high lev-
els of intra-LUN coalescing can still be achieved for the
combined traces. An example is trace ’EG’, which has only
0.4% inter-LUN sharing, but still has over 67% intra-LUN
coalescing.

Finally, all pairwise executions produced common sec-
tors. Some produced very few common sectors, as few as
4 sectors were similar when combining workloads I and M
(Red Hat 8.0 idling and Windows 2000 installation).

3.4. Impact on Data Structures

There are four data structures needed to implement the
recoverable storage in the Peabody storage server:

� The buffer cache provides in-memory caching of the
contents of a virtualized disk.

� The sector store provides the actual storage for the vir-
tualized disk as seen by the user of the storage server.



We assume each virtualized disk may either share a
sector store common to all disks or use a private sec-
tor store.

� The write log, which is used to record the prior con-
tents of sectors. Maintaining this write log allows
storage volumes to be recovered – recovering involves
“undoing” individual writes.

� The transaction log, which records the meta-data as-
sociated with the write log. While the write log
records the contents of the writes, the transaction log
records information such as the order of writes, when
they occur, their location and content hashes of sectors
written.

We will address each data structure in turn. For each
structure, we need to determine if there would be any pos-
sibility of exploiting content sharing in that data structure
and enumerate the design alternatives. In each case, we are
interested in improving performance and decreasing the to-
tal amount of physical storage needed to represent a per-
ceived amount of storage.

Since the Peabody storage server is designed to serve
multiple virtual disks concurrently, it may be possible to
exploit content similarity in the buffer cache. Buffer caches
are usually 128MB-4GB for different storage servers; al-
though this a small amount of memory, RAM can be ac-
cessed about a thousand times faster than disk. Thus, more
efficient use of the buffer cache can greatly enhanced per-
formance. We believe the data structures needed to exploit
content similarity in the buffer cache are easy to maintain,
and this represents a good opportunity for improving per-
formance.

Improving the performance of the buffer cache may im-
prove performance, but it does not reduce the total amount
of physical storage necessary to represent a virtual disk.
We feel there may be three possible organizations of the
sector store. The first is to represent each virtual disk us-
ing a physically contiguous region of the actual available
disk. This obviously involves no overhead, but also saves
no space. It provides the best performance of the storage
alternatives since the disk store can take advantage of spa-
tial locality. This would be particularly true for workloads
with many read operations. The traces we collected had
a relatively low read/write ratio – this happens because the
buffer cache on each computer filters out many of the reads.

Alternatively, each virtual disk may be represented as
a sparse data structure, such as a B-tree of pointers to ac-
tual physical disk sectors. This organization would allow a
great degree of sharing, but have the additional overhead of
recording the sector structure. Furthermore, sectors that ap-
pear physically contiguous in a virtual disk would actually
be distributed over the full disk; this may greatly decrease
I/O performance.

The third alternative involves a middle-point between
the other two designs. It may be possible to use a series
of “extents”, similar to the mechanism used in logical vol-
ume managers, to allow finer-grain control of storage shar-
ing. Regions with high read usage or poor sharing could
be represented as a physically contiguous extent while re-
gions that have significant sharing can be represented us-
ing a sparse tree organization. If any mechanism to exploit
content similarity is used, additional data structures will be
needed to identify sectors with identical content.

We believe there is little benefit to sharing content in
the transaction log because it is unlikely that the contents
of the transaction log will have much similarity between
virtual disks. However, there is likely to be considerable
similarity within the write log itself. The write log can ei-
ther be organized as a contiguous series of writes or as a
sparse data structure. If both the write log and the sec-
tor store are organized as sparse data structure, it is possi-
ble to share content between the two structures; this would
provide the greatest opportunity for reducing the physical
storage needed.

In future work, we hope to implement multiple alterna-
tives and compare the efficacy of each. Based on the anal-
ysis in this paper, we believe that maintaining the write log
using a sparse structure is appropriate, because there is sig-
nificant content similarity in the traces. It is not clear if im-
plementing the sector store using a sparse mechanism will
save enough space to justify the likely performance penalty.
Our initial implementation will focus on the extent-based
mechanism, since this is more likely to result in a compro-
mise between space savings and performance.

4. Related Work

A few projects have attempted to address a subset of the
features provided by Peabody. The Logical Disk (LD) [4]
was an attempt to separate file system implementation from
physical disk characteristics by providing a logical view
of the block device. Jonge et al show how a LD can
turn an otherwise unreliable file system into a log struc-
tured one. One of the performance optimizations they do
is to compress blocks to better utilize disk space. Log-
ical Disks were primarily proposed to improve disk per-
formance, and do not discuss the notion of content-based
views of blocks. Furthermore, block-layer rollback and re-
covery mechanisms were not explored, although [4] does
propose multi-version filesystems as a topic of future work.

There have been various implementations of Logical
Volume Management (LVM) [21, 10, 6, 22]. The common
features include semantic separation of physical block de-
vices from logical block devices allowing improved man-
agement of the logical block device over time, the ability to
take a snapshot of a running system, typically using a copy-



on-write mechanism, and replication of blocks (typically
through mirroring) for fault tolerance. To our knowledge,
no systems to date have the continuous roll-back mecha-
nism of Peabody and snapshots in those other systems are
typically read-only.

The Petal Project [9] at Compaq SRC provides a virtual
block device interface implemented using many servers in a
distributed fashion. Similar to LVM, the Petal virtual disks
also provide an explicit snapshotting capability. It is ac-
complished by running a user-mode program that ensures
the disk is in a consistent state before making the snap-
shot. They discuss the idea of a “crash-consistent” snap-
shot where a snapshot may be taken anytime while blocks
are being written, and consistency is recovered using a file
system consistency program, but they have reportedly not
implemented the ability to do this. Obviously, snapshots
are explicit, but they are also read-only. Petal is imple-
mented on Digital UNIX as a virtualized disk service that
appears as a standard disk driver to the operating system,
making it an operating system specific system.

4.1. Versioning File Systems

File systems which maintain multiple versions of files
have also been heavily studied. The VMS file system al-
lowed for previous versions of files to be accessed via a hid-
den directory where the file was located. The Network Ap-
pliance uFiler [15] product allows snapshots to be viewed
as read-only hidden files in an associated directory. Snap-
shots in uFiler are scheduled at regular intervals to perform
similarly to the continuous mechanism of Peabody, how-
ever the granularity can be such that data is lost.

For example, if one snapshot interval is five minutes,
the “every five minute” snapshot represents the state of the
file system as it was recorded sometime within the last five
minutes. If a file is written three times in less than any
five minute span, then at least one of those writes will not
have been recorded in a snapshot. This is true because the
uFiler only takes a snapshot every five minutes. If write 1
occurs, and then the snapshot is taken, then writes 2 and 3
will occur before the next scheduled snapshot. If write 1
and 2 occur before the snapshot is taken, then write 3 will
occur before the next scheduled snapshot, (and write 1 is
not recorded in a snapshot). If all three writes occur before
the snapshot is taken, then only write 3 will be reflected
in the next snapshot, (and writes 1 and 2 are not recorded
in a snapshot). Finally, snapshots are typically discarded
when the next snapshot for that time interval is taken, so
after ten minutes, the “every five minute” snapshot taken
ten minutes ago is no longer available.

The Comprehensive Versioning File System
(CVFS) [20] keeps old versions of files to allow for
security rollbacks in case of intrusion. The Elephant File

System [19] maintains versions of files and uses various
policies to decide when to delete these files.

The problem with all of these file systems is just that;
they are file systems. They must be ported to different op-
erating systems to be useful and they provide only the file
system semantics and abstractions provided by that file sys-
tem.

We believe that in order to be widely useful the ver-
sioning mechanism needs to be in the block layer rather
than file system layer. Peabody can provide the snapshot
mechanism of the uFiler, the security rollback mechanism
of CVFS, as well as the possibility of deletion of old blocks
using semantics like the those of the Elephant file system.

4.2. Other Related Projects

Venti [17] describes a system that uses hashes of blocks
to coalesce writes to the actual data store to save space.
However, there are several important differences between
the current implementation of Venti and Peabody.

Because Venti is used as a backup device, it only takes
snapshots every 24 hours. This prevents using Venti to roll
back the state of the disk to arbitrary points in time, as
is possible in Peabody. However Venti could probably be
modified to include this functionality. Storage is reduced in
Venti by addressing each block using its MD5 hash. When
a block is written, if it is already in the backing store, then it
will simply be overwritten with the same contents. By def-
inition, if the contents change, then the MD5 of the block
will be different and the block will be stored in a different
place. Finally, Venti is intimately tied to the Plan 9 Op-
erating System, and so could not be used as the backing
store for a Windows 2000 or Linux installation as we have
demonstrated with Peabody, although again, Venti could
probably be modified to provide this functionality as well.

LBFS [13] describes using “semantic block boundaries”
to collapse chunks of files which are the same to reduce
write bandwidth. Whenever a file is written, the server
computes block boundaries not based on offset in the file,
but rather by using a fingerprinting mechanism which has
a reasonably small output space. (They use Rabin Finger-
printing [3] in the paper.) Each byte in the file is incremen-
tally added to the potential block, and then the fingerprint-
ing algorithm is run on that block. If the fingerprint output
is some pre-chosen magical number, then that offset is out-
put as the block boundary, and a new block is begun. The
interesting property of this mechanism is that insertions or
deletions in the middle of a file do not cause global changes
to the blocks after that block in the file. Instead, there is a
local change to that block, either producing two blocks, or
combining a previous block with that block, but otherwise
none of the other blocks in the file will change. This is im-
portant for the LBFS implementation because they are us-



ing the MD5 hash of the resultant “semantic block” to save
bandwidth between client and server by not sending blocks
which haven’t been altered when a file is written out.

If semantic block chunking was implemented in
Peabody, possibly much more content similarity could be
discovered, but the overhead for computing the byte-wise
block boundary calculation at file creation time might prove
too much overhead to use. We will be investigating this in
the future.

Many file systems attempt to put blocks that are related
semantically, together on disk. It reduces disk arm seeks
when reading, improving performance. We do not relo-
cate blocks in the up-to-date version of the disk, to allow
these optimizations to continue to produce performance
improvements.

Berkeley’s Recovery-Oriented Computing (ROC) relies
on the ability to recover data [1]. They have implemented
an email store that allows for undo to occur, but they
use a conventional database to record the transaction log.
Peabody seems like a natural block storage mechanism for
use underneath any recoverable application.

Finally, OceanStore [8] is an attempt to provide secure,
fault-tolerant, highly available storage in the network. Data
is injected into the system using a new interface that is more
full-featured and more high-level than the file system. They
provide legacy support in the form of a UNIX file system
wrapper on top of their higher level primitives.

5. Conclusions and Future Work

The results we obtained for the general purpose work-
loads indicate that there is a significant amount of content
sharing within a single virtual disk – up to 84% at best.
This is an important result because it validates our hypoth-
esis that we can save space by using information about the
content of the sectors to store identical sectors only once.
There is also a significant amount of silent writing occur-
ring.

Additionally, for the case where multiple virtual disks
are sharing the same backend block storage, when the
virtual disks are configured similarly, and operations per-
formed on the disks have semantic similarity, there appears
to be significant sector sharing – up to 32% for the best
case.

These three results suggest an implementation which fo-
cuses on a unified sector store, as well as an in memory data
structure which can detect silent writes and discard them.

While the workloads used represent a relatively small
time frame, these results are encouraging enough that
we will be implementing a more sophisticated version of
Peabody which does sector coalescing and inter-LUN sec-
tor sharing to test our hypotheses over a longer period of
time. It might be the case that there is some longer term

self-similarity in the sectors written which Peabody will
automatically take advantage of because of its sector his-
tory.

Additionally, we have come up with a Content-Based
Block Caching scheme which utilizes the contents of sec-
tors to store only a single copy of a sector in memory to im-
prove cache read hit rate. We intend to marry the Content-
Based Block Cache and Peabody to evaluate the perfor-
mance of the combined system.
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