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OSD Storage System Overview
◆ 2PB data (billions of 

files)
◆ 100 GB/sec throughput
◆ 10,000 client nodes 

active simultaneously
• To different 

directories, same 
directory, or even 
same file

◆ Research issues:
• OSD FS
• Reliability
• Data distribution
• Metadata server 

internals
• Metadata server 

cluster architecture
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Metadata Server Cluster Goals
◆ POSIX-compliant API

• Standard UNIX-style file and directory semantics
◆ High Performance

• Efficient metadata access
• Efficient directory operations
• Efficient access control
• High degree of parallelism

◆ Scalability
• Performance scales with the number of metadata servers
• Uniform namespace
• Load balancing among metadata servers under various 

conditions
• Easy addition and removal of metadata servers
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Background: Directory Subtree
Partitioning
◆ Hierarchical namespace partitioned by directory 

subtrees (e.g. NFS) 
◆ Pros:

• Supports standard directory semantics
• Efficient access to multiple files in same directory

◆ Cons:
• Bottlenecks with high concurrent accesses
• Coarse granularity of load balancing
• Adding or removing metadata servers is costly

■ Difficulty to manage
■ May have to move a significant amount of metadata
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Directory Access Distribution (Coda server)

47.87%

3.71%

15.10%

4.27%

4.16%

3.76%

4.07%
9.89%

7.17%

27.24%

/etc
other directories under /usr
/usr/cs
/usr/lib
/usr/adm
/afs
/dev
/tmp
other directories

◆ Conclusion: some directories are MUCH more popular than 
others.

Sample Workload
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Background: Pure Hashing

◆ Namespace widely distributed among the metadata 
servers based on hash of file or pathname (e.g. 
Vesta)

◆ Pros:
• One-request metadata lookup
• Bottleneck avoidance

◆ Cons:
• Hard to support standard directory semantics

■ ls, directory permissions, etc.
• Adding or removing metadata servers is costly

■ May have to move most of the metadata
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Lazy Hybrid Metadata Management 

1. Indirect hash-based metadata location

2. Hierarchical directories

3. Lazy metadata relocation

4. Dual-ACL access control

5. Metadata update logging
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Indirect Hash-based Metadata Location 
◆ Hash of pathname is used as an 

index into the Metadata Lookup 
Table (MLT)
• The MLT is a global data 

structure – cached everywhere, 
updated infrequently 

◆ MLT location specifies which 
metadata server contains the 
metadata
• Provides for efficient addition 

and removal of metadata servers 
from the cluster

• Updated only when metadata 
servers are added or removed

• Only affected metadata is moved
◆ Result

• One-request lookup
• Fine-grained load balancing
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Hierarchical Directory Structure

◆ Directories contain locations of file metadata
◆ Each metadata object is accessible both by hashing 

the pathname and by traversing the directory tree
◆ Directories are updated synchronously

• Directory lookup  always locates metadata
◆ Result

• Standard directory semantics are supported
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Lazy Metadata Relocation
◆ Several operations change location of metadata

• Renaming a file or directory, adding or removing a metadata server
◆ Moving everything immediately can take a long time (but if 

it’s not moved a metadata lookup may fail)
◆ Solution: Move directory and file metadata lazily, as it is 

accessed
• The metadata server looks in the parent directory to determine the 

location, the metadata is moved to the new location, and the request is 
processed

• Can proceed recursively if the parent directory also needs to move
◆ Result:

• Metadata can always be located
• Metadata is always correctly moved to new location
• Movement overhead is distributed
• Can also be accomplished in the background
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Dual-ACL Access Control

◆ Hierarchical directory semantics expect path 
traversal to determine permissions
• Disallows direct hash-based metadata lookup

◆ Solution: Dual ACLs allow for direct lookup
◆ File permissions

• Ordinary file permissions
◆ Path Permissions

• “Intersection” of file permissions and parent directory 
permissions

• Computed at file creation and updated as appropriate
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Metadata Update Logging

◆ Directory rename and permission change require 
updates to a lot of metadata

◆ Solution: large metadata updates are synchronously 
broadcast and recorded in a log on each server

◆ Metadata is compared to the log and appropriate 
updates are applied before each request is processed

◆ Update timestamp allows for efficient log search
• Metadata stores timestamp of last update compared

◆ Result:
• Large metadata updates can be accomplished quickly
• Updates can be accomplished lazily or in the background
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Simulation Environment
◆ Simulated Directory Subtree Partitioning, Pure 

Hashing, and Lazy Hybrid
◆ Server cache hit rate: 99%
◆ Client cache hit rate: 100%
◆ Disk I/O cost (1KB): 15msec
◆ Memory access cost (1KB): 15µsec
◆ Network transfer cost (1KB): 100µsec
◆ Asynchronous write every 30 sec
◆ Simulation traces: an 8-day file server trace scaled 

by a factor of 5,000
◆ Sampling Interval: 0.5 sec
◆ Number of metadata servers: 8
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Request Arrival Distribution
Request Arrival Distribution
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Throughput: Directory Subtree Partitioning and 
Pure Hashing

Maximum throughput difference between metadata servers at a given time point:

max/min = 42.05 max/min = 3.44

Directory Subtree Partitioning
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Pure Hashing
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Throughput: Pure Hashing and Lazy Hybrid

Maximum throughput difference between metadata servers at a given time point:

max/min = 3.44 max/min = 3.49

Pure Hashing
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Lazy Hybrid
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Response Time: Directory Subtree Partitioning 
and  Pure Hashing

max/min = 5680.25
Maximum response time difference between metadata servers at a given time point:

max/min = 762.72

Directory Subtree Partitioning
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Pure Hashing
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Response Time: Pure Hashing and Lazy 
Hybrid

max/min = 762.72
Maximum response time difference between metadata servers at a given time point:

max/min = 802.63

Lazy Hybrid
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Workload Variation with Directory Rename: 
Pure Hashing 

Without Directory Rename
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Directory rename at time 37.5 at depth 6 with 768 children
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Workload Variation with Directory Rename: 
Lazy Hybrid

Without Directory Rename
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Response Time with Directory Rename: Pure 
Hashing and Lazy Hybrid

Pure Hashing
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Lazy Hybrid

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 25 30 35 40 45 50
Time (Seconds)

A
vg

. R
es

po
ns

e 
Ti

m
e 

(S
ec

on
ds

)

Response time increases sharply 
immediately

Delayed and distributed increase in 
response time



Slides for SSRC presentations 23

Conclusion

◆ Directory Subtree Partitioning supports standard 
file/directory semantics
• But has scalability and bottleneck problems

◆ Pure Hashing efficiently balances the workload 
among servers
• But has difficulty supporting standard directory semantics 

and incurs high overhead during some operations
◆ Lazy Hybrid metadata management combines the 

best of these two approaches, and sometimes does 
better than both
• Provides both standard directory semantics and efficient 

metadata access


