zFS - A Scalable Distributed File System Using OSD

Ohad Rodeh Uri Schonfeld Avi Teperman

zFS Background

- zFS is part of continued research on storage
 - Started with Distributed Sharing Facility
 - Continued with Antara Object Store Device
- zFS is an attempt to explore completely distributed File System based on Object Store Devices

- A File System that operates well on few or thousands of machines
- Built from off-the-shelf components with Object Store Devices (OSDs)
- Use the memory of all machines as a global cache
- Achieve almost linear scalability

zFS Architecture

zFS Components

- Object Store Device (OSD)
- Lease Manager (LMGR)
- File Manager (FMGR)
- Transaction Manager (TSVR)
- Front-End/Cache (FE/Cache)
- No Single Point of Failure

zFS Components Object Store Device (OSD)

• OSD enables:

- Creation/deletion of objects
- Read/write byte ranges from/to objects
- OSD provides:
 - File abstraction
 - Security
 - Safe writes

 Using OSD allows zFS to focus on File Management and Scalability

zFS Components Lease Manager (LMGR)

- The need for lease manager stems from the following facts:
 - Locking mechanism is required to control access to disks
 - In SAN file systems clients can write directly to OSDs. Therefore:

To work in SAN file systems the OSDs themselves have to support locking

zFS Components Lease Manager (LMGR)

- To reduce OSD's overhead the following mechanism is used:
 - Each OSD has one lease manager
 - OSD maintains and grants to its LMGR one major lease
 - LMGR grants object leases to the FMGRs requesting it
 - FMGR grants range leases to the FEs requesting it

zFS Components Lease Manager (LMGR)

- We prefer leases over locks to avoid the mechanism for detecting failed machine holding a lock
 - In case of lease, we can reclaim it after its lease period expires
- Leases incur the overhead of leases renewal

zFS Components File Manager (FMGR)

- When a file is first opened a file manager is assigned to it.
- Each lease request on the file is mediated by the FMGR.
- The FMGR interacts with the proper LMGR to get the object lease and grants range leases to the FE.

zFS Components File Manager (FMGR)

• The FMGR keeps track of:

- Where each file's extents reside
- Each file's lease.

If client X requests block and lease which resides on client Y the FMGR will direct FE/Cache on Y to send the requested data to X.

• File manager assignment is dynamic.

4/19/2003

zFS Components Transaction Manager (TMGR)

- Meta data operations handle several objects
- To ensure file system consistency zFS implements them as distributed transactions
- All meta data operations are handled by the TSVR

zFS Components Front-End / Cache

• FE

- Runs on every client machine
- Presents to the application/user the standard file system API
- Provides access to zFS files and directories

Cache

 Provides access to zFS data and metadata in local memory to other machines

zFS Architecture

Current Status

zFS implemented on Linux

 Kernel 2.4.19

 Currently

 Most components implemented, started integration

Related Documents

• zFS Web Site

http://www.haifa.il.ibm.com/projects/storage/zFS/index.html

• DSF Web Site

http://www.haifa.il.ibm.com/projects/storage/dsf/index.html

Backup Slides

zFS Failure Handling LMGR_i failed

- **Detected by all FMGRs that hold leases for objects of OSD***i*
- Each FMGR informs all FEs holding files on OSD_i to flush their dirty data and release files
- FMGRs instantiate new LMGR_i which tries to get the OSD_i major lease
- Once the previous major lease expires, one LMGR_i gets the major lease and all others are terminated
- Operation on OSD_i resumes

Write Scenario

4/19/2003