A Performance Analysis of the iSCSI Protocol

Stephen Aiken, Andrew Pleszkun, Dirk Grunwald, Jesse Willeke

Colorado Center for Information Storage University of Colorado, Boulder

Goals

Examine the Overall Performance of the iSCSI Protocol in a Number of Different Configurations

Experimental Configurations

Commercial Deployment

- Hardware Target, Software Initiator
- Hardware Target, Hardware Initiator
- Inexpensive Software Deployment
 - SAN, Gigabit Ethernet
 - WAN, Fast Ethernet

Commercial Deployment – Experimental Design

- Wanted to compare iSCSI to fibre channel
 - Over a 1Gbps connection
 - Software-based iSCSI on 1Gb ethernet
 - Specialized hardware iSCSI HBA
- Tested overall disk throughput
 - 1GB files used
 - Sequential reads/writes
 - Randomized access
 - Examine throughput for varying block sizes

Commercial – Throughput

Commercial – CPU Utilization

Commercial Deployment – Summary

- Software iSCSI initiator over gigabit network is comprable to 1Gbps fibre channel for large block sizes
- iSCSI hardware HBA adaptor performed poorly in all cases
 - Processor on card not able to keep up with network traffic Server CPU utilization was minimized

Software SAN – Experimental Design

Examine performance at the block level using LMdd

- Determine whether block size has an impact on performance
- 1GB sizes used in order to reduce system buffering effects
- Study protocol performance with no disk overhead
- Examine filesystem performance using Bonnie
 - Ext3 filesystem
 - Increasing file sizes from 100MB to 1.6GB
 - Determine buffer cache effects
- Investigate network settings effects on performance
 - TCP window sizes
 - Determined by the Bandwidth Delay Product

Software SAN – Experimental Setup

SAN – Block Reads, Block Size and Socket Buffer Size Don't Matter

Socket Buffer Sizes

Software SAN – Block Size Matters, Socket Buffer Doesn't

Software SAN – Filesystem Analysis

Buffer cache improves performance for small file i/o transactions

Software SAN – Filesystem Reads

Software SAN – Filesystem Writes

Software SAN – Filesystem Rewrites

Software SAN – Summary

- Network layer parameters such as TCP window buffer sizes affect performance minimally
- System buffer cache plays a large role in performance
 - Hinders iSCSI at the block level
 - Greatly improve performance for small file transactions

Software WAN – Experimental Design

- Examine block level throughput using Lmdd
- Investigate filesystem performance using Bonnie
- Examine influence of network parameters upon iSCSI
 - Network delay
 - Network pathologies
 - Packet loss, packet corruption, and reordering

Software WAN – Experimental Setup

Software WAN – 8K Block Reads, Increasing Delay

Software WAN – Block Writes, Increasing Delay

Software WAN – Block Writes, Increasing Delay

Network Performance 🔜 iSCSI Performance

Software WAN – Filesystem Reads, Increasing Delay

Software WAN – Filesystem Reads, Increasing Delay

100MB 800MB

Software WAN – Filesystem Writes, Increasing Delay

Software WAN – Filesystem Writes, Increasing Delay

Software WAN – Filesystem Rewrite, Increasing Delay

Software WAN – Filesystem Rewrite, Increasing Delay

100MB 800MB

Software WAN – Network Performance With Pathologies

- Pathologies introduced
 - Packet loss : 2.7%
 - Packet corruption : 0.02%
 - Packet reordering : 2.0%

Socket Buffer Size Payload Size 512 1K 2K 4K 8K 16K Standard 3.17 +/- 4.38 +/- (4.28 +/- (4.53 +/- (4.22 +/- (3.89 +/- 1.07 4.37 +/- (4.24 +/- (4.52 +/- (4.12 +/- (3.36 +/- 2.85 +/- 2.85) Maximum 4.37 +/- (4.24 +/- (4.52 +/- (4.12 +/- (3.36 +/- 2.85 +/- 2.85) 4.37 +/- (4.24 +/- (4.52 +/- (4.12 +/- (3.36 +/- 2.85 +/- 2.85))

Network performance was so poor that it was decided to forego iSCSI testing.

Software WAN – Summary

Performance degrades rapidly as delay is increased

- Due to the synchronous nature of the iSCSI implementation
 - Tag command queuing
- System caching improves performance filesystem access for small files
- Packet loss and other pathologies greatly hinder performance overall

Conclusions

- iSCSI is comprable to fibre channel for large block sizes
- Deeper tag command queuing will most likely increase the performance for networks with large delay
- System caching greatly improves small I/O transaction throughput while hindering large I/O transaction throughput

Commercial Deployment – Hardware

Server – IBM x-series 360

Dual 1.5GHz Xeon processors with hyperthreading 2GB RAM

- 64bit/133MHz PCI bus
- Intel Pro1000F gigabit ethernet card
- Intel Pro1000T iSCSI HBA adaptor
- Emulex LP9002 fibre channel HBA
- Two CISCO SN-5428 storage routers
- Sphereon 4500 fibre channel switch
- Dell 5224 gigabit ethernet switch

Software SAN – Hardware

Target

- Intel 1.4 Ghz Pentium4
- 256MB RAM
- 880GB striped array
 - D-Link DL2K gigabit ethernet NIC

Initiator

- Intel 860MHz PentiumIII
- 256MB RAM
- D-Link DL2K gigabit ethernet NIC

SAN – Raw Input, Standard Socket Buffer Sizes

SAN – Raw Input, Maximum Socket Buffer Sizes

Software WAN – Hardware

Target, Initiator

- Intel 860MHz PentiumIII
- 256MB RAM
- 20GB hard drive
- Intel Ethernet Express Pro100 100Mbps NIC

Router

- Intel 860MHz PentiumIII
- 256MB RAM
- 20GB hard drive
 - 4 port Tulip 100Mbps NIC

Software WAN – Block Reads, Increasing Delay

Software SAN – Block Writes, Standard Socket Buffer Sizes

Software SAN – Block Writes, Maximum Socket Buffer Sizes

