
101

DATA GRID MANAGEMENT SYSTEMS

Reagan W. Moore, Arun Jagatheesan, Arcot Rajasekar, Michael Wan, Wayne
Schroeder

San Diego Supercomputer Center
9500 Gilman Drive, MC 0505

La Jolla, CA 92093
Tel: +1-858-534-5000, Fax: +1- 858-534-5152

e-mail: {moore,arun,sekar,mwan,schroede}@sdsc.edu

Abstract:
The “Grid” is an emerging infrastructure for coordinating access across autonomous
organizations to distributed, heterogeneous computation and data resources. Data grids
are being built around the world as the next generation data handling systems for sharing,
publishing, and preserving data residing on storage systems located in multiple
administrative domains. A data grid provides logical namespaces for users, digital entities
and storage resources to create persistent identifiers for controlling access, enabling
discovery, and managing wide area latencies. This paper introduces data grids and
describes data grid use cases. The relevance of data grids to digital libraries and
persistent archives is demonstrated, and research issues in data grids and grid dataflow
management systems are discussed.

1 Introduction
A major challenge in the design of a generic data management system is the set of
multiple requirements imposed by user communities. The amount of data is growing
exponentially, both in the number of digital entities and in the size of files. The sources
for data are distributed across multiple sites, with data generated in multiple
administration domains, and on sites only accessible over wide-area networks. The need
for discovery is becoming more important, with data assembled into collections that can
be browsed. The need for preservation is becoming more important, both to meet legal
data retention requirements, and to preserve the intellectual capital of organizations. In
practice, six types of data handling systems are found:

1. Data ingestion systems
2. Data collection creation environments
3. Data sharing environments based on data grids
4. Digital libraries for publication of data
5. Persistent archives for data preservation
6. Data processing pipelines

The goal of a generic data management system is to build software infrastructure that can
meet the requirements of each of these communities. We will demonstrate that data grids
provide the generic data management abstractions needed to manage distributed data, and
that all of the systems can be built upon common software.

102

Data management requires four basic naming conventions (or information categories) for
managing data on distributed resources:

1. Resource naming for access to storage systems across administrative domains.
This is used to implement data storage virtualization.

2. Distinguished user names for identifying persons across administrative domains.
This is used to implement single-sign on security environments.

3. Distinguished file names for identifying files across administrative domains. This
is used to implement data virtualization.

4. Context attributes for managing state information generated by remote processes.
This is used to implement digital libraries and federate data grids.

A data grid [1,2] provides virtualization mechanisms for resources, users, files, and
metadata. Each virtualization mechanism implements a location and infrastructure
independent name space that provides persistent identifiers. The persistent identifiers for
data are organized as a collection hierarchy and called a “logical name space”. In
practice, the logical name spaces are implemented in a separate metadata catalog for each
data grid. Within a data grid, access to data, management of data, and manipulation of
data is done via commands applied to the logical name space.

To access data located within another data grid (another logical name space), federation
mechanisms are required. To manage operations on the massive collections that are
assembled, data flow environments are needed. We illustrate the issues related to data
grid creation, data management, data processing, and data grid federation by examining
how these capabilities are used by each of the six types of data management systems. We
then present the underlying abstraction mechanisms provided by data grids, and close
with a discussion of current research and development activities in data flow and
federation infrastructure.

2 Data Management Systems
Data management systems provide unifying mechanisms for naming, organizing,
accessing, and manipulating context (administrative, descriptive, and preservation
metadata) about content (digital entities such as files, URLs, SQL command strings,
directories). Each of the types of data management system approaches focuses on a
different aspect, and provides specific mechanisms for data and metadata manipulation.

2.1 Data ingestion systems
The Real-time Observatories, Applications, and Data management Network (ROADNet)
[3] project manages ingestion of data in real-time from sensors. The data is assembled
both synchronously and asynchronously from multiple networks into an object ring
buffer (ORB), where it is then registered into a data grid. Multiple object ring buffers are
federated into a Virtual Object Ring Buffer (VORB) to support discovery and attribute-
based queries. Typical operations are the retrieval of the last ten observations, the
tracking of observations about a particular seismic event, and the migration of data from
the ORB into a remote storage system.

103

A second type of data ingestion system is a grid portal, which manages interactions with
jobs executing in a distributed environment. The portal provides access to collections for
input data, and stores output results back into a collection. A grid portal uses the Grid
Security Infrastructure to manage inter-realm authentication between compute and
storage sites.

2.2 Data collection creation environments
Scientific disciplines are assembling data collections that represent the significant digital
holdings within their domain. Each community is organizing the material into a coherent
collection that supports uniform discovery semantics, uniform data models and data
formats, and an assured quality. The National Virtual Observatory (NVO) [4] is hosting
multiple sky survey image collections. Each collection is registered into a logical name
space to provide a uniform naming convention, and standard metadata attributes are used
to describe the sky coverage of each image, the filter that was used during observation,
the date the image was taken, etc. Collection formation is facilitated by the ability to
register the descriptive metadata attributes onto a logical name space. The logical name
space serves as the key for correlating the context with each image.

Other examples include: GAMESS [5], computational chemistry data collections of
simulation output; and the CEED: Caveat Emptor Ecological Data Repository. Both
projects are assembling collections of data for their respective communities.

2.3 Data sharing environments based on data grids
Scientific disciplines promote the sharing of data. While collections are used to organize
the content, data grids are used to manage content that is distributed across multiple sites.
The data grid technology provides the logical name space for registering files, the inter-
realm authentication mechanisms, the latency management mechanisms, and support for
high-speed parallel data transfers. An example is the Joint Center for Structural
Genomics data grid which generates crystallographic data at the Stanford Linear
Accelerator and pushes the data to SDSC for storage in an archive and analysis of protein
structures. The Particle Physics Data Grid [6] federates collections housed at Stanford
and Lyon, France for the BaBar high energy physics experiment [7]. The Biomedical
Informatics Research Network (BIRN) [8] is using a data grid to share data from multiple
Magnetic Resonance Imaging laboratories. Each project implements access controls that
are applied on the distributed data by the data grid, independently of the underlying
storage resource.

2.4 Digital libraries for publication of data
An emerging initiative within digital libraries is support for standard digital reference sets
that can be used by an entire community. The standard digital reference sets are created
from observational data collections, or from simulations, and are housed within the
digital library. Curation methods are applied to assure data quality. Discovery
mechanisms are supported for attribute-based query. An example is the HyperAtlas
catalog that is being created for the 2MASS and DPOSS astronomy sky surveys
[4,19,20]. The catalog projects each image to a standard reference frame, organizes the

104

projections into an atlas of the sky, and supports discovery through existing sky catalogs
of stars and galaxies.

The organizations participating in a collaboration may share their digital entities using a
collective logical view. Multiple logical views could be created for the same set of
distributed digital entities. These logical views may be based on different taxonomies or
business rules that help in the categorization of the data. The organizations, apart from
sharing the physical data, could also share the logical views as publication mechanisms.

The library community applies six data management processes to digital entities:
1. Collection building to organize digital entities for access
2. Content management to store each digital image
3. Context management to define descriptive metadata
4. Curation processes to validate the quality of the collection
5. Closure analyses to assert completeness of the collection and the ability to

manipulate digital entities within the collection
6. Consistency processes to assure that the context is updated correctly when

operations are performed on the content.

2.5 Persistent archives for data preservation
The preservation community manages archival collections for time periods that are much
longer that the lifetimes of the underlying infrastructure [9,10,11,25,26,27]. The
principal concern is the preservation of the authenticity of the data, expressed as an
archival context associated with each digital entity, and the management of technology
evolution. As new more cost effective storage repositories become available, and as new
encoding formats appear for data and metadata, the archival collection is migrated to the
new standard. This requires the ability to make replicas of data on new platforms,
provide an access abstraction to support new access mechanisms that appear over time,
and migrate digital entities to new encoding formats or emulate old presentation
applications. Example projects include a persistent archive for the National Science
Digital Library, and a persistent archive prototype for the National Archives and Records
Administration [12.13]. Both projects manage data that is stored at multiple sites,
replicate data onto different types of storage repositories, and support both archival and
digital library interfaces.

The preservation community applies their own standard processes to data:
1. Appraisal – the decision for whether a digital entity is worth preserving
2. Accession – the controlled process under which digital entities are brought into

the preservation environment
3. Arrangement – the association of digital entities with a record group or record

series
4. Description – the creation of an archival context specifying provenance

information
5. Preservation – the creation of an archival form for each digital entity and storage
6. Access – the support for discovery services

105

2.6 Data Processing Pipelines
The organization of collections, registration of data into a data grid, curation of data for
ingestion into a digital library, and preservation of data through application of archival
processes, all need the ability to apply data processing pipelines. The application of
processes is a fundamental operation needed to automate data management tasks.
Scientific disciplines also apply data processing pipelines to convert sensor data to a
standard representation, apply calibrations, and create derived data products. Examples
are the Alliance for Cell Signaling digital library, which applies standard data analysis
techniques to interpret each cell array, and the NASA Earth Observing Satellite system
that generates derived data products from satellite observations.

Data processing pipelines are also used to support knowledge generation. The steps are:
1. Apply semantic labels to features detected within a digital entity
2. Organize detected features for related digital entities within a collection
3. Identify common relationships (structural, temporal, logical, functional) between

detected features
4. Correlate identified relationships to physical laws

3 Generic requirements
Multiple papers that summarize the requirements of end-to-end applications have been
generated in the Global Grid Forum [14]. They range from descriptions of the remote
operations that are needed to manage large collections, to the abstraction mechanisms
that are needed for preservation. The capabilities can be separated into four main
categories: Context management, data management, access mechanisms, and federation
mechanisms. The capabilities are provided by data grids:

Context management mechanisms
• Global persistent identifiers for naming files.
• Organization of context as collection hierarchy
• Support for administrative metadata to describe the location and ownership of files
• Support for descriptive metadata to support discovery through query mechanisms
• Support for browsing and queries on metadata
• Information repository abstraction for managing collections in databases
Data management mechanisms
• Storage repository abstraction for interacting with multiple types of storage systems
• Support for the registration of files into the logical name space
• Inter-realm authentication system for secure access to remote storage systems
• Support for replication of files between sites
• Support for caching onto a local storage system and for accessing files in an archive
• Support for aggregating files into containers
Access mechanisms
• Standard access mechanisms: Web browsers, Unix shell commands, Windows
browsers, Python scripts, Java, C library calls, Linux I/O redirection, WSDL, etc.
• Access controls and audit trails to control and track data usage

106

• Support for the execution of remote operations for data sub-setting, metadata
extraction, indexing, third-party data movement, etc.
• Support for bulk data transfer of files, bulk metadata transfer, and parallel I/O
Federation mechanisms
• Cross-registration of users between data grids
• Cross-registration of storage resources data grids
• Cross-registration of files between data grids
• Cross-registration of context between data grids

Data Grids provide transparency and abstraction mechanisms that enable applications to
access and manage data as if they were local to their home system. Data grids are
implemented as federated client-server middleware that use collections to organize
distributed data.

4 Data Grid Implementation
An example of a data grid is the Storage Resource Broker (SRB) from the San Diego
Supercomputer Center [15,16,17]. The SRB manages context (administrative,
descriptive, and preservation metadata) about content (digital entities such as files, URLs,
SQL command strings, directories). The content may be distributed across multiple types
of storage systems across independent administration domains. By separating the context
management from the content management, the SRB easily provides a means for
managing, querying, accessing, and preserving data in a distributed data grid framework.
Logical name spaces describe storage systems, digital file objects, users, and collections.
Context is mapped to the logical name spaces to manage replicas of data, authenticate
users, control access to documents and collections, and audit accesses. The SRB manages
the context in a Meta data Catalog (MCAT) [18], organized as a collection hierarchy.
The SRB provides facilities to associate user-defined metadata, both free-form attribute-
based metadata and schema-based metadata at the collection and object level and query
them for access and semantic discovery. The SRB supports queries on descriptive
attributes [21]. The SRB provides specific features needed to implement digital libraries,
persistent archive systems [10,11,12,13] and data management systems [22,23,24].

The Storage Resource Broker (SRB) in earlier versions used a centralized MCAT [18] for
storing system-level and application-level metadata. Though essential for consistent
operations, the centralized MCAT poses a problem. It can be considered a single-point of
failure as well as a potential bottleneck for performance. Moreover, when users are
widely distributed, users remote from the MCAT may see latency unacceptable for
interactive data access.

In order to mitigate these problems, the SRB architecture has been extended to a
federated environment, called zoneSRB. The ZoneSRB architecture provides a means for
multiple context catalogs to interact with each other on a peer-to-peer basis and
synchronize their data and metadata. Each zoneSRB system can be autonomous,
geographically distant, and administer a set of users, resources and data that may or may

107

not be shared by another zoneSRB. Each zoneSRB has its own MCAT for providing the
same level of features and facilities as done by the older SRB system.

The main advantage of the zoneSRB system is that now, there is no single point of
failure, as multiple MCATs can be federated into a multi-zoneSRB system. Users can be
distributed across the zones to improve quality of performance and minimize access
latencies to geographically distant metadata catalogs. The multiple zoneSRBs can share
metadata and data based on policies established by the collaborating administrators. The
level of collaboration can be varied to specify how much of the information is shared,
partitioned or overlapped, and whether the interactions are controlled by the users or the
zone administrators.

More information about the SRB can be found in [15,16,17,18]. In a nutshell, the SRB
provides all of the capabilities listed as generic requirements. The SRB provides
interoperability mechanisms that map users, datasets, collections, resources and methods
to global namespaces. It also provides abstractions for data management functionality
such as file creation, access, authorization, user authentication, replication and
versioning, and provides a means to associate metadata and annotation with data objects
and collections of data objects. Descriptive metadata is used for searching at the semantic
level and discovery of relevant data objects using the attribute-based discovery paradigm.
Figure 1 provides details about the modules that form the core of the SRB services.

Figure 1. Storage Resource Broker

Unix
Shell

Java, NT
Browsers

OAI,
WSDL,
OGSA

HTTP

Archives - Tape,
HPSS, ADSM,
UniTree, DMF,
CASTOR,ADS

Databases
DB2, Oracle, Sybase,
SQLserver,Postgres,

mySQL, Informix

File Systems
Unix, NT,
Mac OSX

Application

ORB &
Datascop
e

Storage AbstractionCatalog Abstraction

Databases
DB2, Oracle, Sybase,

Postgres, mySQL,
Informix

C, C++, Java
Libraries

Logical Name
Space

Latency
Management

Data
Transport

Metadata
Transport

Consistency & Metadata Management / Authorization-Authentication-Audit

Linux
I/O

DLL /
Python,

Perl

Federation Management

108

The SRB server is built using three layers. The top-layer is a set of server access APIs
written in C and Java that are used to provide multiple client interfaces. The middle layer
provides the intelligence for collection-based management, federation of data grids, data
movement, authentication, and authorization. The bottom-layer is a set of storage drivers
and MCAT database drivers that are used to connect to diverse resources. These drivers
have a well-defined and published API such that a new storage resource or data server
system can be integrated easily into the SRB system. For example, custom-based
interfaces to special drivers such as the Atlas Data Store System and CERN’s CASTOR
storage systems were written in just a few days. The SRB drivers for storage include,
HPSS, ADSM, Unix/Linux /Mac OSX and NT file systems, and for databases includes
DB2, Oracle, Postgres, Informix, and Sybase.

The middle layer of the SRB system supports the federation consistency and control
mechanisms needed to integrate multiple data grids and encapsulates much of the
intelligence needed to manage a data grid. This layer interacts with the MCAT to access
the context needed to control each type of data service.

The data grid technology based on the SRB that is in production use at SDSC at this date
manages over 90 Terabytes of data comprising over 16 million files.

5 Data Grid Federation
The specification of appropriate federation mechanisms is still a research project. The
federation of multiple data grids basically imposes constraints on the cross-registration of
users, resources, files, and context. The constraints may be invoked by either a user or
automatically implemented by the data management system. The constraints may be set
for either no cross-registration, partial cross-registration, or complete cross-registration.
It is possible to identify over 1500 possible federation approaches by varying the type of
cross-registration constraints that are imposed. In practice, ten of the approaches are
either in active use or proposed for use within scientific projects. Each data grid is called
a zone, with its own metadata catalog managing the logical name spaces for its users,
resources, files, and context. The approaches include:

5.1 Occasional Interchange
This is the simplest model in which two or more zones operate autonomously with very
little exchange of data or metadata. The two zones exchange only user-ids for those users
who need access across zones. Most of the users stay in their own zone accessing
resources and data that are managed by their zone MCAT. Inter-zone users will
occasionally cross zones, browsing collections, querying metadata and accessing files for
which they have read permission. These users can store data in remote zones if needed
but these objects are only accessible to users in the other zones. This model provides the
greatest degree of autonomy and control. The cross-zone user registration is done not for
every user from a zone but only for selected users. The local SRB administrator controls
who is given access to the local SRB system and can restrict these users from creating
files in the local SRB resources. (NPACI driven federation model [28])

109

5.2 Replicated Catalog
In this model, even though there are multiple MCATs managing independent zones, the
overall system behaves as though it were a single zone with replicated MCATs. Metadata
about the tokens being used, users, resources, collections, containers and data objects are
all synchronized between all MCATs. Hence, the view from every zone is the same. An
object created in a zone is registered as an object in all other sister zones and any
associated metadata is also replicated. This model provides a completely replicated
system that has a high degree of fault-tolerance for MCAT failures. The user can still
access data even if their local MCAT becomes non-functional. The degree of
synchronization, though very high in principle, in practice is limited. The MCATs may
be out of synchronization on newly created data and metadata. The periodicity of
synchronization is decided by the cooperating administrators and can be as long as days if
the systems change slowly. An important point to note is that because of these delayed
synchronizations, one might have occasional logical name clashes. For example, a data
object with the same name and in the same collection might be created in two zones
almost at the same time. Because of delayed synchronization both will be allowed in their
respective zones. But when the synchronization is attempted, the system will see a clash
when registering across zones. The resolution of this has to be done by mutual policies
set by the cooperating administrators. In order to avoid such clashes, policies can be
instituted with clear lines of partitioning about where one can create a new file in a
collection. (NARA federation model [12])

5.3 Resource Interaction
In this model resources are shared by more than one zone and hence they can be used for
replicating data. This model is useful if the zones are electronically distant, but want to
make it easier for users in the sister zone to access data that might be of mutual interest.
A user in a zone replicates data into the shared resources (either using synchronous
replication or asynchronous replication as done in a single zone). Then the metadata of
these replicated objects is synchronized across the zones. User names need not be
completely synchronized. (BIRN federation model [8])

5.4 Replicated Data Zones
In this model two or more zones work independently but maintain the same data across
zones, i.e., they replicate data and related metadata across zones. In this case, the zones
are truly autonomous and do not allow users to cross zones. In fact, user lists and
resources are not shared across zones. But data stored in one zone is copied into another
zone along with related metadata, by a user who has accounts in the sister zones. This
method is very useful when two zones are operating across a wide-area network has to
share data and the network delay in accessing data across the zones has to be reduced.
(BaBar federation model [7])

5.5 Master-Slave Zones
This is a variation of the 'Replicated Data Zones' model in which new data is created at a
Master site and the slave sites synchronize with the master site. The user list and resource
list are distinct across zones. The data created at the master are copied over to the slave
zone. The slave zone can create additional derived objects and metadata but these may

110

not be shared back to the Master Zone. (PDB federation model)

5.6 Snow-Flake Zones
This is a variation of the 'Master-Slave Zones' model, One can view this as a hierarchical
model, where a Master Zone creates the data that is copied to the slave zones, whose data
in turn gets copied into other slave zones lower in the hierarchy. Each level of the
hierarchy can create new derived products of data and metadata, can have their own
client base, and can choose to propagate only a subset of their holdings to their slave
zones. (CMS federation model [23]).

5.7 User and Data Replica Zones
This is another variation of the 'Replicated Data Zones' where not just the data get
replicated but also user names are exchanged. This model allows users to access data in
any zone. This model can be used for wide-area enterprises where users travel across
zones and would like to access data from their current locations for improved
performance. (Web cache federation model)

5.8 Nomadic Zones - SRB in a Box
In this model, a user might have a small zone on a laptop or other desktop systems that
are not always connected to other zones. The user during his times of non-connectedness
can create new data and metadata. The user on connecting to the parent zone will then
synchronize and exchange new data and metadata across the user-zone and the parent
zone. This model is useful for users who have their own zones on laptops. It is also
useful for zones that are created for ships and nomadic scientists in the field who
periodically synchronize with a parent zone. (SIOExplorer federation model)

5.9 Free-floating Zones – myZone
This is a variation of the 'Nomadic Zone' model having multiple stand-alone zones but no
parent zone. These zones can be considered peers and possibly have very few users and
resources. These zones can be seen as isolated systems running by themselves (like a PC)
without any interaction with other zones, but with a slight difference. These zones
occasionally "talk" to each other and exchange data and collections. This is similar to
what happens when we exchange files using zip drives or CDs or as occasional network
neighbors. This system has a good level of autonomy and isolation with controlled data
sharing. (Peer-to-peer or Napster federation model)

5.10 Archival Zone, BackUp Zone
In this model, there can be multiple zones with an additional zone called the archive. The
main purpose of this is to create an archive of the holdings of the first set of zones. Each
zone in the first set can designate the collections that need to be archived. This provides
for backup copies for zones which by themselves might be fully running on spinning
disk. (SDSC backup federation model, NASA backup federation model [29])

111

6 Grid Dataflow
A second research area is support for data flow environments, in which state information
is kept about the processing steps that have been applied to each digital entity in a work
set.

6.1 Need for peer-to-peer Data Grid Dataflows
A dataflow executes multiple tasks. Each task might require: different resources; access
to different data collections for input; storage of output products onto physically
distributed resources within a data grid; and disparate services that might be in the form
of web/grid services or simply executables of an application. The dataflow is described in
a data grid language. The dataflow is executed through a dataflow engine. Each
dataflow engine needs to be able to communicate with other dataflow engines in a peer-
to-peer federation for coordination. This allows dynamic distributed execution, without
having to specify a pre-planned schedule.

Placement scheduling is still required to find the right location for execution of each task.
In the data grid, the tasks in the dataflow could be executed in any of distributed
resources within the participating administrative domains. In general the following
factors must be considered for dataflow scheduling:

• Appropriateness of a given resource for a particular task: Is there enough
disk space to hold result sets, and is the compute resource powerful enough to
execute the task within a desired time? Are the tasks sufficiently small that they
could be processed by less powerful systems?
• Management of data movement: How can the amount of data moved for both
input and output files and for the executable be minimized?
• Co-location of dependent tasks: How can tasks be co-located on the same
administrative domain or resource to minimize coordination messages that have to
be sent across the network?

6.2 Grid Dataflow System Requirements
Collections of data sets can be manipulated in a Data Grid dataflow. Instead of creating a
separate dataflow for each file, state information can be maintained about the aggregated
set of files for which processes have been applied. Related issues are:

• Management of processing state: (e.g.) What information needs to be
maintained about each process?
• Control procedures: (e.g.) What types of control mechanisms are needed to
support loops over collections?
• Dynamic status queries: (e.g.) Can a process detect the state of completion of
other processes through knowledge of the placement schedule?

6.3 Data Grid Language
The SDSC Matrix project [33], funded by the NSF Grid Physics Network (GriPhyN)
[30], NIH Biomedical Informatics Research Network (BIRN) [8] and NSF Southern
California Earthquake Center (SCEC) [31], has developed a data grid language to
describe grid dataflow. Just like SQL (Structured Query Language) is used to interact
with the databases, the Data Grid Language (DGL) is used to interact with the data grids

112

and dataflow environments. DGL is XML-based and uses a standard schema that
describes:

• Control-based dataflow structures. These include sequential, parallel, and
aggregated process execution.

• Context-based dataflow structures. These include barriers (synchronization points
or milestones), “For loops” (iteration over task sets) and “For Each loops”
(iteration over collection of files).

• Event Condition Alternate Action (ECA) rules. Any event in the workflow
engine like completion or start of a task could be used to trigger a condition to be
evaluated dynamically and execute any of the alternate dataflow actions. The
conditions could be described using XQuery or any other language that would be
understood by the dataflow engine. This allows other useful or simple workflow
query languages to be used along with DGL.

• Variables. Both global variables and local variables can be managed for the
dataflow. The variables are related to the dataflow, rather than an individual file
that is manipulated by the dataflow. Hierarchical scoping is used to restrict the
use of the dataflow variables to aggregates of processes.

• Discovery. Queries from external grid processes are supported for determining
the completion status of a process and the state of variables.

A simple example of the use of dataflow systems is the management of the ingestion of a
collection into a data grid. The SCEC project implemented the collection ingestion as a
dataflow using the data grid language and executed the dataflow using a SDSC Matrix
Grid workflow engine.

6.4 SDSC Matrix Architecture
The architecture of the SDSC Matrix dataflow engine is shown in Figure 2. The
components are layered on top of agents that can execute either SRB or other processes
(SDSC Data Management Cyberinfrastructure, java classes, WSDL services and other
executables). The matrix dataflow engine tracks the dataflow execution. The dataflow
execution state can be queried by other applications or other dataflows that are executed
by the matrix engine. Persistence of the dataflow execution state is held in memory and
exported to a relational database.

Clients send DGL dataflow requests as SOAP [32] messages to the Java XML (JAXM)
messaging interface (Fig 2). The Matrix web service receives these SOAP messages and
forwards the DGL requests to the Data Grid Request Processor. The Request Processor
parses the DGL requests, which could be either a data grid transaction (new dataflow) or
a status query on another dataflow. A data grid transaction request is a long running
dataflow involving the execution of multiple data management and compute intensive
processes. The Transaction Handler registers a new transaction and starts the book
keeping and execution of the processes. The Status Query Handler is used to query the
state of execution of the transaction and the variables associated with a dataflow. In
Figure 2, the Matrix Engine components shown in white boxes have been implemented
for a stand-alone matrix workflow engine (version 3.1). Those in solid (black) boxes are a
work in progress to provide peer-to-peer grid workflow and involve protocols to
distribute the workflow. The P2P broker will be based on Sangam protocols [34] to

113

facilitate Peer-to-peer brokering between workflow engines. The protocols will be
loosely coupled with resource scheduling algorithms.

7 Conclusion
Data grids provide a common infrastructure base upon which multiple types of data
management environments may be implemented. Data grids provide the mechanisms
needed to manage distributed data, the tools that simplify automation of data
management processes, and the logical name spaces needed to assemble collections. The
Storage Resource Broker data grid is an example of a system that has been successfully
applied to a wide variety of scientific disciplines for management of massive collections.
Current research issues include identification of the appropriate approaches for federating
data grids, and the development of capable data flow processing systems for the
management of data manipulation.

8 Acknowledgement
The results presented here were supported by the NSF NPACI ACI-9619020 (NARA
supplement), the NSF NSDL/UCAR Subaward S02-36645, the NSF Digital Library
Initiative Phase II Interlib project, the DOE SciDAC/SDM DE-FC02-01ER25486 and
DOE Particle Physics Data Grid, the NSF National Virtual Observatory, the NSF Grid
Physics Network, and the NASA Information Power Grid. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the National Science
Foundation, the National Archives and Records Administration, or the U.S. government.

The authors would also like acknowledge other members of the SDSC SRB team who
have contributed to this work including: George Kremenek, Bing Zhu, Sheau-Yen Chen,
Charles Cowart, Roman Olschanowsky, Vicky Rowley and Lucas Gilbert. The members

Matrix Agent Abstraction

In Memory
Store

JDBC
Agents for any

java, WSDL and
other executables

Persistence (Store)
Abstraction

ECA rules
Handler

Matrix Data Grid Request Processor

Transaction Handler Status Query Handler

Data flow Meta data
Manager

JMS
Messaging
Interface

JAXM
Wrapper

SOAP Service

Flow Handler and
Execution Manager

Workflow Query Processor

XQuery
Processor

Event Publish
Subscribe,

Notification

SRB
Agents

SDSC Data
Services

WSDL
Description

Sangam P2P Grid Workflow Broker and Protocols

Figure 2. SDSC Matrix Grid Workflow Engine Architecture for data flows

114

of the SDSC Matrix Project include Reena Mathew, Jon Weinberg, Allen Ding and Erik
Vandekieft.

9 References
[1] Foster, I., and Kesselman, C., (1999) “The Grid: Blueprint for a New Computing
Infrastructure,” Morgan Kaufmann.
[2] Rajasekar, A., M. Wan, R. Moore, T. Guptill, “Data Grids, Collections and Grid
Bricks,” Twentieth IEEE/Eleventh NASA Goddard Conference on Mass Storage Systems
& Technologies, April 7-10, 2003, San Diego, USA.
[3] Real-time Observatories, Applications, and Data management Network (RoadNet),
http://roadnet.ucsd.edu/
[4] NVO, (2001) “National Virtual Observatory”, (http://www.srl.caltech.edu/nvo/).
[5] GAMESS “General Atomic Molecular Electronic Structure Systems - Web Portal.
(https://gridport.npaci.edu/GAMESS/).
[6] PPDG, (1999) “The Particle Physics Data Grid”, (http://www.ppdg.net/,
http://www.cacr.caltech.edu/ppdg/).
[7] BABAR Collaboration (B. Aubert et al.)., “The First Year of the Babar Experiment
At PEP-II. 30th International Conference on High-Energy Physics (ICHEP 2000), Japan.
[8] BIRN, “The Biomedical Informatics Research Network”, http://www.nbirn.net
[9] Rajasekar, A., R. Marciano, R. Moore, (1999), “Collection Based Persistent
Archives,” Proceedings of the 16th IEEE Symposium on Mass Storage Systems, 1999.
[10] Moore, R., C. Baru, A. Rajasekar, B. Ludascher, R. Marciano, M. Wan, W.
Schroeder, and A. Gupta, (2000), “Collection-Based Persistent Digital Archives – Parts
1& 2”, D-Lib Magazine, April/March 2000, http://www.dlib.org/
[11] Moore, R., A. Rajasekar, “Common Consistency Requirements for Data Grids,
Digital Libraries, and Persistent Archives”, Grid Protocol Architecture Research Group
draft, Global Grid Forum, April 2003.
[12] US National Archives and Records Administration, http://www.archives.gov/, also
see http://www.sdsc.edu/NARA/
[13] Moore, R., C. Baru, A. Gupta, B. Ludaescher, R. Marciano, A. Rajasekar, (1999),
“Collection-Based long-Term Preservation,” GA-A23183, report to National Archives
and Records Administration, June, 1999.
[14] GGF, “The Global Grid Forum” (http://www.ggf.org/)
[15] SRB, “Storage Resource Broker Website”, SDSC (http://www.npaci.edu/dice/srb).
[16] Rajasekar, A., Wan, M., Moore, R.W., Schroeder, W., Kremenek, G., Jagatheesan,
A., Cowart, C., Zhu, B., Chen, S.Y. and Olschanowsky, R., “Storage Resource Broker
– Managing Distributed Data in a Grid,” Computer Society of India Journal, special
issue on SAN, 2003
[17] Rajasekar, A., Wan, M., Moore, R.W., Jagatheesan, A. and Kremenek, G., “Real
Experiences with Data Grids – Case-studies in using the SRB,” Proceedings of 6th
International Conference/Exhibition on High Performance Computing Conference in
Asia Pacific Region (HPC-Asia), December 2002, Bangalore, India
[18] MCAT - “The Metadata Catalog”, http://www.npaci.edu/DICE/SRB/mcat.html
[19] 2-Micron All Sky Survey (2MASS), http://www.ipac.caltech.edu/2mass/
[20] Digital Palomar Observatory Sky Survey,
http://www.astro.caltech.edu/~george/dposs/

115

[21] Moore R. and A. Rajasekar, “Data and Metadata Collections for Scientific
Applications,” High Performance Computing and Networking, Amsterdam, NL, 2001.
[22] Wan, M., A. Rajasekar, R. Moore, “A Simple Mass Storage System for the SRB
Data Grid,” Twentieth IEEE/Eleventh NASA Goddard Conference on Mass Storage
Systems & Technologies, April 7-10, 2003, San Diego, USA.
[23] Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H., and Stockinger, K.
(2000) “Data Management in an International Data Grid Project,” IEEE/ACM
International Workshop on Grid Computing Grid'2000, Bangalore, India 17-20
December 2000. (http://www.eu-datagrid.org/grid/papers/data_mgt_grid2000.pdf).
[24] Moore, R., C. Baru, A. Rajasekar, R. Marciano, M. Wan: Data Intensive Computing,
In ``The Grid: Blueprint for a New Computing Infrastructure'', eds. I. Foster and C.
Kesselman. Morgan Kaufmann, San Francisco, 1999.
[25] Thibodeau, K., “Building the Archives of the Future: Advances in Preserving
Electronic Records at the National Archives and Records Administration”, U.S. National
Archives and Records Administration,
http://www.dlib.org/dlib/february01/thibodeau/02thibodeau.html
[26] Underwood, W. E., “As-Is IDEF0 Activity Model of the Archival Processing of
Presidential Textual Records,” TR CSITD 98-1, Information Technology and
Telecommunications Laboratory, Georgia Tech Research Institute, December 1, 1988.
[27] Underwood, W. E., “The InterPARES Preservation Model: A Framework for the
Long-Term Preservation of Authentic Electronic Records”. Choices and Strategies for
Preservation of the Collective Memory, Toblach/Dobbiaco Italy 25-29 June 2002,
Archivi per la Storia.
[28] NPACI Data Intensive Computing Environment thrust, http://www.npaci.edu/DICE/
[29] NASA Information Power Grid (IPG), (http://www.ipg.nasa.gov/)
[30] GriPhyN, “The Grid Physics Network”, (http://www.griphyn.org/).
[31] SCEC Web Site, Southern California Earthquake Center, (http://www.scec.org/)
[32] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., and Winer, D., “Simple Object Access Protocol (SOAP)” W3C Note.
http://www.w3.org/TR/SOAP/
[33] SDSC Matrix Project Web site http://www.npaci.edu/DICE/SRB/matrix/
[34] Jagatheesan, A., “Architecture and Protocols for Sangam Communities and Sangam
E-Services Broker,” Technical Report, (Master's Thesis) CISE Department, University of
Florida, 2001 http://etd.fcla.edu/UF/anp1601/ArunFinal.pdf
[35] Helal, A., Su, S.Y.W., Meng, Jei, Krithivasan, R. and Jagatheesan, R., “The Internet
Enterprise,” Proceedings of Second IEEE/IPSJ Symposium on Applications and the
Internet (SAINT 02), February 2002, Japan.
http://www.harris.cise.ufl.edu/projects/publications/Internet_Enterprise.pdf

