
UC Santa Cruz

Efficient Metadata Management in Large
Distributed Storage Systems

Scott Brandt, Ethan Miller, Darrell Long, and Lan
Xue

Storage Systems Research Center
University of California, Santa Cruz

April, 2003

Slides for SSRC presentations 2

OSD Storage System Overview
◆ 2PB data (billions of

files)
◆ 100 GB/sec throughput
◆ 10,000 client nodes

active simultaneously
• To different

directories, same
directory, or even
same file

◆ Research issues:
• OSD FS
• Reliability
• Data distribution
• Metadata server

internals
• Metadata server

cluster architecture

Slides for SSRC presentations 3

OSD Storage System Overview
◆ 2PB data (billions of

files)
◆ 100 GB/sec throughput
◆ 10,000 client nodes

active simultaneously
• To different

directories, same
directory, or even
same file

◆ Research issues:
• OSD FS
• Reliability
• Data distribution
• Metadata server

internals
• Metadata server

cluster architecture

Slides for SSRC presentations 4

Metadata Server Cluster Goals
◆ POSIX-compliant API

• Standard UNIX-style file and directory semantics
◆ High Performance

• Efficient metadata access
• Efficient directory operations
• Efficient access control
• High degree of parallelism

◆ Scalability
• Performance scales with the number of metadata servers
• Uniform namespace
• Load balancing among metadata servers under various

conditions
• Easy addition and removal of metadata servers

Slides for SSRC presentations 5

Background: Directory Subtree
Partitioning
◆ Hierarchical namespace partitioned by directory

subtrees (e.g. NFS)
◆ Pros:

• Supports standard directory semantics
• Efficient access to multiple files in same directory

◆ Cons:
• Bottlenecks with high concurrent accesses
• Coarse granularity of load balancing
• Adding or removing metadata servers is costly

■ Difficulty to manage
■ May have to move a significant amount of metadata

Slides for SSRC presentations 6

Directory Access Distribution (Coda server)

47.87%

3.71%

15.10%

4.27%

4.16%

3.76%

4.07%
9.89%

7.17%

27.24%

/etc
other directories under /usr
/usr/cs
/usr/lib
/usr/adm
/afs
/dev
/tmp
other directories

◆ Conclusion: some directories are MUCH more popular than
others.

Sample Workload

Slides for SSRC presentations 7

Background: Pure Hashing

◆ Namespace widely distributed among the metadata
servers based on hash of file or pathname (e.g.
Vesta)

◆ Pros:
• One-request metadata lookup
• Bottleneck avoidance

◆ Cons:
• Hard to support standard directory semantics

■ ls, directory permissions, etc.
• Adding or removing metadata servers is costly

■ May have to move most of the metadata

Slides for SSRC presentations 8

Lazy Hybrid Metadata Management

1. Indirect hash-based metadata location

2. Hierarchical directories

3. Lazy metadata relocation

4. Dual-ACL access control

5. Metadata update logging

Slides for SSRC presentations 9

Indirect Hash-based Metadata Location
◆ Hash of pathname is used as an

index into the Metadata Lookup
Table (MLT)
• The MLT is a global data

structure – cached everywhere,
updated infrequently

◆ MLT location specifies which
metadata server contains the
metadata
• Provides for efficient addition

and removal of metadata servers
from the cluster

• Updated only when metadata
servers are added or removed

• Only affected metadata is moved
◆ Result

• One-request lookup
• Fine-grained load balancing

Slides for SSRC presentations 10

Hierarchical Directory Structure

◆ Directories contain locations of file metadata
◆ Each metadata object is accessible both by hashing

the pathname and by traversing the directory tree
◆ Directories are updated synchronously

• Directory lookup always locates metadata
◆ Result

• Standard directory semantics are supported

Slides for SSRC presentations 11

Lazy Metadata Relocation
◆ Several operations change location of metadata

• Renaming a file or directory, adding or removing a metadata server
◆ Moving everything immediately can take a long time (but if

it’s not moved a metadata lookup may fail)
◆ Solution: Move directory and file metadata lazily, as it is

accessed
• The metadata server looks in the parent directory to determine the

location, the metadata is moved to the new location, and the request is
processed

• Can proceed recursively if the parent directory also needs to move
◆ Result:

• Metadata can always be located
• Metadata is always correctly moved to new location
• Movement overhead is distributed
• Can also be accomplished in the background

Slides for SSRC presentations 12

Dual-ACL Access Control

◆ Hierarchical directory semantics expect path
traversal to determine permissions
• Disallows direct hash-based metadata lookup

◆ Solution: Dual ACLs allow for direct lookup
◆ File permissions

• Ordinary file permissions
◆ Path Permissions

• “Intersection” of file permissions and parent directory
permissions

• Computed at file creation and updated as appropriate

Slides for SSRC presentations 13

Metadata Update Logging

◆ Directory rename and permission change require
updates to a lot of metadata

◆ Solution: large metadata updates are synchronously
broadcast and recorded in a log on each server

◆ Metadata is compared to the log and appropriate
updates are applied before each request is processed

◆ Update timestamp allows for efficient log search
• Metadata stores timestamp of last update compared

◆ Result:
• Large metadata updates can be accomplished quickly
• Updates can be accomplished lazily or in the background

Slides for SSRC presentations 14

Simulation Environment
◆ Simulated Directory Subtree Partitioning, Pure

Hashing, and Lazy Hybrid
◆ Server cache hit rate: 99%
◆ Client cache hit rate: 100%
◆ Disk I/O cost (1KB): 15msec
◆ Memory access cost (1KB): 15µsec
◆ Network transfer cost (1KB): 100µsec
◆ Asynchronous write every 30 sec
◆ Simulation traces: an 8-day file server trace scaled

by a factor of 5,000
◆ Sampling Interval: 0.5 sec
◆ Number of metadata servers: 8

Slides for SSRC presentations 15

Request Arrival Distribution
Request Arrival Distribution

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140

Time (seconds)

R
eq

ue
sts

 p
er

 S
am

pl
in

g
In

te
rv

a

Slides for SSRC presentations 16

Throughput: Directory Subtree Partitioning and
Pure Hashing

Maximum throughput difference between metadata servers at a given time point:

max/min = 42.05 max/min = 3.44

Directory Subtree Partitioning

0

500

1000

1500

2000

2500

3000

3500

4000

20 25 30 35 40 45 50
Time (Seconds)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

Pure Hashing

0

500

1000

1500

2000

2500

3000

3500

4000

20 25 30 35 40 45 50
Time (Seconds)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

Slides for SSRC presentations 17

Throughput: Pure Hashing and Lazy Hybrid

Maximum throughput difference between metadata servers at a given time point:

max/min = 3.44 max/min = 3.49

Pure Hashing

0

500

1000

1500

2000

2500

3000

3500

4000

20 25 30 35 40 45 50
Time (Seconds)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

Lazy Hybrid

0

500

1000

1500

2000

2500

3000

3500

4000

20 25 30 35 40 45 50
Time (Sec)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

Slides for SSRC presentations 18

Response Time: Directory Subtree Partitioning
and Pure Hashing

max/min = 5680.25
Maximum response time difference between metadata servers at a given time point:

max/min = 762.72

Directory Subtree Partitioning

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 25 30 35 40 45 50
Time (Seconds)

A
vg

. R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Pure Hashing

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 25 30 35 40 45 50
Time (Seconds)

A
vg

. R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Slides for SSRC presentations 19

Response Time: Pure Hashing and Lazy
Hybrid

max/min = 762.72
Maximum response time difference between metadata servers at a given time point:

max/min = 802.63

Lazy Hybrid

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 25 30 35 40 45 50
Time (Seconds)

A
vg

. R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Pure Hashing

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 25 30 35 40 45 50
Time (Seconds)

A
vg

. R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Slides for SSRC presentations 20

Workload Variation with Directory Rename:
Pure Hashing

Without Directory Rename

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 25 30 35 40 45 50

Time (Seconds)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

With Directory Rename

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 25 30 35 40 45 50
Time (Seconds)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

Directory rename at time 37.5 at depth 6 with 768 children

Slides for SSRC presentations 21

Workload Variation with Directory Rename:
Lazy Hybrid

Without Directory Rename

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 25 30 35 40 45 50
Time (Seconds)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

Directory rename at time 37.5 at depth 6 with 768 children

With Directory Rename

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 25 30 35 40 45 50

Time (Seconds)

R
eq

ue
st

s
pe

r S
am

pl
in

g
In

te
rv

al

Slides for SSRC presentations 22

Response Time with Directory Rename: Pure
Hashing and Lazy Hybrid

Pure Hashing

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 25 30 35 40 45 50

Time (Seconds)

A
vv

. R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Lazy Hybrid

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 25 30 35 40 45 50
Time (Seconds)

A
vg

. R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Response time increases sharply
immediately

Delayed and distributed increase in
response time

Slides for SSRC presentations 23

Conclusion

◆ Directory Subtree Partitioning supports standard
file/directory semantics
• But has scalability and bottleneck problems

◆ Pure Hashing efficiently balances the workload
among servers
• But has difficulty supporting standard directory semantics

and incurs high overhead during some operations
◆ Lazy Hybrid metadata management combines the

best of these two approaches, and sometimes does
better than both
• Provides both standard directory semantics and efficient

metadata access

