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Abstract

When data resides on tertiary storage, clustering is the
key to achieving high retrieval performance. However, a
straightforward approach to clustering massive amounts of
data on this storage requires considerable computational
and storage resources that usually exceed the capabilities
of even the richest super-computing centers. This paper
develops a new approach to hierarchical storage manage-
ment in Data Grid environments, which calls for two levels
of clustering data on tertiary storage. Applying a mix of
static and dynamic decisions, this approach achieves the
benefits of clustering at reasonable costs. However, an ef-
fective realization of the approach in generic Data Grid en-
vironments requires advances in the areas of indexing and
clustering large scientific data collections on tertiary stor-
age. The paper describes some novel indexing and cluster-
ing techniques that can cope well not only with extremely
large volumes but also with very high dimensionalities of
scientific data. The basic principles of a new clustering
technique for large volumes of multi-dimensional data are
introduced in the paper for the first time.

Keywords: scientific databases, hierarchical storage, data
clustering, Data Grid, data dimensionality.

1. Introduction

In order to meet the challenges posed by advanced sci-
entific applications, the international research community
is developing a broad information-technology infrastruc-
ture for scientific research, known as Data Grid. This in-
frastructure will enable “geographically dispersed extrac-
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tion of complex scientific information from very large col-
lections of measured data” [6] and demonstrate the feasibil-
ity of effectively managing large data intensive computer
clusters constructed from inexpensive components.

The Data Grid infrastructure must deal with difficult
problems of scale, e.g. the extremely large volumes and
very high dimensionalities of data. For example, in the
physics experiments designed to study the results of the
collisions of fundamental particles, hundreds of parameters
are being recorded for each collision produced in a high-
energy particle accelerator. The Large Hadron Collider,
which is scheduled to be operational at CERN in 2006/7, is
expected to generate several petabytes (215 bytes) of such
data each year. Further complicating the matter is the fact
that these data are often deposited onto tertiary storage, typ-
ically robotic tape systems [17]. Since the movement of
data on tertiary storage is severely restricted, the storage
and processing techniques naturally operate in these envi-
ronments with limited freedom.

The above problems pose major challenges to the sci-
entific database community. In particular, it is well known
that traditional multi-dimensional access methods do not
scale well with a growing dimensionality of data. Numer-
ous structures have been proposed to address this problem
[1, 3, 4, 10, 13, 16, 19]. However, despite the progress
made so far, it is generally felt that the appropriate ac-
cess methods for indexing high-dimensional data are yet
to emerge. The same is true for the area of data clustering,
in which traditional techniques [8, 9, 18] also experience
severe performance degradation when applied to large vol-
umes of high-dimensional data.

The concerns of data retrieval and data clustering are
closely related and, in many ways, interdependent. For ex-
ample, when data resides on tertiary storage, the best re-
trieval performance can be achieved only if the data are
clustered on the storage medium by all attributes on which



they are searched. This is necessary to minimize the num-
ber of costly accesses to the tertiary storage and achieve
nearly optimal reading for the changing access patterns.
Therefore, the retrieval technique must either conform to
the chosen method of clustering data on tertiary storage or,
even better, become a pro-active entity that can facilitate
both clustering and efficient access to the data.

In this paper, we describe the principles and techniques
behind a new kind of data engines for effective manage-
ment of hierarchical storage in Data Grid environments.
We argue that the central issue in the development of these
engines, i.e. data clustering, should be addressed at two dif-
ferent levels. First, a static partition of the given multi-
dimensional space should be used to organize the entire
data set into clusters that correspond to different regions
in the space, which would then be stored in one or more
physical files. Even though the space partition must be
statically defined, the process would be performed dynam-
ically while the data are still arriving. We call this “a priori
clustering” of data. Second, using an asynchronous clus-
tering facility, the data of individual clusters should be pe-
riodically re-organized into sub-clusters, each assigned to
a single file on tertiary storage. This latter process is called
“a posteriori clustering” of data.

While the idea of two-level clustering is fairly intuitive,
keys to its practical realization in Data Grid environments
are the advances in the areas of clustering and indexing
multi-dimensional data on tertiary storage. In the paper,
we describe some novel retrieval and clustering techniques
that can scale well to very high volumes and dimensionali-
ties of data. The techniques build on the properties of two
new space-partitioning schemes [11, 12], which have many
advantages in high-dimensional situations. They can also
handle highly skewed data and partially specified search
predicates of advanced scientific studies. The basic prin-
ciples and general operation of a new clustering method,
called the GARDEN technique, are introduced in this paper
for the first time.

The rest of this paper is organized as follows. Section 2
introduces the idea of two-level clustering and the motiva-
tion behind it. Section 3 describes our space-partitioning
strategies, called Γ and Θ. Section 4 outlines the indexing
technique for a priori clustering of data on tertiary stor-
age. Section 5 describes the operation of the GARDEN
clustering technique. Section 6 summarizes the paper and
discusses the scalability of the proposed approach to the
increasing volumes and dimensionalities of data.

2. The idea of two-level data clustering

The Data Grid infrastructure must include two types of
components for data storage and retrieval. Both are con-
cerned with storage organization, caching, and data access,

but they manage data on different types of storage. The
Disk Storage and Access Manager (DSAM) dynamically
handles data on a shared disk. On the other hand, the Hi-
erarchical Storage and Access Manager (HSAM), which is
of particular interest to us, interfaces with the underlying
mass storage system to manage data on tertiary storage. In
addition, it has at its disposal a staging disk cache for tem-
porary storage of files. The indices for efficient access to
the data are also maintained on the high-speed disk.

While the present efforts on the Data Grid develop-
ment are focused on supporting required functionality, ul-
timately, it is the performance of the Data Grid operation
that will determine how useful this functionality will be.
Much of this performance will depend on how fast one can
find desired items in the massive repositories of scientific
data, which will in turn heavily depend on how the data are
organized on the storage. Therefore, the mechanisms that
will be used to organize and access data on tertiary storage
will have significant impact on the success of the Data Grid
initiative.

However, there are not many alternative ways to orga-
nize data on tertiary storage. Consider first the simplest
storage organization, which is commonly used in practice,
in which the data are stored in the order they are generated
(temporal ordering of data). An unfortunate property of
this organization is that the placement of data is typically
incompatible with the order of accessing the data. When
the data repository is queried on the intrinsic properties of
data, the items that satisfy the query appear to be randomly
distributed across the files. Therefore, a typical query must
access numerous files spread across potentially many tapes,
and usually only a small fraction of each retrieved file is rel-
evant. As the size of the repository grows, the probability
that a desired item belongs to any given file decreases. Con-
sequently, the percentage of useful data in an accessed file
becomes even smaller and the number of files that have to
be accessed increases (unless this number is already equal
to the number of satisfactory items).1

An alternative idea is to cluster the data on tertiary stor-
age so that a single access to the storage would retrieve an
entire set of similar items. To see the benefits of this or-
ganization, consider Figure 1 illustrating a region query in
a 2-dimensional space that contains four clusters of data,
presumably stored on some off-line tapes. (Because the
queries of scientific applications tend to be under-specified,
we choose a query window that appears as a vertical strip in
the space. For example, while the high-energy physics data
can have as many as 200 properties, the number of proper-
ties restricted by the queries is usually between 1 and 8.)

Obviously, the performance of the given query would

1In Data Grid environments, this not only adversely affects the per-
formance of analytical programs, but also has the effect of “blinding” the
process of request planning [6]. The later process must select the appro-
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Figure 1. An illustration of the effects of data
clustering on the retrieval performance.

be tremendously improved if the data of each cluster were
maintained in their own separate files. Then, with the help
of an appropriate indexing structure, only the files contain-
ing the clusters C2 and C3 would be accessed. Moreover,
provided the data of individual clusters are further orga-
nized into sub-clusters, each assigned to its own data file,
a subset of files corresponding to the cluster C3 in the fig-
ure could also be eliminated from inspection. In practical
environments, all this could lead to a significant reduction
in the number of costly accesses to the tertiary storage and,
consequently, a tremendously improved performance of the
Data Grid operation.

Another important thing to keep in mind is that, con-
sidering only the retrieval process, the clustered storage or-
ganization is highly scalable to extremely large data col-
lections. Using the actual number of items that satisfy the
query as the true measure of the query’s selectivity, one can
easily show that, if the data are clustered on all attributes
restricted by the query, the number of files that need to be
accessed is independent of the number of files in the repos-
itory. This means that, as the repository grows, the per-
formance improvements over the organization with tempo-
ral ordering of data generally increase. For very large data
collections and queries with relatively good selectivity, the
clustered organization could easily generate 2-3 orders of
magnitude fewer file accesses than the temporal ordering
of data. The magnitude of the achieved improvements will
also depend on the average capacity of files.

However, these benefits of clustering are by no means

priate execution site for the given program based in part on an estimate as
to how many files will have to be accessed.

guaranteed. For example, clustering data on a small subset
of dimensions can benefit only the queries that specify (re-
strict) these dimensions. Since the values of the remaining
dimensions are disseminated across the files in a virtually
random fashion, any benefit from such clustering becomes
lost in the associated costs. Unfortunately, in reality, these
costs tend to be extremely high. This is because clustering
massive data on tertiary storage requires considerable com-
putational and storage resources that often exceed the capa-
bilities of even the richest super-computing centers. More-
over, since a typical scientific data repository is not static
(data are usually streaming in at a fairly constant rate), one
would need to periodically re-cluster the entire repository.

To achieve the benefits of clustering data on tertiary stor-
age, one would need a clustering technique that would a)
avoid global restructuring of the data repository, and b)
cluster the data by all attributes on which they are searched.
The two goals motivate our approach to the problem of
managing hierarchical storage. To address the first con-
cern, we propose the idea of two levels of data clustering.
The idea involves a mix of static and dynamic decisions
that require only local restructurings of data.

First, a static space partition is used to organize the en-
tire data set into clusters corresponding to different regions
in the space, which are stored in one or more physical files.
For best performance, the space partition should be derived
with some insight as to where the actual data will be lo-
cated, which can be obtained from an early sample of data.
Note that, even though the space partition is statically de-
fined, the process is performed dynamically while the data
are still arriving. We call this process “a priori cluster-
ing”. Second, using an asynchronous clustering facility,
the data of individual clusters are periodically re-organized
into sub-clusters, each of which is assigned to a single file
on tertiary storage. This latter process is called “a poste-
riori clustering” of data. Since a posteriori clustering is
conducted on relatively small subsets of the entire data, it
can be performed even in environments with limited disk
and computational resources.

In this organization, the static2 space partition acts like
a filter through which the incoming data are dynamically
channeled into appropriate files. For each region in the
space partition, there is one “active file” that receives the in-
coming items. For optimal performance, these active files
should be maintained on the staging disk. As soon as a
file exceeds certain size, it should be flushed to the tertiary
storage. However, in order to save resources, in reality, one
would maintain on the high-speed disk only the most recent
parts of the currently active files.

The idea of the two-level clustering of data raises a num-

2We will later see that this restriction on the space partition can be re-
laxed. Due to the provision for a posteriori clustering, the space partition
can be fairly dynamic.



ber of important questions. Which strategy should one
use to partition the given multi-dimensional space? How
is the appropriate space partition derived? Where should
the descriptions of the contents of each file on tertiary stor-
age be maintained? What mechanism should be used for
a posteriori clustering of data? Appropriate answers to
these questions must take into account many environmental
concerns, which include a multitude of difficult problems:
enormous quantities of data, potentially high data dimen-
sionality, low-dimensional region queries, highly skewed
data distribution, and the static nature of tertiary storage.
They must also carefully address our second major con-
cern, i.e. making sure that the data set is clustered on all
relevant dimensions.

Our answers to these questions come in the form of
three techniques that we are developing to support effective
management of hierarchical storage with two levels of data
clustering. These include some flexible strategies of parti-
tioning multi-dimensional spaces, an indexing structure for
a priori clustering and retrieval of data on tertiary storage,
and a clustering technique for both a posteriori clustering
of data and the selection of the appropriate space partition.
Below, we describe each of these techniques in more detail.

3. The Γ and Θ partitioning strategies

One of the most important factors affecting the retrieval
performance of an access method in high-dimensional
spaces is its space-partitioning strategy. Unfortunately,
contemporary partitioning schemes lead to numerous prob-
lems in high-dimensional situations. For example, to make
sure that each axis of a d-dimensional space is partitioned
at least once, the traditional space-partitioning strategies
[7, 15] require about 2d divisions of the space [13]. Since
a division is performed only when the number of points
in the region exceeds certain limit, for all realistic data-set
sizes and high data dimensionality, certain dimensions are
not partitioned at all. As a result, these dimensions do not
contribute anything to the selectivity of the access method.
These partitioning schemes may also suffer from the prob-
lems of dead space (indexed space that contains no data ob-
jects) [4] and region overlap (space covered by more than
one region) [2]. The popular Pyramid Technique [1] also
leads to multiple problems, including non-unique key val-
ues, false drops, loss of proximity, query enlargement, and
dead space [11].

In high-dimensional spaces, a new and different parti-
tioning strategy is required. The strategy should partition
every axis of the space multiple times. One should be able
to control the number of index regions in the space, but
each index region should have a relatively small neighbor-
hood. In addition, the strategy should be flexible enough to
accommodate arbitrary data distributions.
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Figure 2. A Γ space partition.

Recently, we developed two new space-partitioning
strategies with the above properties, which we call Γ and
Θ [11, 12]. Figure 2 illustrates a Γ partition of a 2-
dimensional space. By placing a smaller rectangle in one
of the corners of the space (in this case, lower left corner),
we carve out a portion of this space. Since we still want
rectilinear subdivision, the remaining portion of the space,
called Γ subspace, must be divided further. The dashed line
indicates one possible choice. The inner rectangle can be
recursively carved in the same fashion to obtain as many Γ
subspaces as desired.

In general, the d-dimensional universe is statically par-
titioned by several nested hyper-rectangles (NHRs), which
we also call partition generators or just generators. The
space inside one and outside its immediately enclosed gen-
erator defines one Γ subspace. Except for the innermost
subspace, every Γ subspace is further divided into d rectan-
gular Γ regions, by means of d-1 hyper-planes, each lying
on an outer side of its inner NHR. With m generators, there
are exactly 1+(m�1) �d different Γ regions in the space.
The coordinates of each Γ region can be calculated using a
simple algorithm [11].

The Θ partitioning strategy is illustrated in Figure 3. It
is virtually the same as Γ, except that the low endpoints
of the nested generators can appear anywhere in the space.
This strategy carves out the opposite sides of each genera-
tor along individual dimensions, starting from the first di-
mension and proceeding further in the pre-determined or-
der of the dimensions [11]. With m generators, the number
of resulting Θ regions is 1+ 2 � (m� 1) � d. This strategy
can be viewed as a generalization of Γ, in which the nested
generators are allowed to float in the space. However, if
the space is partitioned into the index regions of equal size,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

� region 

� 
region 

� region 

� region 

� region 

� region 

� 
region 

� 
region 

� 
region 

Figure 3. A Θ space partition.

Γ and Θ become two different partitioning strategies with
some distinct properties [11].

With an additional measure, the two partitioning
schemes can eliminate from inspection a potentially signif-
icant amount of dead space that comes with highly skewed
data distributions. Toward this end, for each Γ or Θ region,
one should dynamically maintain the minimum bounding
hyper-rectangle enclosing all points that fall in the region.
We call this the live region. Depending on the data distri-
bution, one may also want to partition every region along
different dimensions into, possibly, several slices. This can
be done using a rectilinear division of the original Γ or Θ
region to obtain a desired number of slices in proportion to
the number of points falling in the region.

Using the Γ and Θ partitioning strategies, we have
recently designed two new retrieval schemes, called Γ s

and Θs [11], which are appropriate for high-dimensional
data maintained on the disk. Like the Pyramid Technique
[BBK98], Γs and Θs employ two distinct layers. The higher
layer uses a memory-resident translation index that stati-
cally partitions the space into Γ or Θ regions. Its purpose
is to transform the d-dimensional points and queries onto
their one-dimensional counterparts. The lower layer orga-
nizes the resulting one-dimensional index keys into a tradi-
tional indexing structure, e.g. the B+-tree. The structure is
searched using the one-dimensional intervals generated by
the query transformation [11].

Numerous experiments with both simulated and real
data sets were conducted to assess the performance of the
Γs, Θs and Pyramid techniques, which was measured as the
average number of accessed pages per query [11]. For ex-
ample, in an experiment with a real data set representing a
table with 25 attributes and 1,000,000 records extrapolated

from a database of a local company, Θs with live regions
generated about 650 times fewer page accesses than the
Pyramid Technique. The corresponding improvement of
Γs with live regions over the Pyramid Technique was about
1,600 times [11].

4. The indexing technique for a priori clus-
tering and retrieval of data

While Γs and Θs are appropriate for indexing multi-
dimensional data on secondary storage, a different access
method is required when the data reside on tertiary storage.
Recently, we designed a new indexing technique for data on
tertiary storage, called Γ t [12]. To make sure that every axis
of the given space is indeed partitioned, which provides the
first level of insurance that the data will be clustered on all
dimensions, this mechanism uses the Γ partitioning strat-
egy. It also employs a complex set of measures intended to
cope with the enormous quantities and highly skewed dis-
tribution of scientific data. In the context of the approach
described in Section 2, the Γ t technique can be used not
only as a retrieval scheme, but also as a mechanism for
defining a priori clusters of data on tertiary storage. In this
section, we describe a slightly different version of the tech-
nique, which takes the advantage of a posteriori clustering
of data.

Figure 4 illustrates the design of the Γ t technique. The
technique uses two sets of structures, one residing in main
memory and the other on the disk. The first set consists of
a two-level tree structure that statically partitions the space
into Γ regions (higher level) and their slices (lower level) as
well as a list of IDs of all files on tertiary storage grouped
according to the Γ slices they belong to (as we will later see,
the insertion procedure makes sure that each Γ slice defines
a different cluster of data, organized into one or more files).
Along with each Γ region, the structure dynamically main-
tains its live portion. However, Γ slices are defined on the
original Γ regions, not on their live portions. For optimal
performance, the live regions should be maintained for the
Γ slices as well.

Since the idea of two levels of data clustering calls for
periodic restructuring of files belonging to the same Γ slice,
only the Γ space partition defined by the higher level of
the tree structure in main memory needs to be statically
defined. The slicing of individual Γ regions can be per-
formed dynamically in the process of a posteriori cluster-
ing of data, whenever the number of files that belong to the
same slice exceeds a certain threshold. With this, the Γ t

technique does not require an early estimate of the future
data volume, and it can easily handle potential changes in
data distribution, including the emergence of new clusters,
after the initial space partition had been defined.

On the high-speed disk, the scheme maintains a B+-tree
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Figure 4. The design of the Γt technique.

whose leaf entries contain file descriptors, each describing
the contents of a single file on tertiary storage. Since a pos-
teriori clustering makes sure that the data of each file reside
in a relatively small region of the space, a file descriptor
should be the minimal bounding hyper-rectangle enclosing
the points of the corresponding file.3 Every leaf-level en-
try of the B+-tree must also include the unique number of
the corresponding Γ slice and the file ID. To facilitate fast
location of the descriptors of all files belonging to a single
slice, the index entries are ordered on the Γ slice number
and the file ID. The two values form an index key for the
B+-tree.

Whenever a new data item is created, the scheme must
first traverse the main-memory structures in order to locate
the Γ slice in which the item belongs. There is only one
active file per each Γ slice that can receive the new injec-
tion. When the active file becomes full, a new active file
is created, and its descriptor is inserted into the B+-tree.
Each time a new item is appended to an active file, the file
descriptor is consulted and, if needed, updated to incorpo-
rate the description of the new item. Accordingly, the live
portions of the corresponding Γ slice and region in main
memory may have to be extended to include the new item.

The search procedure starts by identifying the slices that
overlap the query window and the list of their correspond-
ing files. If a live portion of a Γ slice is completely cov-
ered by the query, all events that fall in that slice satisfy
the query and, thereby, all files corresponding to that slice
must be accessed. The file descriptors on the disk must be
examined only for Γ slices whose live portions are partially
covered by the query. For each such slice, the B+-tree is

3Files that contain clips of multiple clusters could be assigned more
than one descriptor.

searched using the slice number, and the corresponding file
descriptors are consulted to determine which files, if any,
must be accessed.

5. The GARDEN technique for a posteriori
clustering of data

Multi-dimensional access methods are not the only data-
management schemes that experience severe performance
degradation when applied to large sets of high-dimensional
data. It is also well known that the contemporary cluster-
ing techniques [8, 9] fail to scale with the increasing di-
mensionalities and the growing volumes of data. Typical
limitations of contemporary clustering methods include re-
strictions on the data-set size [20] or some prior knowledge
about the clusters and their numbers [9]. The density-based
clustering techniques developed in [5, 14, 18] apply a grid-
based space partition into rectangular cells, whose num-
ber grows exponentially with data dimensionality. In high-
dimensional spaces, these algorithms require some form
of dimensionality reduction, which reduces the number of
cells that need to be examined during cell-density cluster-
ing. However, as a result, the number of selected features
on which the data set is clustered must be relatively low;
typically well below 20.

Unfortunately, in many advanced scientific applications,
the number of relevant features is usually much larger than
20. The omission of relevant features typically results in
a loss of certain clusters as well as the distortion of both
the spatial properties and densities of clusters (a spatially
large cluster with relatively low density may appear in the
projected space as a small and highly dense cluster). More-
over, as noted earlier, whenever a relevant dimension is not
taken into account when clustering data on tertiary storage,
the values of this dimension are distributed across files in a
virtually random fashion. Because of this, the queries that
restrict this particular dimension are likely to access many
more files than necessary.

Our new clustering method, called the GARDEN
(GAmma Region DENsity) technique, performs clustering
of data in their native multi-dimensional space, applying a
recursive partition of sparse regions in the space. To elim-
inate the need for dimensionality reduction, the technique
exploits the following properties of the Γ partitioning strat-
egy. Unlike the grid-like space partition, the Γ strategy cre-
ates a limited number of Γ regions, which grows linearly
with data dimensionality. Since each Γ region has O(d)
neighbors, the region-density algorithm runs much faster
on a Γ partitioned than on a grid-partitioned space. Fi-
nally, since the Γ strategy partitions every axis of the space
multiple times, the clustering method can detect the clus-
ters of arbitrary shapes and spatial orientations. As a re-
sult, in high-dimensional spaces, the GARDEN technique
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Figure 5. First phase of the GARDEN tech-
nique: selecting the initial space partition.

is likely to be both faster and more accurate than any clus-
tering method that relies on dimensionality reduction.

The GARDEN technique operates in three phases. The
first phase is a clustering method in its own right, appropri-
ate for relatively small sets of multi-dimensional data. We
anticipate that this phase alone will be adequate for the pur-
poses a posteriori clustering of data in the files that belong
to the same Γ slice of the Γt technique. The second phase
can be used for automatic selection of the Γ space partition
for the Γt technique or to generate appropriate space parti-
tion for the third phase of the algorithm. The full configu-
ration of the technique with all three phases is appropriate
for the analysis of very large sets of data. This is because,
once the appropriate space partition is constructed using a
sample of data, the third phase would cluster the entire data
set performing only a single scan over the entire set.

Here, we describe the general operation of the GAR-
DEN technique assuming its full configuration, in which
the first and second phases are performed on a sample of
data. The two phases are illustrated in Figures 5-8. In Fig-
ure 5, the dark shapes consisting of one or more ovals rep-
resent different clusters of data.

Following the process of data sampling, the first phase
of the technique selects an initial Γ space partition and
inserts in it the selected data sample, computing the live
portions of each Γ region. The result is illustrated in Fig-
ure 5. If the density of a live region exceeds a predeter-
mined value, the live region need not be divided further.
In Figure 5, this is the case with live portions of the Γ re-
gions 3, 5, and 6. As shown in Figure 6, sparse live re-
gions must be recursively partitioned until all their dense

 

Figure 6. First phase of the GARDEN tech-
nique: splitting the sparse regions.

 

Figure 7. First phase of the GARDEN tech-
nique: merging the dense regions.

sub-regions are identified. Conceptually, this process will
create a tree structure whose leaves correspond to the dense
regions and whose interior nodes represent different levels
of the Γ space partition. The next step of the first phase
performs merging of the adjacent dense regions into larger
clusters, e.g. by walking the generated tree structure. This
process greatly benefits from the fact that each region in a
Γ space partition has relatively small neighborhood. The
result is illustrated in Figure 7.



 

Figure 8. Second phase of the GARDEN tech-
nique: selecting the space partition.

The second phase selects the appropriate Γ space par-
tition (possibly with some slicing), trying to assign each
cluster to a single Γ region (slice). However, the clusters
with highly irregular shapes can be “broken” into more than
one region (slice). The resulting subdivision of the space
can be used as the higher-level space partition for the Γ t

technique (recall Figure 4). Figure 8, in which the thick
dashed lines separate different slices of a Γ region (if any),
illustrates the space partition.

However, to prepare for the third phase of the GARDEN
technique, each region (slice) of the derived Γ space par-
tition must be treated as a separate space, subject to a Θ
space partition. The latter process would treat a bounding
hyper-rectangle enclosing the cluster of the corresponding
Γ region (slice) as the inner generator for the nested Θ par-
tition. The resulting space partition of our running example
is shown in Figure 9.

The third phase of the GARDEN technique scans the
entire data set only once, “inserting” the data into the space
partition derived in the second phase and computing the
live portions of all individual regions in the space. Each
live region whose density is above a pre-determined value
is treated as a temporary cluster. The adjacent temporary
clusters are merged together using the corresponding algo-
rithm of the first phase.

Note that the nested subdivision of the Γ regions us-
ing the Θ partitioning strategy is performed by the second
phase of the GARDEN technique to improve the accuracy
of the clustering process in situations when the data distri-
bution in the entire data set deviates from the distribution
of data in the initial sample. Due to this nested subdivision,

 

Figure 9. Second phase of the GARDEN tech-
nique: preparing for the third phase.

the probability that two or more different clusters appear in
the same region of the space (in which case, the third phase
of the technique would erroneously combine them into a
single cluster) is reduced. Even if this still happens, due to
the nested Θ partitions, the problem would be localized to
relatively small regions in the space.

The GARDEN technique deals effectively with clusters
of highly irregular shapes. The technique can also handle
“noisy” data sets as well as the situations when the distri-
bution of the sampled data deviates from the distribution of
the entire data set. The GARDEN technique effectively ex-
ploits the fact that high-dimensional spaces are extremely
sparse. For example, assuming a very large set of 240 100-
dimensional points whose coordinates are represented by
2-byte integers, for each data point, there will be on aver-
age about 21560 empty locations in the space. Since the dis-
tributions of real data are heavily skewed, the actual high-
dimensional spaces are even sparser, which ensures the ef-
fectiveness of live regions.

6. Summary and discussion

In this paper, we have outlined a sophisticated but highly
effective solution to the problem of managing massive data
collections in Data Grid environments. When the data re-
sides on tertiary storage, clustering is the key to achieving
high retrieval performance. The proposed approach with
two levels of data clustering achieves the benefits of clus-
tering data on tertiary storage at reasonable costs. However,
the actual realization of this idea in generic Data Grid en-
vironments requires some non-traditional processing tech-



niques. In the paper, we described some novel indexing
and clustering techniques designed for this task. Unlike
the contemporary clustering methods for high-dimensional
data, which require some form of dimensionality reduc-
tion, our GARDEN technique performs clustering of data
in their native multi-dimensional space. When applied to a
very large data set, the technique performs a single scan
over the entire set. The mechanism is also effective on
highly skewed data in heavily sparse spaces.

Perhaps the most important advantage of the proposed
approach is its scalability to extremely large volumes of
data. As noted in Section 2, the larger the volume of data,
the more pronounced the benefits of this approach over
the organization with the temporal ordering of data, which
has been the storage organization of choice in almost all
data repositories maintained on tertiary storage. Since two
levels of data clustering make sure that data of individual
files correspond to relatively small regions in the space, for
typical range queries that appeal to the intrinsic properties
of data, only a small fraction of all files in the repository
would have to be accessed. As a result, this organization
could dramatically reduce the number of costly accesses to
the tertiary storage and, thereby, significantly improve the
Data Grid operation.

However, it is a significant reduction in the costs of data
clustering that actually enables this approach to scale to ex-
tremely large data collections. Instead of the global reor-
ganizations of the entire data collection, this approach re-
quires only periodic reorganizations of the a priori clusters
(data that belong to the same region of the space). At the
expense of somewhat less optimal assignment of data to in-
dividual files, the costs of these local reorganizations could
be further reduced. This can be achieved through incre-
mental reorganization of a priori clusters (e.g., reorganiz-
ing only the new files in the given region that have not been
previously clustered as well as the files that contain clips
of multiple clusters). The properties of the associated tech-
niques further contribute to the scalability of this approach.
For example, since the Γ t technique requires only one de-
scriptor per each data file, the indexing structure can ac-
commodate even the largest data collections, usually with-
out any additional compression of the index entries. The
simplicity and efficiency of the proposed technique for a
posteriori clustering of data are also useful in this regard.

The proposed techniques for indexing and clustering
data on tertiary storage enable high degrees of scalabil-
ity to the increasing data dimensionalities as well. This is
achieved through the application of new space-partitioning
strategies. Since each of these schemes partitions every
axis of a high-dimensional space several times, each di-
mension of data can effectively contribute to the search
process. In contrast to traditional partitioning schemes,
which require 2d divisions of a d-dimensional space to

make sure that each axis is partitioned once, the new par-
titioning strategies achieve the same effect with only O(d)
regions in the space. While each interior point of the space
has 3d

�1 immediate neighbors, the neighborhood of each
region in these space partitions is fairly small.

With the proposed approach, the data can be clustered
on tertiary storage by all relevant dimensions. Just as the
problem of avoiding global restructuring of data, this goal
too has been addressed at both the a priori and a posteri-
ori level of data clustering. Due to the application of the
Γ partitioning strategy at each of these levels, both the a
priori clusters generated by the Γ t indexing technique and,
especially, the a posteriori clusters assigned to individual
data files will typically be restricted along each dimension
of the space.

We are currently investigating several variants of the in-
dexing and clustering techniques presented in this paper. In
our future work, we plan to develop the prototype of a new
data engine for hierarchical storage management based on
the principles and techniques presented in this paper.
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