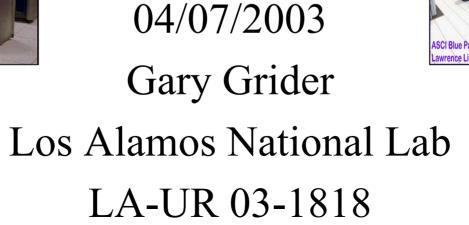


The ASCI Search for the Intergalactic File System



- For Sandia, LLNL, LANL and DOD, the need for a global parallel file system was there from the beginning of clustered based parallel computing,
 - few solutions existed,
 - none were heterogeneous,
 - none were open source,
 - none were based on standards, and
 - none were secure on a public net.
- This is primarily for our giant clusters, secondarily for our enterprise, and lastly across multiple enterprises/sites
- We saw Linux clusters coming in the future which made the problem very real and very evident

• Los Alamos FS Requirements Summary

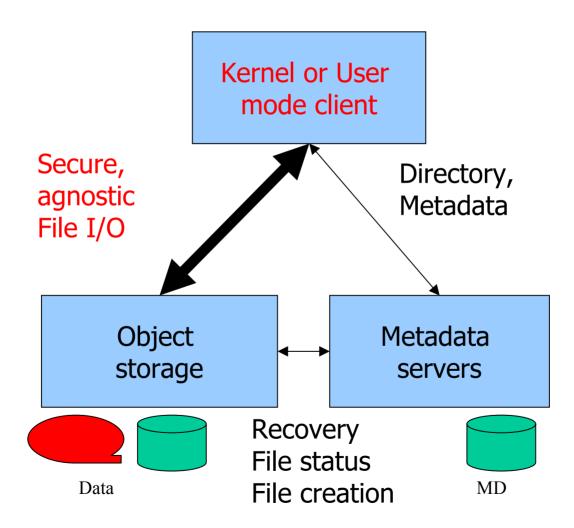
- From Tri-Lab File System Path Forward RFQ (which came from the Tri-labs file systems requirements document) ftp://ftp.lanl.gov/public/ggrider/ASCIFSRFP.DOC
 - POSIX-like Interface
 - Works well with MPI-IO
 - Open Protocols, Open Source (parts or all)
 - No Single Point Of Failure
 - Global Access
 - Global name space, ...
 - Scalable Infrastructure for Clusters and the Enterprise
 - Scalable bandwidth, metadata, ...
 - Integrated Infrastructure for WAN Access
 - WAN Access, Global Identities, Wan Security, ...
 - Scalable Management & Operational Facilities
 - Manage, tune, diagnose, statistics, RAS, build, document, snapshot, ...
 - Security
 - Authentication, Authorization, Logging, ... Link to more ROM

It Has to Scale with Our Machine Appetite

Aggregate Bandwidth Rates for One Parallel Job Simulation & Physics Model Aggregate FS Requirements

	1999	2003	2005	2008
Teraflops/Clients	3.9 / 6K	30 / 12k	100 / 50K	400 / 100k
Memory Size (TB)	2.6	13-20	32-67	44-167
I/O Rates (GB/s) N to N and N to 1	4 – 8	20-60	50-200	80-500

OBFS's Most Worthy



- NAS file systems don't scale to our levels
 - lack of parallelized metadata operations like allocation (especially for a single file or directory)
- SAN file systems don't scale to our levels
 - no network security and SAN cost, bypassing sending data through a file server is great **if** its secure
- Need a model that makes possible secure scalable networking and scaling of important metadata operations
- OBSD
 - has good network security model allowing for data path scaling, and
 - securely allows for metadata offload functions to the storage devices (needed to enable massively parallel writes)
 - has the promise of pushing even more of the I/O workload to smarter and smarter devices

OBFS Approach

• Keys to Getting a Galactic OBSD File System Solution that Will Endure

Client needs to be in OS Kernel typically, we need supportable penetration

- Open source client for Linux (required for our funded efforts, but that may not be enough to ensure long run support)
- A way for non Linux OS's to be supported (NFSv4 seemed most likely given DAFS, NFS on RDMA, etc.) (required for our funded efforts)
- We decided to get involved with NFSv4 via U of Michigan alliance to help
- We need open secure standard for devices, but device market or standards won't materialize, without useful software solution(s)
 - We are encouraging through funding of cluster file systems and scalable NAS solutions
 - We made a part of our product development efforts to push standardization
- We are prepared to encourage follow on "smarter storage" if standard secure infrastructure for this becomes widely available

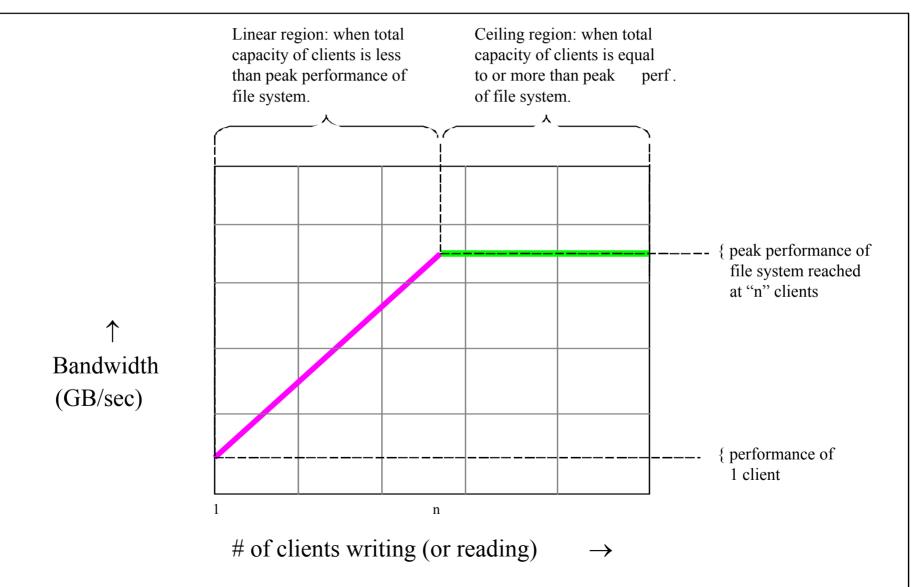
Historical Time Line

F a	roposed Path Forward ctivity for GPFS	f I F	Secured funding from ASCI Path Forward program element	open so develop	nend funding ource OBSD pment and projects	Tri-Lab sign
		ab joint rements ment	Path Forward team formed to pursue RFI/RFQ approach, RFI issued, report recommends RFQ	$ $ p	Illiance contracts laced with universities n OBSD and NFSv4 Detailed negotiation on OBSD Path Forward and NFSv4 Path Forward	contract for cluster file system

RFQ, analysis,

Current State

- Maybe we were not so "Crazy" after all
 - Clusters being deployed by the thousands, even large clusters are popping up everywhere
 - File System is still the most important missing piece for clusters
- Funding/working with OBSD vendors or "Vendors to Be" for cluster file systems and scalable OBSD scalable NAS
- Funding and working with Universities and Vendors on NFSv4 with parallel extensions and protocol agnostic capabilities so OBFS can be extended heterogeneously
- Hoping for some limited deployment in FY04
- NEED to begin to see progress on standards efforts soon!
- What more can we do?


Backup slides

Backup slides

It Has to Scale with Number of Processes

• Los Alamos Capacity Has to Scale Too

File System Capacities						
	1999	2002	2005	2008		
Teraflops	3.9	30	100	400		
Memory size (TB)	2.6	13-20	32-67	44-167		
File system size (TB)	75	200 - 600	500 -2,000	20,000		
Number of Client Tasks	8192	16384	32768	65536		
Number of Users	1,000	3,000	3,500	3,500		
Number of Directories	5.0*10^6	1.5*10^7	1.8*10^7	1.8*10^7		
Number of devices/subsystem	5000 (18GB drives)	10000 (72GB drives)	8375 (300GB drives)	8750 (1200 GB drives)		
Number of Files	7.5*10^7 to 1.0*10^9	3.75*10^8 to 4.0*10^9	4.5*10^8 to 1.0*10^10	4.5*10^8 to 1.0*10^10		

Even Meta-Data Operations have to Scale

File Create Performance –versus- Number of Nodes One parallel program creating multiple files (one per node) into a single directory. N = total number of processors in machine

R=File create rate for one processor

	1/4 th machine	1/2th machine	3/4 th machine	Full machine
Aggregate File Create Rate	.20*N*R	.40*N*R	.60*N* R	.75*N* R

* - Please note that multiple metadata servers with a reasonable decomposition of the operations is likely required

Other Requirements Besides Scalability

- Security more like AFS/DFS but better
 - Content based security, born on marks, etc.
- Global, Heterogeneous, Protocol Agnostic, open source, open protocols
- POSIX behavior with switches to defeat parts
 - Lazy attributes, byte range locks, etc.
- WAN behavior like AFS/DFS but better
 - Including ACL's, GSS, multi domain, etc.
- Scalable management (sorry, scalability keeps coming up)
- A product, supported by a market larger than the Tri-Labs

FS Requirements Detail 1

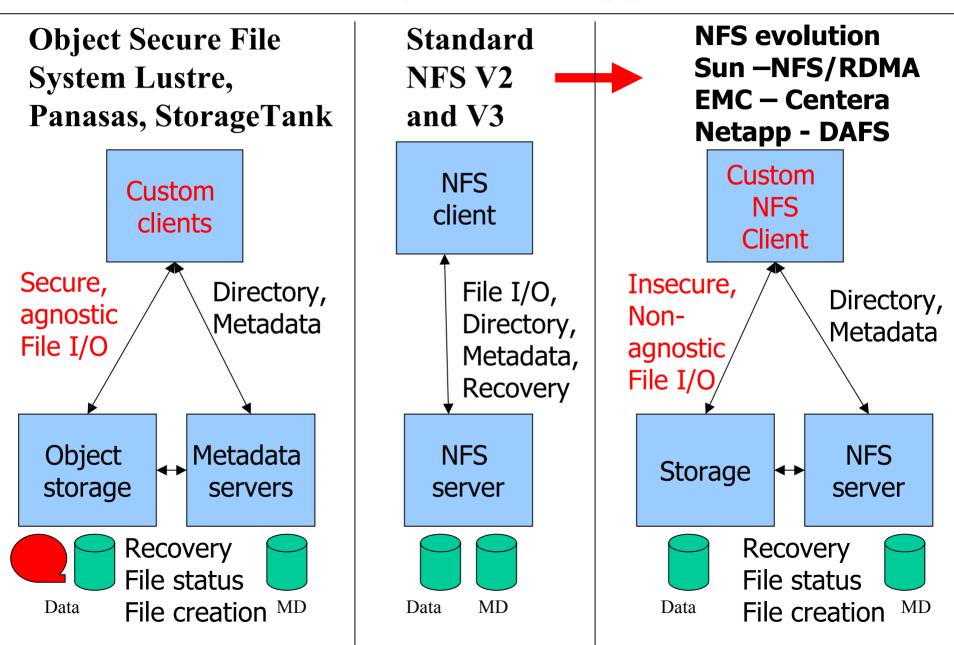
- 3.1 POSIX-like Interface
- 3.2 No Single Point Of Failure
- 4.1 Global Access
 - 4.1.1 Global Scalable Name Space
 - 4.1.2 Client software
 - 4.1.3 Exportable interfaces and protocols
 - 4.1.4 Coexistence with other file systems
 - 4.1.5 Transparent global capabilities
 - 4.1.6 Integration in a SAN environment
- 4.2 Scalable Infrastructure for Clusters and the Enterprise
 - 4.2.1 Parallel I/O Bandwidth
 - 4.2.2 Support for very large file systems
 - 4.2.3 Scalable file creation & Metadata Operations
 - 4.2.4 Archive Driven Performance
 - 4.2.5 Adaptive Prefetching
- 4.3 Integrated Infrastructure for WAN Access
 - 4.3.1 WAN Access To Files
 - 4.3.2 Global Identities
 - 4.3.3 WAN Security Integration

FS Requirements Detail 2

• 4.4 Scalable Management & Operational Facilities

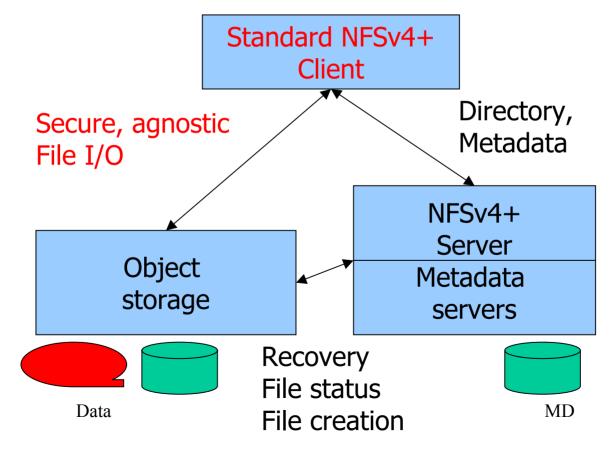
- 4.4.1 Need to minimize human management effort
- 4.4.2 Integration with other Management Tools
- 4.4.3 Dynamic tuning & reconfiguration
- 4.4.4 Diagnostic reporting
- 4.4.5 Support for configuration management
- 4.4.6 Problem determination GUI
- 4.4.7 User statistics reporting
- 4.4.8 Security management
- 4.4.9 Improved Characterization and Retrieval of Files
- 4.4.10 Full documentation
- 4.4.11 Fault Tolerance, Reliability, Availability, Serviceability (RAS)
- 4.4.12 Integration with Tertiary Storage
- 4.4.13 Standard POSIX and MPI-IO 4.4.14 Special API semantics for increased performance
- 4.4.15 Time to build a file system
- 4.4.16 Backup/Recovery
- 4.4.17 Snapshot Capability
- 4.4.18 Flow Control & Quality of I/O Service
- 4.4.19 Benchmarks

FS Requirements Detail 3



• 4.5 Security

- 4.5.1 Authentication
- 4.5.2 Authorization
- 4.5.3 Content-based Authorization
- 4.5.4 Logging and auditing
- 4.5.5 Encryption
- 4. 5.6 Deciding what can be trusted



Some File System Approaches

Lets leverage NFSv4's existing metadata capabilities, our NFS level 3 alliance, NFS's huge market force, our OBFS PF, and other efforts to reduce risk in this overall area?

Combine the efforts: NFSv4 and OBFS Scalable NAS, regular NFS, NFS with secure data channel, etc.

