Global Access to Large Distributed Data Sets using Data Webs Employing Photonic Data Services

April 8, 2003

R. L. Grossman, Y. Gu, D. Hanley, X. Hong, J. Levera, M. Mazzucco, University of Illinois at Chicago

D. Lillethun, J. Mambretti, and J. Weinberger Northwestern University

Distributed Data – More and More Discoveries will be Across Databases

Pearson's Law: The usefulness of a column of data varies as the square of the number of columns it is compared to.

Data Grids vs. Data Webs

Example 1. Photonic DataSpace

□ Data intensive computing over photonic networks □ Interactive exploration of remote Gigabyte size data sets □ Specialized transport and merging over light paths

Photonic DataSpace

Example 2. Molecular DataSpace

Select one or more structures and press Submit to view, download, visualize a Docking Algorithm.

Protein Structure Data	Small Organic Compou
1 - 500 🛥 😡 Prev <u>Next</u>	1 - 100 🛥 😡 F
01m - SPERM WHALE MYOGLOBIN F46 02I - LYSOZYME INSERTION MUTANT 02m - SPERM WHALE MYOGLOBIN H64 03I - PHAGE T4 LYSOZYME INSERTI 03m - SPERM WHALE MYOGLOBIN H64 04I - LYSOZYME INSERTION MUTANT 04m - SPERM WHALE MYOGLOBIN N-B	d101d - NETROPSIN d102d - PROPAMIDINE d107d - DUOCARMYCIN d108d - THE BISINTERCALATI d11gs - ETHACRYNIC ACID- C d12gs - S-NONYL-GLUTATHI d13gs - SULFASALAZINE

Clear Selection

Clear

Replication of the protein data bank (PDB).

- Chemical libraries of small organics molecules.
- ☐ How do you overlay other peoples data on your own?
- with distributed data mining.

Molecular Home

The Photonic Data Services Stack

6. Data Web Applications

5a. Data	5b. Soap/XML	5c. Data Grid
Web Serv	Services	Services

4. Transport – TCP, UDP, SABUL, ...

3. IP

2. Photonic Path Serv. - ODIN, THOR, ...

1. Physical

Photonic Data Services - Status

- Developed reliable, friendly hybrid TCP/UDP protocols (Layer 4 - SABUL)
- Developed striped Sabul (P-SABUL)
- Linked Layer 2 Path Services (ODIN and Thor) with Layer 4 Transport Services (SABUL, P-SABUL)
- Developed high performance distributed data services (Lambda Joins Layer 5)
- □ Developed photonic applications (Layer 6)

Key Data Web Protocols & Services

- 1. Data & metadata selection (DWTP, SQL)
 - using XML metadata, range queries & sampling
 - based upon Data Web Transport Protocol (DWTP)
- 2. Data transport (DWTP)
 - DWTP and XML/SOAP
- 3. Data merging by universal key
 - globally unique distributed keys (UCKs) for joining distributed data
- 4. Data analysis and mining (PMML)
 - using algorithms for clustering, regression, etc.

Layer 5. Data Services – Moving Records

Approach	Implementations	Challenges	
SOAP/XML	Multiple	Scales poorly	
Data Web Transfer Prot.	UIC/LAC DWTP Servers	Emerging technology	
Grid Services	GLOBUS	File-based (not records)	
JDBC, ODBC	Multiple	Different goals	

Data Web Transfer Protocol (DWTP)

- interoperates & supports SOAP/XMLbased web services
- □ protocol designed for data
- □ supports data, metadata, and keys
- □ separates control from data channels
- □ can subset data by rows or columns
- mechanisms for sampling, merging data by key, working with missing values

Example: DWTP Session

- Discover DWTP server containing appropriate data using web services
- □ DSTP client connects to DWTP server
- □ retrieve data set metadata using TCP
- □ set data set
- □ retrieve attribute metadata using TCP
- □ retrieve 25 columns of data using 20% subset of rows using SABUL

Experimental Results: PDS Data Services (Layer 5)

Rand %	Match %	Time (sec)	Data Rate Mb/s
2	99	66.3	434
10	92	65.7	438
20	82	64.2	449
33	79	65.1	442

□ Best effort lambda join (distributed join)

□ Experiments between Chicago and Amsterdam using 10 Gb/s link (cpu bound)

Layer 4. Transport – Moving Bits

Approach	Implementations	Challenges
Improve TCP	Multiple	Will it scale?
Striped TCP	GridFTP, PSockets	Improve Performance
Reliable, Friendly UDP (TCP control)	SABUL, FAST, TSUNAMI	Make friendly
Striped UDP	P-SABUL	Interface to parallel I/O

Layer 4 - Comparing Reliable UDP & Striped TCP

Data Set (MBs)	GridFTP (Mb/s)	SABUL (Mb/s)
100	94.9	527
500	246	476
1000	324	506
2000	315	506

□ Experiments between Chicago and Amsterdam over OC-12

Layer 4- PDS Data Transport: Striped Reliable UDP Chicago - Amsterdam

ТСР	GridFTP	SABUL	SABUL	SABUL	Striped
Stream		Stream 1	Stream 2	Stream	SABUL
				3	Stream
4.36	324	902.8	902.9	907.1	2712.8
Mb/s	MB/s	Mb/s	Mb/s	Mb/s	Mb/s

Three node cluster in Chicago connected to three node cluster in Amsterdam connected with 10 Gb/s link