AVAMAR

Design and Implementation
of a Storage Repository
Using Commonality Factoring

IEEE/NASA MSST2003
April 7-10, 2003
Eric W. Olsen

Axion Overview AVAMAR

> Potentially infinite historic versioning for rollback and file access

> Block-level commonality factoring

> Adds to storage only small chunks of changed data that has not already been
stored

» Redundancy
> Scalability

> Efficient resource utilization
» Takes less time to restore than tape
> Provides higher integrity and no degradation over time compared to tape
» Provides remote access

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

[=)]
c
=
<]
=1
1%}
(]
L
2
®
o
o
E
£
o
o
(=]
=
(7]
=
[
2
[
(=]
g
(-4
Q
[=)]
g
=]
=
(%]
(]
Y
o
c
2
=]
©
&
(=
Q
£
9
[-%
£
=]
-]
c
(]
c
=
(0]
(V]
(a]

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Storage Components

AVAMAR

Data Protection Network

Module

Disk

Node

Cluster

Stripe

Axion System Architecture _AVAMAR

Axian Administrator

Pl
= Any Web Browser « Command Line Interface (GLI)
El «Java Console GUI « SHMP Managemeni Conscle
—

MNIS and NT Darmain
Buppart via LDAR

b, "

g

s

Q

&

Z o

5 i Y Y Backup Client

2 Apache Web Eter'u':sr‘]_l’E Management T

£ (CGI, Javascript) 7] 7 Console Serdces — Client Agent]

8

g Management Console Services Node A b I

3 T L -
g | AvTar (Client) URE—
D : =
2 o =, n"cl - Flug -:]

g . DPN Module(s ¥ ptional Plugns — :

f) % e{ } 4, {IE E'.I'EII!:!E* th.'l:l L L
g B |~._ - =

O o

&z T ' RGN Senas

(] 1 -

5 £ — LDAP Server

_E ;“ : ALY) i b

B e LOAF

E’ z =1 Noded....... Authenticaficn

o 9 I ¥, .

a3 —— L

3 — ’ |

=

52

8

-

Axion Software Architecture _AVAMAR

> Software Architecture
» RAIN™ (Redundant Array of Inexpensive Nodes)
» SAM (Storage Allocation Manager)
> iIRAIN™ (Intelligent RAIN)
» CFS (Commonality Factoring System)

Commonality
Factoring
System

Distributed QoS Manager

Storage Allocation Manager (Storage OS)

Hardware Layer

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Commonality Factoring _AVAMAR

» Beyond fixed content: extends support for changing files

» Storage efficiency

» Sub-file commonality can dramatically decrease storage requirements for
certain applications

> Reduces ‘storage under management’ costs

» Network efficiency
» Remote or local signature processing
» Can dramatically reduce network traffic
» Optimized with hash cache

» Supercomputer functionality: highly parallel in operation
> Better load balanced
> Parallel operations across all resources for faster read and write

» Support for directories and file systems
> Large file support: no file size limitations

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Commonality Factoring Implementation _AVAMAR

» Searches for commonality at the granular variable data chunk
level for all users of the system

» Stores data chunks for all users of the system and assigns a hash
address to each data block

» Reduces:
» Bandwidth requirements
» Cost of storage
» Storage requirements
» Increases:
> Data availability
> Data integrity
> Efficiency of storage
» Uses unique data hashes and stripes to recreate quickly any
version of a user’s system or any file version at any point in the
past

» Uses TCP/IP for data transmission during snapup and restore
» Performs full backups at the speed of incremental backups

Operation Overview _AVAMAR

Encode: ¥ ¥ ¥ ¥
£ > Start with original data
© stream —T T T T =
E > Partition stream into chunks
§ » Hash each chunk \l/ \I/ \l/ \/ \/
£ > Eliminate the redundant >,K * * * *
f » Store the unique
;> Hashes now substitute for ! ! ! l |
;a data
Decode: M AR AR A
g- » Use hash to lookup chunks - - - - -
‘E » Join chunks to recreate data —

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Sticky Byte Factoring _AVAMAR

Sticky Sticky Byte
Byte = 1 oshold
vatues 1.0 11 e al wadibi i Ll 1 L.
File | | | | | | | | |
y \ Y
d (b 4o 4b

Sticky Byte Factoring orchestrates commonality by cutting large
files into variable length chunks in a deterministic way.

More Sticky Byte Factoring _AVAMAR

New Piece

Sticky Byte Factoring orchestrates
commonality using traits from
probability theory to divide input text
into consistent data elements, reaping
commonality across:

» Different applications

» Different operating systems
» Different authors

> Different times

Edited Piece

It is @ more powerful method for
reducing storage consumption than any
conventional compression method.

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

More Commonality Factoring

AVAMAR

Commonality factoring
removes duplicate sequences
from any data image:

> File systems — directories and
files across operating systems

» Disk devices — raw database
images, arbitrary block devices

» Network transmissions — email,
remote file systems, BCVs can
be deeply factored

Storage for historical snapshots or
backups generally reduced to less
than 2% original size.

Query operations accelerated by
factoring, architecture ideal for
distributed search operations.

(=)}
[
=
o
=1
Q
([}
L
£
®
o
o
E
£
o
(O]
(=]
=
(7]
>
[
<]
=
[
o
Q.
(]
(-4
Q
(=)}
(]
e
=]
=
(%]
(-}
Y
o
o
2
=]
]
e
(=
Q
£
92
[-%
£
(=]
©
=
(-}
c
2
(0]
(]
(a]

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Data Image Reconstruction _AVAMAR

Backup Root

Root Hash — l

Composites Hashes — I

Atomic Hashes —

T ==
TS T
xenics chorks) —| (DD EOEEEEECECEEEE0EREtEReD

Data

Compression vs. CFS _AVAMAR

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Characteristics Compression Commonality Factoring
Scale of operation Small scale Large Scale
Low end: Thousand bytes Billion bytes
High end: Million bytes Trillion trillion bytes

Across files
Scope of operation Within a single file Across systems
Across time

Data set specific — Jpeg for still
Applications images, Mp3 for audio, Zip for text and | Works on all data sets
binary.

Unorchestrated substitution,

Dictionary based scan for token hashing eliminates comparisons

substitutions (i.e. LZW, RLE, DCT,

i and scaling issues, lossless
Theory of Operation Wavelets, MP3, Mpeg). Lossy adds conversilog e
filtering to improve substitution rates.]
Typical Substitutions 10s of bytes for 2 or 3 1K..1M of bytes for 20
Typical Reduction 2:1 up to 4:1 for lossless Arbitrarily high, always lossless
Factors 10:1 up to 100:1 for lossy Typically 100:1 to 1000:1

Local and Global Fault Tolerance _AVAMAR

In this example a primary data
image (1) is being protected
Mirrored Data with one dimension of local
parity (2) and one dimension of
global mirroring (3).

Data is depicted being stored in
several ways inside the system:

> In the lowest (A), the right
module holds a node containing
the primary image.

» The left module in that same
cluster holds a copy of the
primary in local parity (XORed
with other images within the
same cluster).

> In the upper right a mirror
image of the primary is being
held in a separate cluster (B).

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Performance _AVAMAR

» Hash lookup is simple and direct: O(1)

» With 8K average chunk size, 1 Gbyte of unique data becomes
128K hash table entries

» Storage layout can be tuned for speed, capacity, locality,
bandwidth, fault tolerance

Fault tolerance is synchronous on write
Commonality dominates write performance
Client performance usually dominates read performance

YV V VYV

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Recent Read Benchmark _AVAMAR

» Standard Axion 2x7 server was able to achieve an average
sustained restore performance of 20.8 MB/sec. This would
restore 500 GB in approximately six hours, 41 minutes.

> Test results indicate the performance of the application client
processor (Dell Model PE 2500 server, with dual P3-1266 Mhz
processors with 1 GB RAM) restricted the restore performance
to 20.8 MB/sec. A more powerful application server will support
faster restore performance.

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Recent Write Benchmark _AVAMAR

Performance by Chunk Size
Server: Cobalt1 --parity=N8,F4 --matchbits=8 with jfs and 4K NIC ring buffer
Client: Core, 5 runs: v0.9.47-6 avtar --nocache --randchunk=20000 --maxpending=800

g 15 1
=
..8 14 1 1x11 N8
e
3. 13 A
e 12
]
£ 1x7 N8
g 11 A
O
= o 10 1 2x7 N8+F4
G 3
~

; g 9 1x5 N8
2 5
2 o 2x5 N§+F4
o = e
& g £ 7]
& o = 1x3 NB+F4
£z g 87
S 2 ©
0 o o 5
s <>E 2x3 N8+F4
5 2
° S A

= |
g = — — — — Cobalt1-1x1-none-core-v0.9.54-0-021003-0116a
E ‘:I 3] Cobalt1-1x3-N8-core-v0.9.54-0-021003-0116a
e =
qE) <°‘ Cobalt1-1x5-N8-core-v0.9.54-0-021003-0116a
92 27 Cobalt1-1x7-N8-core-v0.9.54-0-021003-0116a
o (=]
£ S 14 Cobalt1-core-v0.9.54-0-1x9-N8-021003-1140a
flr] wn
- E Cobalt1-core-v0.9.54-0-1x11-N8-021003-1140a
c
© 2 0 ettt Cobalt1-2x3-N8F4-core-\0.9.54-0-021003-0116a
(=
D Z 0 4000 8000 12000 16000 20000 24000 28000 Cobalt1-2x5-N8F4-core-10.9.54-0-021003-0116a
g o Chunk size (byt
= unk size (bytes) Cobalt1-2x7-N8F4-core-10.9.54-0-021003-0116a

Impact of Network Latency on Two Module Axion Server -_._AVAMAR

Client Initialization with 100% Unique Data

Axion Release 1.1
5 Mbps Simulated Link (Dummynet)

Axion Snapup: Client+Module Colocated, Other Module Remote

Axion Snapup: Both Modules Colocated, Client Remote

0 T T T T I I I I I
0 20 40 60 80 100 120 140 160 180 200

Roundtrip Network Delay (ms)

g
=
= 700
]
&
L
3- TP windowing minimizes impact of latency to a point
£ 600 4= .
o
g \\
:
S = 500 -
8 Axion minimizes impact by performing many
.g 2 operations simultaneously
] 11]
2 X
=~ < 400
2 2
@ V]
9 (14
S
(]
2 8 300
2 e
g E SCP synchronous transfer slows in
(=] - roportion to latency
el
[} o 200
: 2
s = ;
p Q —&@— FTP: From Client to Remote Module
2 2 100 | —m— SCP: From Client to Remote Module —
E=]
s
(=
Q
£
i<
o
£
(=]
©
=
(-}
c
=
[0}
(]
(a]

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Day-to-Day Commonality AVAMAR

NHFS: Backup Over 2 Days

Home Computer
Day 1 P Day 2

c:\ c:\

My Documents

Program Files My Documents Program Files

X.DOC H3
AEXE HI X.DOC H3 AEXE HI
Y.DOC H§ <— EDIT
B.EXE H2 Y.DOC H4 B.EXE H2
Z.DOC HY «— NEW
gSAN H11 Day 2
H7 Dayl PROGRAM FILES HS

PROGRAM FILES H5

MY DOCUMENTS

MY DOCUMENTS H10)

Design and Implementation of a Storage Repository Using Commonality Factoring

=

3

) H10

= XDOC 1041 873 H3
Q

i H5 H6 YDOC 142 15601 HS
- AEXE 830 6219 HI XDOC 1041 873 H3 ZDOC 6:02 14916 HY
(=

5] BEXE 9:30 12317 H2 YDOC 6:02 14916 H4

& ﬁ) /2

0

L

=

& H2 H1 H4 H3

o

(=3

(=]

N

=

7))

W

=

<

75

2‘ H8 H9

o

m

o

=

AVAMAR

Day-to-Day Changes

Oracle Fileserver

Exchange

Client 2 Client 3

Client 1

3
V3

) ,ﬂ' oo
N AN
b, "0, O

:r'f:

(
R NRCA
Wil
WG
SO
._m._%%@hl%"' =
& e G0 gl
B VY I%o/@n__‘%% 7 3
miis AN

Uds[O "M OUH €00T ‘01-L MY €00TLSSIN VSYN/AHAI
buriojoeq Ajijeuownwo) buisn A1ojisoday abe.ois e jo uonejuswajdw] pue ubisaqg

AVAMAR

Day-to-Day Changes

Oracle Fileserver

Exchange

Client 2 Client 3

Client 1

- B
A,.,\ b 3

0
\ (N

o

:r'f:

N %%,,/N,,/
YA, A

LARLL
(/40%@,",'. ///"

™
.w%“,",%, /()
/ RN

IXY XL
fwv%:m@'

Disk 4

Disk 3

=]
1
Node 1
Node 2
Node 3
Node 4

Uds[O "M OUH €00T ‘01-L MY €00TLSSIN VSYN/AHAI
buriojoeq Ajijeuownwo) buisn A1ojisoday abe.ois e jo uonejuswajdw] pue ubisaqg

AVAMAR

Day-to-Day Changes

Oracle Fileserver

Exchange

Client 2 Client 3

Client 1

VINTANAYXOXE
LS, O’éﬁ m@‘£4ﬂ y / A

! 41&
) alﬁ
\./

Py

:H__l:::

LR LY
AR

A
OOOERN

Disk 4

Uds[O "M OUH €00T ‘01-L MY €00TLSSIN VSYN/AHAI
buriojoeq Ajijeuownwo) buisn A1ojisoday abe.ois e jo uonejuswajdw] pue ubisaqg

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Initial Snapup Commonality

AVAMAR

0% 81%

80% -

70% -
£ 59%
© 60% - 50% 54%
S s0% |
g 40% | 35% 36%
O

30% -

20%

10%

0% -

<L
,..Eu
s
{,_-’5-'
u@"@
2 2 & 43 4F 3
<F o+ f & o il
& - & TS
Machine / Snapup Time

Average Tape Compared to Average Snhapup -MMAK

@ Average Tape Full and
Average Tape (Full & Incremental) to Average Snapups (Including Overhead) Incremental
o 100,000 B Average Snapup Data Sent
£ ’ to DPN
‘O- 90,000
ed
g 80,000
L
E 70-000 59,679
g o 0% 50,669
§ 40,000
o 30,000
= ’ 19,728 16.607 20,030
'g 20,000 ’
6,063

£ 10,000 168 457 ,009 39 ’ 146 703
S 0]
3
) $ & & & @ & o
& 5 \J ""\; & & & ~ >

3 & 04‘ 04\ 60 o.,o 04@ ©
o 6\0 & \é\“ & & & <&@
5> O S S o ¥ > S
= =2 & <& S & e
0 = © & & <& X &

N\
() gob @Q (,Q g\)
E 3 ¥
A« .
o< Machine
e 1
[} o~
=
2 <
0,

33 % s;:_zz:p o 10.082% 1.010% 0.902% 1.691% 0.643% 0.731% 1.572%

[\l
g5
T =
5
c <
oz
g
a =

Commonality Across Systems

AVAMAR

Commonality Across Systems:

Windows
Average Initial Snapup 65.80%
Average Snapup 99.88%

Average Snapup to Tape
Incremental Savings

Average Snapups Windows

Clients 79.76%

Average Snapups Unix Clients | 86.54%

Design and Implementation of a Storage Repository Using Commonality Factoring

IEEE/NASA MSST2003 April 7-10,2003 Eric W. Olsen

Commonality Across Systems:

UNIX

Average Initial Snapup

Average Snapups

48.99%

99.77%

Commonality Across Systems:

Combined

Average Initial Snapup

Average Snapups

59.64%

99.88%

