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Abstract

Third-party transfer is a data transfer mechanism where
the party initiating the transfer is neither the source nor
the sink for the data. In this paper, we present a scheme
for supporting third-party transfers on storage systems with
network-attached disks (NADs), called SPIRAL *. SPIRAL
allows NADs to send data directly to clients without going
through the server. It is transparent to clients and relies
only on the linear block interface of the current disks (or
the future iSCSI disks). SPIRAL requires no porting of file-
system or application-level functionality to NADs and re-
quires only simple modifications to server applications. To
illustrate our approach, we implemented a prototype sys-
tem on PCs running Linux. We present experimental re-
sults for NFS and HTTP on the prototype to demonstrate
the effectiveness of our approach.

1. Introduction

Storage devices today are increasingly interconnected to
servers through switched networks instead of buses. Fi-
bre channel systems and recent IETF efforts in IP storage
(e.g., iISCSI) are significant industry milestones in this di-
rection. It is expected that these network based storage
systems can leverage research and development efforts in
networking technology to improve the device and system
interconnection speeds. Further, IP based storage systems
are expected to consolidate the network wiring infrastruc-
ture of data centers.

Recent advances in compression and communication
technologies have resulted in the proliferation of applica-
tions that involve storing and retrieving multimedia data
such as images, audio and video across the network. With
increased disk capacities and network bandwidth, larger
multimedia files are being stored and retrieved from net-
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worked servers. Compared to traditional file access, these
multimedia files pose different challenges. First, large vol-
umes of data need to be handled by the server’s mem-
ory and 10 subsystems. Traditional client-server proto-
col stacks and OS software layers often require data to
be copied several times for them to be transfered across
the network. Second, large data transfers reduce the ef-
fectiveness of the server’s buffer cache system, increasing
the number of page faults for other data such as file sys-
tem metadata and smaller files. These problems get com-
pounded by the extra network to memory transfers and ex-
tra network stack processing when storage devices are at-
tached to the network. In this paper, we will focus on stor-
age systems with network attached disks (NADs).

It has been shown that third-party transfer can signifi-
cantly improve the scalability of storage systems [8, 18].
Third-party transfer is a data transfer mechanism where the
party initiating the transfer is neither the source nor the
sink for the data. For storage systems with NADs, it nor-
mally refers to the ability of the system that allows direct
data movement between the NADs and the clients through
network. Third-party transfer reduces the amount of data
traffic through the server and improves the scalability of
the system. However, existing approaches normally require
the clients to be modified to communicate with NADs di-
rectly, or require porting file-system and application-level
functionality onto the NADs. Client-side modification may
be acceptable for a small closed environment, but is im-
practical for public web servers and video servers accessed
by large number of clients scattered over wide areas. It
also requires significant amount of development and main-
tenance efforts if the clients are running on different plat-
forms. Porting file systems or applications (such as NFS or
HTTP server) to NADs could be very difficult if the NADs
are based on a block-based interface, for instance, iSCSI.

In this paper, we propose SPIRAL, a scheme for sup-
porting third-party transfer on storage systems with NADs.
SPIRAL enables NADs to send data to clients directly over
the network (LAN or WAN) instead of through the server.
It has the following characteristics:



[ 1— Data

Il —— Application reply header
[ — TCP/UDP header
[ IP header

\ Application

TCP/IP

-
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e Itis client-transparent. There is no need to modify
the OS and applications on the client side.

e |t uses existing block device interface, allowing sim-
ple reuse of existing file system and operating system
technology.

e |t keeps the software layer on the NADs as thin as
possible for efficient utilization of device resources.
No file-system or application-level support is required
on NADs.

e |t supports both UDP and TCP.

SPIRAL’s approach is aligned with recent IETF’s stan-
dardization of iSCSI which allows many interesting sce-
narios of detaching block-level storage services from file
servers in the future. For example, storage-as-service busi-
ness models could employ SPIRAL to allow storage de-
vices to be pooled in one area while retaining the file
servers at customer premises. SPIRAL also solves the
problem of supporting third-party transfers from multiple
NADs over a single TCP connection (as required for NFS
over TCP or persistent HTTP).

It should be noted that currently SPIRAL only supports
third-party transfer for outgoing data from server to clients.
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Figure 2. Data flow for read in SPIRAL

Also, data moving operations may only contribute to a frac-
tion of the total workload on a server, in which case the
performance gained by directly moving the data between
NADs and clients could be limited [8]. Therefore, SPI-
RAL is best suited for workloads where a large part of the
server’s load comes from transferring data to clients, such
as the case for networked video servers.

The rest of the paper is organized as follows. Section 2
presents the design and the key ideas of SPIRAL. In Sec-
tion 3, we describe some details about our prototype im-
plementation and discuss the results of running NFS and
HTTP on the prototype. Section 4 discusses related work
and Section 5 concludes the paper.

2. Design

Applying third-party transfer for all data requests will
cause the system to lose the benefit of caching at the server.
In SPIRAL, it is expected that the server serves metadata
requests and small files directly to clients, while utilizing
third-party transfers for large data transfers. Such an ap-
proach combines the strengths of distributing server load
for large data transfers and centralized caching for meta-
data and small files. The server can decide when to em-



ploy third-party transfers based on request type, size of
data to be transfered, or a combination of several criteria.
Alternatively, third-party transfer can be specified explic-
itly through such schemes as Active Names [24] and other
namespace based approaches. In practice, which scheme
should be used depends on the actual workload, applica-
tion and system configuration.

We assume that NADs support a linear block level in-
terface as the current disks. To keep the software layer as
thin as possible on NADs, SPIRAL retains all the file sys-
tem functionality and applications at the server. Most of
the system level modifications are kept on the server. We
also assume that NADs can communicate with the server
in a secure way, either through the use of a private network
or through cryptographic mechanisms.

SPIRAL is based on two key ideas. First, SPIRAL in-
troduces a new file system interface t p_r ead. Server ap-
plications that support third-party transfers call t p_r ead
instead of normal read for those data they want to be di-
rectly sent back to clients by NADs. Similar to normal
read, t p_r ead contains codes for checking the validity
of the parameters, whether the requested data are locked,
etc. The main difference between t p_r ead and normal
read is that: instead of fetching the data to the server’s
buffer cache and then copying them to the application’s
user space buffer (also called user buffer in the rest of the
paper), t p_r ead only resolves the location of the data and
writes data location information (DLI) in the front of the
supplied user buffer. DLI normally contains the disk ID,
block numbers of the blocks containing the requested data,
start and end byte offset, etc. The start and end byte off-
set indicate the start and end position of the requested data
in the first and the last data block, respectively. The size
of a DLI is typically a few dozens of bytes and is usually
much smaller than the size of the requested data. The rest
of the user buffer remain untouched. At the end of the call,
t p_r ead returns the correct number of bytes to the caller
as if the read has been done in the normal way (in the rest
of this paper, we refer to what is inside the user buffer after
t p_r ead returns as “dummy data”). The application then
“pretends” that it has already read the real data from the file
and sends out replies using the dummy data to the client.
Here we assume that the difference between the dummy
data and the real data does not affect the correctness of
other fields in the reply. We will discuss more about this
assumption in section 2.6.

Second, SPIRAL uses a datalink-layer selective packet
redirector as shown in figure 2. This redirector sits on the
server and monitors all outgoing packets to intercept pack-
ets that contain dummy data. Since dummy data are not real
data, these packets should not be received by the clients as
they are. The redirector shrinks these packets by removing
all dummy data (except for the DLIs) from the payload of

the packets, retaining all other information such as the IP
headers, UDP/TCP headers and the application reply head-
ers. These shrunk packets are then redirected to the NADs.
Note that unlike in Slice [4] where packets are redirected
by manipulating packet headers, shrunk packets in SPIRAL
are actually tunneled to the NADs with the packet headers
treated as normal payload. Tunneling the packets simplifies
the receiving code on the NADs and allows us to leverage
the existing security protection scheme of the communi-
cation channels between the server and the NADs. We will
use the term “redirect” and “tunnel” interchangeably in this
paper. After a NAD receives a redirected packet, it inflates
the packet to its original size by inserting data read based on
the information in the corresponding DLI. The NAD then
sends this packet out to the clients through a raw socket
after recalculating the TCP/UDP checksums. There is no
need to update the IP checksums since the IP headers re-
main untouched. Because the packet now looks exactly the
same as if it was sent out by a normal server directly, there
is no need for any modification on the client.

Figure 1 shows the data flow from a traditional data
server with NADs to clients. Clients send data requests
to the server, the server fetches the data from the NAD to
its buffer cache and then sends the replies to the clients.
Typically, there are several data copies associated with this
procedure: data needs to be first copied into the server’s
buffer caches, then copied to the user space buffer of the
application. Another data copy is required for the data to
go through the kernel network protocol stacks before they
are sent out to the client. Figure 2 shows the typical data
flow for third-party transfers in SPIRAL. Except for the
DLIs, the rest of the dummy data are acting as place holders
and do not contain valid information. In the figure, we de-
note those data as random data though in practice they may
not be truly random. From the figure we see that: (1) data
transfers from the NAD to the server memory are avoided;
(2) the server’s network stack buffers are released sooner
since dummy data are no longer needed after the packet is
processed by the packet redirector. In SPIRAL, metadata
requests and small file transfers still follow the traditional
data flow shown in figure 1.

One detail left out in figure 2 is that the packet redi-
rector may add a little more information such as the off-
sets of dummy data in each packet when redirecting pack-
ets. Such information is not available whent p_r ead com-
poses DLIs but is necessary for NADs to insert data in the
right position. Figure 3 gives a closer look at how a shrunk
packet is tunneled and also shows the structure of a typical
DLI. The “dummy data offset info” points to the DLI sec-
tion of the redirected packet, which will be replaced with
the actual data at the NAD.

The advantage of intercepting packets at datalink layer
is that all the redirected packets have complete IP and
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TCP/UDP header information, so there is no need to main-
tain transport-level state information for connections with
clients on the NAD side. All network issues such as ac-
knowledgements and retransmissions are handled by the
server. Since these packets also contain application-level
reply headers, the NADs do not have to support individual
server applications either. The complete state information,
both application-level and transport-level, is maintained
only at the server. This allows the server to offload only
data transfers to NADs while performing all application-
level processing. As a result, the NADs only need to per-
form operations which are application-independent. In-
stead of intercepting packets at datalink layer, an alternative
scheme may choose to handoff the connections to NADs
for data transfers using a TCP handoff protocol similar to
that proposed in LARD [20]. For such an approach, fre-
quent connection handoffs may be necessary when data
are striped across several NADs or multiple requests are
served through one connection (e.g., NFS over TCP, per-
sistent HTTP), incurring significant overhead. We will dis-
cuss more about this in section 2.2.

In SPIRAL, all dummy data still need to be copied from
user space to kernel network buffers even though most of
the dummy data will not be used. This is done to maintain
the correct transport-layer state information in the network
protocol stacks at the server. The load on the server can
be further reduced if this data copy can be eliminated. It
is possible to modify the applications on the server so that
they can directly compose and send out redirection requests
to the NADs, instead of sending replies containing dummy
data to the clients. These redirection requests will look
similar to the redirected packets in SPIRAL. That is, they
will contain DLIs and other necessary informations such
as network and applications level headers. However, this
approach requires more modifications to the server appli-
cations and will only work with connection-less protocols,
such as UDP. For TCP, it requires either a TCP handoff pro-

tocol, or substantial modifications to the network protocol
stacks for allowing the connection state information to be
updated even though the data will not be sent out by the
server.

As we will show later through experiments, SPIRAL
offers several benefits compared with a traditional sys-
tem. It greatly reduces the amount of data traffic between
the server and the NADs. The server only needs to read
the metadata for building the DLIs. The bandwidth re-
quired for transferring the metadata is normally only a tiny
fraction of that when third-party transfer is not supported.
This can improve the system’s performance significantly
when the interconnect bandwidth between the server and
the NADs is the bottleneck. There are much less data to
be received by the server from the NADs. Less data go-
ing through the network protocol stacks helps to reduce the
CPU load on the server. Since the data no longer go through
the server’s buffer cache, the memory usage on the server is
reduced too. This will decrease the number of page faults
on the server and increase the cache hit rates for other re-
quests.

Though the basic idea of our approach is straight-
forward, there are several challenges and complications.
For instance, how should we implement the packet redi-
rector while minimizing the impact on the performance of
other network activities? How do we distinguish, at the
datalink layer, the packets to be redirected to the NADs?
How do we handle network issues such as IP fragmenta-
tion and TCP retransmission? How do we ensure file sys-
tem integrity and consistency? How to deal with packets
that contain multiple pieces of dummy data for different
NADs? What about security? In the rest of this section we
will discuss each of these issues in detail.

2.1. Packet filtering

To minimize the impact on other network traffic, SPI-
RAL uses a two level filtering scheme in its packet redi-
rector. In the first level, packets are filtered based on
their UDP/TCP port numbers in a way similar to that of
a firewall. Outgoing packets of applications not support-
ing third-party transfer are filtered out at this level. In the
second level, packets are filtered based on information pro-
vided by the applications. Outgoing packets that belong
to applications supporting third-party transfer, but do not
contain dummy data are filtered out.

2.1.1. Filtering based on port number. Port numbers
for each application that supports third-party transfer can
be registered in the packet redirector during system startup
or application initialization. Applications can also register
port numbers during run time dynamically. Such filtering



requires little processing so the impact on network traffic
of other applications is negligible.

One problem with filtering based on port numbers is
how to deal with IP fragments since the port number infor-
mation is only contained in the first fragment. The result is
that all outgoing fragmented packets need to be intercepted
and grouped based on their fragmentation 1Ds. Each frag-
ment is then filtered based on the port number in the corre-
sponding first IP fragment. Our prototype implementation
shows that the overhead of doing this is very small. Also,
many TCP implementations these days use Path MTU dis-
covery to avoid IP fragmentation.

Though the discussion here focuses on port numbers,
filtering at this level can be easily generalized to let ap-
plications to specify filtering rules that include IP address
ranges or other fields in the packet header.

2.1.2. Filtering based on application information.
Not all packets sent out by a server application support-
ing third-party transfer need to be redirected. For instance,
reply packets for metadata requests or small file requests
should be delivered to clients directly.

In SPIRAL, the server application is modified to pro-
vide the packet redirector information for deciding which
packets should be redirected. Depending on the applica-
tion, there are different ways of doing it. The first way is to
let the application notify the packet redirector which replies
contain dummy data. For example, an NFS [22] server
can notify the packet redirector that a particular NFS reply
contains dummy data by specifying the reply’s RPC XID
and client IP address (the XID is guaranteed to be unique
for each NFS request from one client). The second way
is to let the application provide the packet redirector with
low level information such as byte ranges. For example,
an HTTP server can inform the packet redirector that the
8000th to 12000th bytes of data (counted from the start of
the stream) that will be sent out from a particular TCP con-
nection contain dummy payload. The former requires little
change to the application but requires the packet redirector
to do some application-level parsing of the packets to track
the boundary of each reply and to locate DLIs. The latter
simplifies the task of the packet redirector but may require
more modifications to the application to keep track of how
many data have been sent out for each connection.

In practice, which scheme should be used depends on
how easy it is to track the reply boundaries and to parse
the replies at datalink level. While UDP maintains mes-
sage boundaries, TCP provides a byte-stream service and
does not lend itself to easy identification of logical reply
boundaries. However, applications and higher level pro-
tocols may provide their own framing support. RPC over
TCP, for example, uses a simple record marking scheme
that allows easy boundary tracking at the network level. On

the other hand, HTTP does not have such a simple framing
support for persistent connections and makes it more diffi-
cult for the packet redirector to track and parse the replies
correctly. Similar issues on application-level framing have
recently been discussed in the context of RDMA support
for iSCSI devices [9].

2.2. TCP related issues

As we mentioned previously, alternative approach for
the server to offload data transfer to the NADs is to use
TCP handoff. For NFS over TCP, large file transfer is bro-
ken into a series of fixed size data requests. Using TCP
handoff may require the connection to be handed back and
forth for each of these NFS read requests, otherwise the
NAD needs to be able to build NFS reply packets by itself.
For HTTP, though data transfer typically will not be split
into small requests, similar problem may still happen when
the requested data are striped over multiple NADs. In this
case, the server may need to frequently handoff the same
connection to different NADs.

Redirecting packets at datalink level also simpli-
fies the disk-side processing, allows NADs to support
implementation-specific TCP options between server and
clients directly in most cases even if they are not imple-
mented on the NADs. However, these advantages do not
come without cost. There are several complications for
supporting applications over TCP in SPIRAL.

2.2.1. TCP Retransmission. When the server detects
a packet loss in a TCP connection, it will retransmit the
packet using data from the TCP send buffer, which may
contain dummy data. In this case, the retransmitted packet
also needs to be redirected. However, the retransmitted
packet may only contain a partial segment of a reply, and
may not contain the corresponding DLI. To solve this prob-
lem, the packet redirector remembers previous redirections
containing information that may be used in potential re-
transmissions It does this for each TCP connection it is
monitoring. Every time a TCP packet is redirected, the
start and end sequence numbers along with the correspond-
ing DLI for each piece of dummy payload in the packet are
saved in a list for that TCP connection. The packet redirec-
tor detects retransmission by comparing the sequence hum-
ber range of the current packet with the maximum sequence
number it has seen for that connection. Since the packet
redirector resides on the server, it sees the packets in the
same order as the network layer sends them. By compar-
ing the sequence number range of the retransmitted packet
with the saved entries in the list associated with that con-
nection, we can find out whether it contains dummy data. A
saved entry can be released after all the data specified in it
have been acknowledged by the client. Since normally the



length of each list is fairly short and the size of each saved
entry is quite small, maintaining these lists consumes little
CPU and memory resources on the server.

2.2.2. Inbound filtering. So far, we only discussed
about filtering outgoing packets on the server. Inbound
packet filtering is also needed for TCP in SPIRAL for
mainly two purposes: 1) to track how much data have al-
ready been received by the client in order to free the saved
entries in the packet redirector when they are no longer
needed; 2) to detect termination of a connection for releas-
ing other state information maintained by SPIRAL for that
connection. With both inbound and outbound filtering, the
packet redirector can detect connection terminations when
it sees FIN packets from both sides and all the data have
been acknowledged. It will also notice if the connection is
aborted by TCP RST packets from either direction. How-
ever, a TCP connection may also be aborted by ICMP mes-
sages, which will not be intercepted by our packet redi-
rector. For such cases, a garbage collector can be used to
release state information in the packet redirector for those
TCP connections that no longer exist.

2.3. File system integrity and consistency

It is possible that when t p_r ead is called, part of the
data that the client requests are already in the server’s
buffer cache and some of these blocks may be dirty. The
t p_r ead function could first flush the dirty blocks to the
NAD before writing the DLI into the user buffer. A more
efficient (also slightly more complicated) approach is for
t p_r ead to fill the user buffer partially with those data in
the buffer cache and apply third-party transfer for the rest.

This does not solve the problem completely though.
Since t p_r ead does not read file data but only resolves
DLIs, problems arise due to the delay between when
t p_r ead resolves the DLI and when the NAD reads the
data and inflates the redirected packets. For example, dur-
ing this period, another process may remove or truncate the
file, causing all blocks of that file to be released. Some
of the released blocks may be reallocated to another file
and overwritten with new data. Part of these blocks may
be flushed to the NAD. All these could happen before the
redirected packets arrive at the NAD. In this case, the NAD
will read the wrong data and send them to the client based
on the obsolete information in the DLI.

SPIRAL solves this problem by letting t p_r ead send
a short notification message to the NAD before returning
to the caller. The notification message contains the same
block numbers as those in the DLI. It is important that
t p_r ead makes sure that no other writes to these data
blocks could arrive at the NAD unnoticed before the notifi-
cation message. If messages from the server to the NAD are

deliveredina FIFO order, t p_r ead can return to the caller
after sending out the notification message. Otherwise, it
needs to wait until the acknowledgement for the notifica-
tion message is received from the NAD. When the NAD
receives the notification message, it marks these blocks as
“pending”, which means that the NAD is likely to see redi-
rected packets with DLIs referring these blocks in the near
future. If write requests arrive for a pending block, the cur-
rent content of the block is saved before the block is over-
written. It is possible that the same block number contained
in two different DLIs refers to different data, for instance,
if a write to that block happens between the two t p_r ead
calls. To distinguish them, each notification message con-
tains a unique sequence number which is also carried in
the corresponding DLI. The combination of block number
and sequence number allows NADs in SPIRAL to identify
different versions of a pending block.

Because the same version of pending block may also be
referred in several DLIs at the same time, reference coun-
ters are used. A particular version of a pending block is
released when its reference counter drops to zero. The
releasing of the pending blocks is further complicated by
retransmission. For TCP, we can not simply decrease the
reference counter of a pending block when the NAD fin-
ishes processing a redirected packet containing that block,
since a retransmission may happen later that requires the
same data again. Our solution is to have the server explic-
itly issue messages to the NAD to decrease the reference
counters of the pending blocks. A release message can be
sent by the server if we know that the corresponding DLI
will not be referred later. This happens when the server re-
ceives ACKs from the client that acknowledge all the data
specified by the DLI. The approach is similar to release
consistency [15]. In practice, the release messages can be
sent out to the NADs in batches for efficiency reasons. For
UDP-based NFS, the reference count on the pending blocks
can be reduced after the corresponding redirected packets
are sent. If one or some of these UDP packets are lost,
NFS/RPC will re-send the request which will cause a new
notification message to be issued by the server.

Note that applications should not cache DLIs and reuse
them since doing so provides little benefit but complicates
the releasing of pending blocks. Fortunately applications
such as NFS and HTTP server normally do not cache read
results since the data are cached by the system buffer cache.

For comparison, figure 4 shows the detailed procedure
for one third-party transfer in SPIRAL and figure 5 shows
the procedure for one regular transfer in a traditional sys-
tem. In the figures, thick line indicates where bulk data
copy/transfer occurs.

Using notification messages also helps to reduce the la-
tency since the NAD can start reading the data blocks into
memory without having to wait for the redirected packets.
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2.4. Multi-disk redirection

Sometimes a single packet may contain multiple pieces
of dummy data whose corresponding file data reside on dif-
ferent NADs. This could happen, for instance, when sev-
eral files from different NADs are required through a per-
sistent HTTP connection, or when data in a single file are
striped over several NADs. There are several approaches to
deal with such packets. The simplest may be just to let all
the NADs involved to circulate the packet and fill in each
piece of data in order. The complete packet is sent to the
client by the last NAD. Alternatively, the host could split
the packet into several IP fragments and send one to each
of the NADs. In such a case, the packets are processed on
each NAD independently and no data need to be transfered
between the NADs. The packets will be pieced together at
the client at the network layer. Since the stripe size and the
size of the files in third-party transfers are normally much
larger than SMSS, the number of these packets should be
small compared with the total number of packets that are
redirected.

A Volume Manager (VM) adds another level of indirec-
tion between file system and disk data layout. Without VM,
DLI resolution can be simply implemented through the file
system’s brmap interface. With VM, the information re-
turned by bmap may no longer be enough. If the VM is
implemented at the disk side (in the NAD controller), then
using bmap to resolve DLI is sufficient since the volume to
device mapping will be done on the NADs. If the VM is on
the server, it may need to be modified to provide support
for DLI resolution in SPIRAL.

2.5. Security
Since SPIRAL only redirects outgoing data and all the

application-level processing is still handled by the server,
there is no requirement for NADs to perform access con-
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Figure 5. Data transfer procedure in a traditional
system

trol tasks (such as file permission checking and client au-
thentication). Also, because the NADs do not accept any
requests from the clients, the security of the system is not
affected. We assume that the server can communicate with
the NADs securely. This is not a limitation of SPIRAL
because such secure communication channels between the
server and the NADs are required for any storage system
with NADs, whether SPIRAL is used or not. In SPIRAL,
the redirected packets are tunneled to NADs as normal data
payload, therefore no extra protection scheme is required.

2.6. Limitations

Currently SPIRAL only supports third-party transfer for
outgoing data from the server to the clients. For incoming
data from clients, if the data are redirected at the server,
then there is no reduction of network traffic. If the data
need to be redirected at the router, then the router needs to
perform application-level processing. Redirecting incom-
ing data to NADs directly also requires the NADs to be ca-
pable of making space allocation decisions, which we have
decided to leave within the file system at the server. Deal-
ing with file system integrity and security also becomes
much more difficult.

The third-party transfer scheme in SPIRAL requires
the server application to build and send out replies using
dummy data, which may restrict its use in some applica-
tions. For instance, a streaming video server may want to
dynamically change the quality of the video stream accord-
ing to the connection status, and the application may not be
able to build the reply correctly without the real data.

Currently SPIRAL does not support encryption schemes
such as IPsec or SSL. It may be possible to let the server
share keys with the NADs so that the latter could encrypt
the data by themselves. Similar problem will be encoun-
tered by other third-party transfer schemes as well.
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2.7. Miscellaneous issues

Most file systems perform prefetching to speed up se-
quential read performance. Though t p_r ead does not
fetch data blocks to the server, similar read-ahead strategy
can be applied to NADs for prefetching data blocks into on-
disk memory. One simple way to implement read-ahead in
SPIRAL is to add the block numbers of those blocks to
prefetch in the notification messages.

The redirection scheme in SPIRAL may affect the TCP
algorithms in the server’s TCP implementation through the
round-trip time (RTT) values, since the delay caused by the
packet redirection will be added to the measured RTT. The
disk access latency could also become part of the RTT mea-
sured by the server. The result is that the RTT may appear
to be longer than what it should be. This may have impact
on the congestion control algorithms used in TCP. Since
packets containing normal data do not experience this extra
delay, this is likely to increase the RTT variance measured
on the server. Using read-ahead can help reducing the im-
pact of this since often the data blocks will already be read
into the disk’s memory when the redirected packet comes.

2.8. Future application

In general, the third-party transfer scheme in SPIRAL
should work for NADs supporting non-block interfaces
(e.g., an object interface) without significant changes. This
can be done by replacing the block numbers in the DLI with
object IDs and byte ranges.

Similarly, although our focus is on third-party transfer
between the NADs and clients in this paper, there is noth-
ing that prevents the server from redirecting shrunk pack-
ets to another server in a cluster. The latter will then fill
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Figure 7. Testbed structure

in the requested data and send the packets to the clients di-
rectly. Figure 6 shows a possible deployment of our third-
party transfer scheme (with suitable modification) among
a cluster of servers. The redirection could happen when
the server which holds the connection to the client is not
the best candidate for serving the requested data. For in-
stance, it may need to fetch the data from other servers, or
another server may have accessed the same data recently
and still has the data in memory. Again, for applications
which serve multiple data requests over a single TCP con-
nection, such a scheme can reduce the data traffic among
the servers without incurring the overhead of frequent con-
nection handoffs.

Besides applications such as NFS/HTTP server, SPI-
RAL may also be used to improve a system’s scalability
during remote backup or data mirroring through network.

3. Implementation

The structure of our testbed is shown in figure 7. Our
testbed configuration includes a 500MHz PC as the server
and a few 166MHz PCs as the NADs. Another several
233MHz PCs act as the clients. The server has 128MB
of memory and each client/disk machine has 64MB of
memory. Each machine has a 100Mbps network interface
card and is connected to each other through a dedicated
100Mbps Ethernet switch. The switch allows each node to
send or receive at 100Mbps in full duplex transfer mode
simultaneously. The server communicates with the disk
machines through the Linux network block device (NBD)
driver. NBD allows one machine to use files or disks on
another remote machine as its local block devices through
TCP/IP. A NBD server runs as a user space daemon on each
disk machine. We modified both the NBD driver and the



daemon to add support for SPIRAL. We implemented all
components of SPIRAL as Linux loadable kernel modules
on the server. Only minor modifications to the kernel NFS
server and the Apache web server are required. The details
of our implementation are omitted here.

In the prototype implementation, we introduced a third-
party transfer file attribute (called TP attribute) through a
simple stackable file system layer [11]. The file system
layer allows us to add new features on top of existing file
system codes conveniently with very little overhead. TP at-
tribute for each individual file can be set or cleared through
the f cnt | file system interface. It allows us to easily turn
on/off third-party transfer support in the experiments.

In the prototype, we implemented the port filtering by
directly making use of the kernel firewall codes. Our ex-
periments focus on two applications: NFS and HTTP. For
NFS, we modified the kernel NFS server’s read procedure
to first check whether the file’s TP attribute is set. If this is
true then t p_r ead is called instead of normal read. After
t p_r ead returns, the server marks the reply in the packet
redirector using the RPC XID and client’s IP address be-
fore sending the reply out. The modification only adds
a few dozen lines of C code. For application-level filter-
ing, a simple RPC parser is developed to check each NFS
reply’s XID to decide whether the reply contains dummy
data. We use a shallow finite state machine to keep track of
RPC record (one RPC message fits into one record) bound-
aries for NFS over TCP. Packets requiring redirection will
then go through a simple NFS reply parser to locate the
dummy data in the packet. Since only read replies will
be signaled as containing dummy data by the NFS server,
the NFS reply parser only need to know about NFS read
reply format. For HTTP, we modified the Apache web
server so that it provides the packet redirector byte ranges
of dummy data in the data stream. The modification turned
out to be quite straight-forward since the Apache server al-
ready contains codes for keeping track of how many bytes
have been sent for each reply body. Since this approach
does not require the packet redirector to know about HTTP,
application-level filtering is done simply based on the byte
ranges.

We implemented all components of SPIRAL as Linux
loadable kernel modules on the server, including the RPC
and NFS parsers, byte range filter and the redirection mod-
ule that shrinks and redirects packets.

In the following experiments, we compare the results of
NFS/HTTP with and without SPIRAL. The absolute per-
formance numbers in our measurements are low by today’s
standards due to the age of the equipment used, but the rel-
ative numbers and conclusions remain valid.

3.1. Large requests

3.1.1. NFS results. In this test, one file system is
mounted on the server from each disk machine through
NBD. All the file systems are exported to the clients
through the modified kernel NFS server. We initiated a
client thread requesting a 32MB file on the server sequen-
tially for each disk machine in the system. Figure 8 and
figure 9 show the total throughput of the NFS server over
UDP and TCP respectively with different number of NADs.
The results of SPIRAL are compared with those of an un-
modified NFS server without third-party transfer support.
The results show that the throughput of the system when
third-party transfers are enabled (NFS + SPIRAL + TP)
scales almost linearly as the number of disk machines in-
creases. The throughput for normal NFS (NFS) is saturated
at around 6MBY/s as the server’s CPU became the bottle-
neck.

We also show in the figure the results of SPIRAL when
the TP attributes for the files are not set (NFS + SPIRAL
- TP). This is done to measure the overhead of SPIRAL
to other data traffic where third-party transfers are not uti-
lized. The overhead here includes those from port filtering,
IP fragments handling (for NFS over UDP) and RPC pars-
ing. The results show that the performance impact is neg-
ligible. The overhead for data traffic of other applications
will be even smaller since application-level filtering (such
as that performed by the RPC parser) will not be needed.

3.1.2. HTTP results. We did similar experiments for
HTTP by replacing the kernel NFS server with the Apache
web server and letting the clients retrieve the same files
through HTTP. The results are shown in figure 10. Again,
the results show that SPIRAL allows improved scalabil-
ity with the number of NADs (HTTP + SPIRAL + TP)
and the overhead on regular traffic is negligible (HTTP +
SPIRAL - TP). We also note that with similar configura-
tions, the HTTP results are a little better than the corre-
sponding NFS over TCP results, even though the Apache
server is running in user space while the NFS server is im-
plemented using kernel threads. This is because NFS over
TCP has more overhead for large file transfers compared
with HTTP: there is only one HTTP request from the client
for the whole file but many NFS requests. The HTTP server
performs authentication once per file compared to authen-
tication per read request in NFS. Moreover, the NFS server
has to perform processing such as XDR coding and decod-
ing for each request.

To show that SPIRAL can greatly reduce the require-
ments on the interconnect bandwidth for the server, we
carried out another HTTP experiment where the network
bandwidth of the server and the disk machines is limited to
2.5MB/s using the Linux network QoS support [3]. Fig-
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ure 11 shows that the throughput of the normal apache
server is limited at around 2.5MB/s since all the data have
to go through the server. The throughput of SPIRAL re-
mains about the same since the aggregate network band-
width of the system (server and the NADs) grows linearly
with the number of NADs when the NADs have third-party
transfer capability.

3.1.3. CPU Usage. In this experiment, we compare the
CPU usage on the server with and without SPIRAL by
measuring the remaining CPU power using the dhrystone
benchmark [25]. Running the benchmark on the server dur-
ing idle time gives 628,930.8 dhrystones per second. We
ran the benchmark on the server while the clients are re-
trieving large files from all the five disk machines at the
same time. Table 1 lists the results reported by dhrystone.
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Figure 9. Throughput of NFS (TCP) for large file
transfers
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Figure 11. HTTP with limited interconnect Band-
width

For fair comparison, the SPIRAL throughput is limited to
about the same as that of the normal server, that is, around
7MBY/s for HTTP and 6MB/s for NFS. The results show that
with normal NFS/HTTP server, the server CPU is heavily
loaded and there is little processing power (smaller num-
ber of dhrystones) left for other processing. With SPI-
RAL, there is much more processing power available at
the same throughput, 4 to 5 times more than that with a
normal NFS/HTTP server. Note that same amount of data
are sent by the application and go through the server’s net-
work protocol stack in both cases. The savings of the CPU
power mainly come from the reduced network processing
and data copying (during data transfers from NADs to the
server).
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Table 1. Remaining CPU processing power

Dhrystones per second
Application | Normal | SPIRAL - TP | SPIRAL + TP
NFS UDP | 70,109.8 59,784.8 375,657.4
NFS TCP 46,285.6 42,612.1 226,295.5
HTTP 62,985.5 50,959.7 263,504.6

3.1.4. Memory Usage. In SPIRAL, large data transfers
no longer result in the server’s buffer cache being flushed.
To show that SPIRAL can also increase the server’s re-
sponsiveness for requests that do not use the third-party
transfers directly (e.g., NFS GETATTR requests or HTTP
requests for small files), we let one client repeatedly re-
trieve 250 64KB files whose TP attributes are not set from
the server through HTTP while other clients are retrieving
large files from all the five disk machines simultaneously.
The small files are retrieved several times before the test to
warm up the buffer cache on the server. The average ser-
vice time for retrieving one 64KB file through HTTP from
server to client (including network transfer time), is about
8.8ms in our system when there is no large file transfers.
During the test, the total throughput for large file trans-
fers in the background is limited to around 6MBY/s to leave
enough network bandwidth for small file transfers. Fig-
ure 12 shows the average service time for small file request
at different small request rates. Figure 13 shows the corre-
sponding total throughput for the large file transfers. When
the rate for small file requests is low, the average service
time with SPIRAL is close to the ideal result while the av-
erage service time without SPIRAL is 2.5 times longer. As
the request rate increases, the results are not only affected
by the memory usage on the server, but also impacted by
the CPU load on the server. The SPIRAL HTTP server

manages to provide better service times while serving small
requests at a higher rate. The results in figure 13 show
that the total throughput for large file transfers in a stan-
dard server decreases at higher small request rates while the
SPIRAL server could continue serving large files at 6MBY/s.

3.2. Requests of different sizes

The results from previous measurements demonstrated
the benefits of SPIRAL for transferring large files. In this
experiment, we study the sensitivity of these benefits to
different request sizes. Figure 14 and figure 15 give the
throughput of the system when the clients issue requests for
files of different sizes from all five disk machines through
NFS(UDP) and HTTP respectively.

To prevent disk accesses from being the bottleneck for
tests with small file sizes, we use a RAM disk on each
disk machine to ensure that the server’s CPU is saturated
in these measurements. Because of this, the maximum
total throughput we could achieve here are higher than
those in figure 8 and figure 10. In figure 14, the maxi-
mum throughput for SPIRAL is able to exceed 100Mbps
because the Ethernet switch allows each disk machine to
send data to clients at 100Mbps simultaneously. Results
in figure 14 show that for NFS over UDP, SPIRAL is able
to achieve a throughput of about 70% higher than normal
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Table 2. Number of NFS operations
File size in experiment | NFS Lookup | NFS Read
4KB 12213 11651
128KB 598 16848

NFS server for files of 4KB size. We also notice that SPI-
RAL shows significant performance improvement at even
small file sizes. Similarly, for HTTP, we observe that SPI-
RAL shows considerable performance improvements for
file sizes larger than 32KB.

From these results, we can see that SPIRAL would be
most useful for workloads where data transfer dominates,
such as those of networked video servers. Video request
sizes are typically large and the initialization and setup cost
for each video transfer is relatively small. For example,
the workload for the video server in [2] shows the average
number of bytes transfered per play is 29.8M. More generic
NFS or Web server workloads, however, will benefit less
from SPIRAL since data movement contribute to a smaller
fraction of the total workload.

For the NFS trace analyzed in [8], read requests account
for around 20% of the total number of requests and around
30% of the CPU cycles on the server. There, the costs of
NFS operations were measured by recording code-path ex-
ecution times when the requested data are cached on the
server. This means that cost of each NFS operation re-
ported in [8] does not include the cost of disk 10 opera-
tions. When the requested data need to be fetched over the
network from the NADs, we expect to see a higher relative
cost for read operations due to network processing. To con-
firm this, we measured the number of NFS operations for
normal NFS server in the experiment corresponding to fig-
ure 14 with file sizes of 4KB and 128KB. Table 2 lists the
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Figure 15. Throughput of HTTP with different file
sizes

number of NFS lookup and read operations carried out in a
fixed amount of time. The number of other NFS operations
during the experiment is very small and is negligible. If we
assume the cost of a lookup is [, an NFS read is r, since the
server’s CPU is fully loaded in both the cases, then from the
table, we have 12213 %[+ 11651 % r = 598 x [ + 16848 x r,
which gives » = 2.25 * [. Thus, we observed the cost of
an NFS read operation (each NFS read request reads 4KB
data in the experiments) to be roughly about 2.25 times as
expensive as a lookup operation when data need to be read
from NADs. A comparison of data in [8] shows that, with-
out 10 accesses, a 4KB NFS read is around 1.5 times as
expensive as an NFS lookup. This demonstrates that even
if read operations remained at 20% in NFS workloads, the
relative CPU cost of these operations is likely to be higher
than 30% when NADs are employed. According to results
shown in figure 14, SPIRAL can reduce the cost of han-
dling read requests to less than half on the server. Based
on these data, we conclude that SPIRAL will provide 15%
or higher performance improvement for generic NFS work-
loads.

3.3. Realistic workload

To see how the system performs in practice, we ran the
Ziff Davis Media WebBench 4.1 benchmark program on
our system. We ran one WebBench client on each of the
three client machines under Win98. Each WebBench client
used 15 threads and each test ran for 5 minutes. The stan-
dard workload tree that comes with WebBench contains
6,160 files and requires approximately 61MB of space. We
distributed these files evenly across all five disk machines.
The workload tree uses 10 file sizes ranging from 223 bytes
to 529KB. The majority of these files are HTML and GIF
files. The standard static workload file that comes with



Table 3. Original file size distribution among requests

File size (byte) | 223 | 735 | 1522 | 2895 | 6040 | 11426 | 22132 | 41518 | 87360 | 541761
Distribution (%) | 20 8 12 20 14 16 7 0.8 0.1 0.1
Table 4. WebBench results (N=NORMAL S=SPIRAL)
Server With With | Request | Throughput | Data fetched from
memory(MB) | HTTP 1.1 | video | per sec (MB/sec) | disk to server(MB)

N 64 No No 251 151 250
S 64 No No 252 1.51 17
N 128 No No 253 1.51 65
S 128 No No 255 1.55 17
N 64 Yes No 789 4.75 650
S 64 Yes No 844 5.09 17
N 128 Yes No 1020 6.01 65
S 128 Yes No 849 5.12 17
N 64 Yes Yes 248 5.66 1550
S 64 Yes Yes 396 6.93 22
N 128 Yes Yes 348 6.62 1100
S 128 Yes Yes 399 7.76 18

Table 5. File size distribution among requests with video files

File size (byte) | 223 | 735 | 1522 | 2895 | 6040 | 11426 | 22132 | 41518 | 87360 | 541761 | 32M
Distribution (%) | 20 8 12 20 14 16 7 0.8 0.1 0.05 0.05

WebBench was used to generate the HTTP requests (the
static workload contains only requests for static files). Ta-
ble 3 gives the distribution of file sizes among the gen-
erated requests. To show the performance of the system
both when all data can and cannot be cached in the server’s
memory, we ran each test with two memory configurations
on the server: 64MB and 128MB. For each configuration,
we ran the benchmark when all HTTP requests generated
are HTTP 1.0 requests, and when 50% of all requests are
HTTP 1.1 requests using persistent HTTP connection. The
minimum number of requests per connection for HTTP 1.1
requests is set to 1 and the maximum is set to 10. Requests
can be pipelined in each persistent connection and the min-
imum and maximum number of pipelined requests are set
to 1 and 10 respectively. We set the file size threshold
for third-party transfer to 8KB for SPIRAL measurements,
which means that only those files exceeding 8KB will be
sent by the NADs to clients directly while smaller files
are served in the normal way. Each measurement started
with a cold cache on the server. Table 4 lists the results
of our measurement including two overall server scores re-
ported by WebBench (request per second and throughput
in MB/sec) as well as the total amount of data fetched from
the disks to the server. We can see that when the workload
contains only HTTP 1.0 requests, the results of SPIRAL

and normal system are very close since each HTTP 1.0 re-
quest uses a separate TCP connection and the server’s CPU
is saturated for handling the connections. With workload
containing HTTP 1.1 requests (With HTTP 1.1), the nor-
mal system performed better when the server is equipped
with 128M memory, in which case the whole workload tree
can be cached in the server’s memory (the total amount of
data fetched from the disks to the server roughly equals
the size of the workload tree). This is expected since there
is little advantage for redirecting the packets to the NADs
when the server can serve all the requests from its mem-
ory directly. When the server has only 64M memory, SPI-
RAL outperforms the normal system because the latter has
to constantly fetch data from the disks due to limited cache
size. For SPIRAL, only files smaller than 8KB need to be
fetched to the server and they are not purged from the cache
due to requests for larger files.

In the table we also show what happened when a small
number of large video file transfers are introduced into the
workload. Table 5 gives the distribution of file sizes among
the requests after we modified the workload tree by adding
some 32MB MPEG video files. The results (With video)
in table 4 indicate that even though there is only one video
request out of around 2000 requests, these video requests
can reduce the number of requests completed per second



substantially. Compared with the normal system, SPIRAL
performs significantly better with 64MB memaory on server
and noticeably better with 128MB when the workload con-
tains large file transfers.

4. Related Work

In NASD [8], each disk manages its data layout and
exports an object interface. File operations such as read
and write go directly to the disk, while other operations
such as namespace and access control manipulation go to
the server. The security is protected by granting time-
limited tickets to the clients. Their results show significant
improvement on the system’s scalability. The clients are
aware of the disks and client OS/applications need to be
modified to access objects on the disks directly. It’s likely
that, given the same hardware configuration, approaches
such as NASD will perform better than SPIRAL because
the clients access the disks directly and disks in NASD sup-
port writes and attribute read requests. This is the price that
SPIRAL pays in order to achieve client-side transparency
and to minimize changes to the NAD OS. Some other ap-
proaches proposed to offload computation to smart storage
devices include active disks and IDISK [1, 21, 14].

The derived virtual device (DVD) model [18] proposed
in the Netstation project provides a mechanism for safe
shared device access in an untrusted environment by cre-
ating DVDs and managing them through a network virtual
device manager. The proposed third-party transfer scheme
using DVDs is similar to that in NASD. The Linux NBD
that is used in our prototype is similar to their virtual Inter-
net SCSI adapter [17].

In LARD [20, 5], outgoing data are directly sent to the
clients by the back-end server without going through the
front-end server through a TCP handoff protocol. A TCP
handoff protocol is used to achieve client side transparency.
After a TCP connection is handed off to a back-end server,
the front-end server still receives all the incoming data but
forwards them at lower network stack layer to back-end
servers. However, LARD assumes a cluster configuration
where each back-end server is capable of serving requests
independently. For NADs, such a scheme requires porting
file system and applications (such as NFS/HTTP server) on
the disks, which essentially turns each NAD into a small
server.

In Slice [4], a request switching filter interposed along
the network path between the client and the storage server
routes file requests based on request type and parameters.
Slice focuses on NFS over UDP and requires changes to
the network routing components between the client and the
server. Both the packet redirector in SPIRAL and the net-
work switch filter (call uproxy) in Slice manipulate packets

at datalink level based on application-level information but
in the opposite direction.

There are many approaches to implement request dis-
tribution across a number of servers [6, 13, 7, 26]. Since
packet redirection in SPIRAL happens at the datalink layer,
SPIRAL can be used in conjunction with these solutions
seamlessly. On the other hand, although we focused on
third-party transfer with NADs in this paper, the packet
redirection scheme used in SPIRAL can also be deployed
among the servers to achieve similar goals as those in these
solutions.

Currently SPIRAL does not support third-party transfer
for incoming data from clients. The Zebra striped network
file system [10] allows writes to the storage server to ap-
pend to the log without authentication. The written blocks
don’t become part of the visible file system until the file
manager updates the metadata. The storage server in Ze-
bra only has to deal with file system requests. Supporting
third-party transfer for incoming write requests in SPIRAL
is more complicated since the NADs need to handle incom-
ing data from different applications.

What SPIRAL does essentially is to separate data and
control transfer at the datalink level from the server side.
Separating data and control transfer to achieve better scala-
bility and to minimize shared network resources usage was
discussed in [23]. Such a separation was also advocated by
the Mass Storage System Reference model [12]. Several
technigues have been proposed to remove copies from the
data path. 10-Lite [19] introduces a unified 10 buffering
and caching system to eliminate data copying and multi-
ple buffering. The Direct Access File System (DAFS) [16]
promises high-performance network-attached storage over
direct-access transport networks by taking advantage of
user-level network interface standards. What distinguishes
SPIRAL from other approaches is that SPIRAL achieves
client-transparency and reduces data transfers between the
server and the NADs at the same time.

5. Conclusions & Future Work

In this paper, we presented a client-transparent third-
party transfer scheme for storage systems with NADs.
We showed that third-party transfer over reliable transport
protocol such as TCP can be supported efficiently with
datalink level packet interception. Our approach is based
on networked storage devices with block-based interfaces
(such as iSCSI) and does not require porting file system
functionality onto the device. Results for NFS and HTTP
on a Linux PC-based prototype system demonstrated the
effectiveness of SPIRAL.
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