
V:Drive - Costs and Benefits of an Out-of-Band
Storage Virtualization System �

André Brinkmann, Michael Heidebuer, Friedhelm Meyer auf der Heide,
Ulrich Rückert, Kay Salzwedel, and Mario Vodisek

Paderborn University

Abstract

The advances in network technology and the growth of
the Internet together with upcoming new applications like
peer-to-peer (P2P) networks have led to an exponential
growth of the stored data volume. The key to manage this
data explosion seems to be the consolidation of storage sys-
tems inside storage area networks (SANs) and the use of a
storage virtualization solution that is able to abstract from
the underlying physical storage system.

In this paper we present the first measurements on an
out-of-band storage virtualization system and investigate
its performance and scalability compared to a plain SAN.
We show in general that a carefully designed out-of-band
solution has only a very minor impact on the CPU usage
in the connected servers and that the metadata manage-
ment can be efficiently handled. Furthermore we show that
the use of an adaptive data placement scheme in our vir-
tualization solution V:Drive can significantly enhance the
throughput of the storage systems, especially in environ-
ments with random access schemes.

1. Introduction

The advances in networking technology and the growth
of the Internet have enabled and accelerated the emergence
of new storage consuming applications like peer-to-peer
(P2P) networking, video-on-demand, and data warehous-
ing. The resulting exponential growth of the stored data
volume requires a new storage architecture, while the man-
agement of the traditional, distributed direct attached stor-
age (DAS) architecture has shown to be intractable from
a business perspective. The first step towards this new
storage architecture is the consolidation of the servers and
storage devices inside a storage area network (SAN). In a

�Partially supported by the DFG Transferbereich 40 and the Future
and Emerging Technologies programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).

SAN, the formerly fixed connections between storage and
servers are broken-up and both are attached to the high-
speed dedicated storage network. The introduction of a
storage area network can significantly improve the reliabil-
ity, availability, manageability, and performance of servers
and storage systems.

Nevertheless, it has been shown that the potential of a
SAN can only be fully exploited with the assistance of stor-
age management software, and here particulary with the
help of a virtualization system. Storage virtualization is of-
ten seen as the key technology in the area of storage man-
agement. But what actually is storage virtualization? A
good definition has been given by the Storage Networking
Industry Association SNIA [8]:

”[Storage virtualization is] an abstraction of storage that
separates the host view [from the] storage system imple-
mentation.”

This abstraction includes the physical location of a data
block as well as the path from the host to the storage sub-
system through the SAN. Therefore, it is not necessary that
the administrator of a SAN is aware of the distribution of
data elements among the connected storage systems. Gen-
erally, the administrator only creates a virtual volume and
assigns it to a pool of physical volumes, where each physi-
cal volume can be of different size. Then, a file system or a
database can work upon this virtual volume and the virtu-
alization software provides a consistent allocation of data
elements on the storage systems. It is even possible that a
large number of virtual volumes share a common storage
pool.

The use of a virtualization environment has many advan-
tages compared to the traditional approach of assigning an
address space to a fixed partition. The most obvious one is
that a virtual disk can become much larger than the size of
a single disk or even than a single RAID-system [7]. When
using virtualization software, the size of a virtual disk is
only limited by the restrictions inherent to the operating
system and the total amount of available disk capacity.

Another important feature of virtualization software is a
much better utilization of disk capacity. It has been shown

101



that in the traditional storage model only 50% of the avail-
able disk space is used. The disk utilization can be in-
creased up to 80% through the central and more flexible ad-
ministration of virtualization software. Thus, the required
storage capacity and, with it, the hardware costs of a stor-
age area network can be reduced significantly. Further-
more, virtualization software offers new degrees of flexi-
bility. Storage systems can be added to or removed from
storage pools without downtime, thus enabling a fast adap-
tation to new requirements. These storage systems do not
have to be from a single vendor, so that the traditional
vendor-locking of customers can be avoided.

Virtualization software can be implemented as out-of-
band virtualization or in-band virtualization, inside the
storage subsystems, or as logical volume manager (LVM)
inside the hosts. In an out-of-band virtualization system,
the virtualization is done inside the kernel of the hosts and
all participating hosts are coordinated by one or more ad-
ditional SAN appliance. In this paper we will focus on the
analysis of our out-of-band solution V:Drive.

Chapter 2 of this paper introduces the design of V:Drive.
In chapter 3 we present the first measurements on an out-of-
band storage virtualization system and investigate its per-
formance and scalability compared to a plain SAN. We
show that a carefully designed out-of-band solution has
only a very minor impact on the CPU usage in the con-
nected hosts and that the metadata management can be ef-
ficiently implemented. Furthermore we give evidence that
the use of an adaptive data placement scheme can signif-
icantly enhance the throughput of storage systems, espe-
cially in environments with random access schemes.

2. V:Drive Design

In this chapter we will describe the design of our out-
of-band virtualization solution V:Drive. From the architec-
tural perspective, V:Drive consists of a number of coop-
erating components: one or more SAN appliances which
are responsible for the metadata management and the co-
ordination of the hosts (see section 2.2), the virtualization
engine inside the kernel of the hosts (see section 2.3), and
a graphical user interface (GUI).

From a logical point of view, V:Drive offers the ability
to cluster the connected storage devices into storage pools
that can be combined according to their age, speed, or pro-
tection against failures. Each storage pool has its own stor-
age management policy describing individual aspects like
logical and physical block size or redundancy constraints.
A large number of virtual volumes can share the capacity
of a single storage pool.

The capacity of each disk in a storage pool is partitioned
into minimum sized units of contiguous data blocks, so
called extents. The extent size need not be constant inside a

storage pool and can change over time. In general, smaller
extents can guarantee better load balancing, while bigger
extents result in a smaller management overhead and less
disk head movements in case of sequential accesses. The
extents are distributed among the storage devices according
to the Share strategy which is able to guarantee an almost
optimal distribution of the data blocks across all participat-
ing disks in a storage pool (see Section 2.1).

2.1. The Share-Strategy

Any virtualization strategy depends on the underlying
data distribution strategy. Such a distribution is challenging
if the system is allowed to contain heterogeneous storage
components. The main task of a distribution strategy is an
even distribution of data blocks and an even distribution
of requests among the storage devices. Therefore, it has a
strong impact on the scalability and the performance of the
SAN. It can be shown, that a static data placement scheme
is generally not able to fulfill the given requirements.

We have developed a new adaptive distribution scheme
that has been implemented in V:Drive, called Share-
strategy [2]. In this paper we will present Share with-
out data replication. Of course it is possible to support
replication inside Share, e.g. by a scheme proposed in
[4]. For other static and dynamic placement schemes, see
[6, 3, 4, 5].

Share works in two phases. In the first phase, the algo-
rithm reduces the problem of mapping extents to heteroge-
neous disks to a number of homogeneous ones. The result
is a number of volumes which are equally likely to store
the requested extent. In the second phase, we use any dis-
tribution strategy that is able to map extents to equal sized
disks (see e.g. [6]).

The reduction phase is based on two hash functions � �
��� ������ � ��� �� and � � ��� ���� �� � ��� �� where M
is the maximal number of extents in the system and N is the
maximal number of disks that are allowed to participate,
respectively.

1

1
2

3
I

I
I

g(1) g(2) g(3)g(4)

4I

h(b)0

Figure 1. Hashing scheme in Share

The reduction phase works as follows: Initially or af-
ter every change in the system configuration, we map the

102



starting points of sub-intervals of certain length into a [0,1)
interval using the hash function g. The length of these sub-
intervals �� corresponds to the capacity �� of disk i. To
ensure that the whole interval is covered by at least one
sub-interval we need to stretch each of the sub-intervals by
a factor s. In other words, the sub-interval � � starts at ����
and ends at ����� � 	 � ��� mod 1.

The extents are hashed into the same interval using h
where the quality of h ensures an even distribution of all
extents over the whole interval. Now, an extent can be ac-
cessed by calculating its hash value and then deriving all
sub-intervals that value falls into. Any efficient uniform
strategy can be applied to get the correct disk out of the
number of possible candidates. It can be shown that the
fraction of extents stored on a disk and the number of re-
quests to a disk are proportional to its capacity and that the
number of extent replacements in case of any change in the
number or kind of disks is nearly minimal (see [2] for more
detail).

2.2. SAN Appliance and Metadata Management

To ensure a consistent view of the SAN and a proper
configuration of the hosts and storage devices, one or more
SAN appliances are connected to the SAN. The appliances
keep track of all necessary metadata structures. These
metadata include among others the partitioning of the stor-
age devices into storage pools and virtual volumes, access
rights of the hosts, and the allocation of extents on the stor-
age devices.

The metadata appliance consists of a number of separate
modules which are arranged around the V:Drive database,
including the Disk-Agent, the Host-Interface, the Disk-
Manager, and the Administration Interface. The interface
to the database is standard SQL, implemented in many
commercial and free databases. All components of the ap-
pliance can be executed on a single machine or can run in
a distributed fashion.

Information about the state of the SAN are collected by
the Disk-Agent that is responsible for detecting disk parti-
tions and for finding changes in the system configuration.
Each newly detected suitable partition is labelled with a
unique ID and is made available by updating the database.

The Host-Interface is connected to the servers via Eth-
ernet/IP. A data transfer between a server and the host in-
terface is issued if the configuration of the SAN has been
changed, if the server has started and has to load its con-
figuration, or if the server accesses a virtual address for the
first time and has to allocate an extent on the corresponding
disk.

If the configuration of the storage system changes, a
small number of extents has to be redistributed in order
to guarantee close to optimal performance. The Disk-

Manager is responsible for this redistribution tasks. Af-
ter each change of a storage pool it checks each allocated
extent if it has to be relocated. In such a case, the extent
is moved online to its new location in a way that ensures
the consistency of the data before, during, and after the re-
placement process.

The administrator can access the metadata via the graph-
ical user interface. The administration interface contains
all the necessary functionality to manage enterprise wide
storage networks: administration of storage systems, stor-
age pools, and virtual devices, authentication and autho-
rization, security, and statistics.

2.3. Kernel Integration

The host software basically consists of a kernel module
which is linked to the operating system of the participat-
ing servers and some additional applications running in the
user space. Currently, modules for the Linux kernel ��� and
��� are available.

If a data block needs to be read from a virtual disk, the
file system generates a block I/O request and passes it to
the kernel module where it is processed and transmitted to
the appropriate physical disk. To perform the transforma-
tion from a virtual address to a physical address, the kernel
keeps all necessary information, like existing storage pools,
assignments of virtual and physical disks to the pools, stor-
age policies etc. These information are given to the kernel
initially or on-demand by the metadata server.

3. Results

In this section we will present the experimental results
of our virtualization approach. The test system consists of
two Pentium servers connected to an FC-AL array with 8
fibre channel disks. Both servers have 2 Pentium II proces-
sors with 450 MHz and 512 kilobyte cache. Furthermore,
they have local access to a mirrored disk drive containing
the operating system and all relevant management infor-
mation. Both servers run a Linux 2.4.18 kernel (Red Hat)
and use gcc version 3.2.2 as the C compiler. The access to
the disks is enabled by a QLogic qla2300 host bus adapter.
The FC-AL array consists of four 17 Gigabyte and four 35
Gigabyte fibre channel disks. They are connected with the
server via an 1 Gigabit switch. Each disk is partitioned into
one partition covering the whole disk.

For stressing the underlying I/O subsystem we used the
Bonnie file system benchmark [1]. We changed the original
source code such that we could derive more information
concerning the overhead of our solution. The simple design
and easy handling of Bonnie makes it a suitable tool for
testing I/O performance. It performs, among others, the
following operations on a number of file of desired size: it

103



reads and writes the random content of each character of
the file separately, it reads and writes each block of the file,
and it concurrently accesses arbitrary blocks in the file.

The first two tests access a number of data files sequen-
tially. Such a scenario is rather unlikely in practice but it is
able to give an idea of the maximal performance of the I/O
subsystem. More suited to model real world scenarios is
the last test, because we have to access arbitrary blocks in
some files. We set the overall file size to 4 GB (4 times the
size of the main memory) to reduce caching effects. The
size of the extents was fixed to 1 MB.

To derive the overhead of our approach we compare our
approach to the performance of a plain disk (labeled with
the device name, e.g. SDA). More specific, we investigate
the influence of each component of our solution to the over-
all throughput. For that we distinguish the following cases:

1. Clean System (C): Nothing is known in advance.

2. Transfer (T): All extents exist in the database and have
only to be transferred to the driver.

3. Driver (D): The driver has all information locally and
does only perform the mapping of addresses.

The number in parentheses behind the letters C,T,D in the
charts axes is equivalent to the number of physical volumes
belonging to the corresponding storage pool. If not men-
tioned otherwise, the storage pool consists of a single phys-
ical volume.

Throughout the experiments the CPU usage for our ap-
proach was indistinguishable from the CPU usage when ac-
cessing the plain disk. Due to space limitations the corre-
sponding figures are omitted.

3.1. Impact of Extent Requests

Figure 2 shows the throughput for the different settings
when each character is written separately. Note, that we
only get an overhead when the extent is accessed for the
first time. Therefore, the induced costs are credited to many
data accesses and their effect becomes marginal. The dif-
ferences are mostly due to cache effects.

The situation is very different when it comes to block-
wise accesses. Here, the fraction of block accesses which
induce overhead is much higher. Figure 3 shows the perfor-
mance not only for the different settings but also for vary-
ing sizes of corresponding storage pools. Surprisingly, we
lose roughly 40% when using only one disk. The reason for
that lies mostly in the special sequential access pattern. The
achieved high throughput could only be gained because the
layout of the data blocks on disk enables a sweep of the
disk head, minimizing the head movements. Modern file
systems take that into account and adapt their data layout
accordingly. But we destroy the careful layout because we

SDA Clean Transfer Driver
Access Method

12000

12100

12200

12300

12400

12500

12600

12700

12800

12900

13000

kB
yt

e 
pe

r 
se

co
nd

I/O Throughput
putc with cache

Figure 2. Comparison of the sequential out-
put per character.

access the data in extents instead of data blocks. When al-
locating an extent the metadata server returns the first free
position on the disk that is big enough to host the extent.
Therefore, a sequential access of the file system results in
higher movement of the disk head and only the sustained
throughput of a disk could be achieved.

SDA C (1)C (2)C (3) T (1)T (2)T (3) D (1)D (2)D (3)
Access Method

0

20

40

60

80

100

120

kB
yt

e 
pe

r 
se

co
nd

I/O Throughput
write with cache

Figure 3. Comparison of the sequential out-
put per block.

Surprisingly, this effect is compensated by parallel ac-
cesses when feeding the virtual device from more than one
disk. Due to the fact that the operating system issues the
write requests to the main memory and returns immedi-
ately, we achieve parallelism and get roughly the sustained
performance of two disks. We could top the performance
significantly, even if the access pattern does not allow for
much parallelism. This indicates that the overhead induced
by the driver alone is not a limiting factor. Only a clean sys-

104



tem with many extent allocations is not able to use many
disks to increase the performance compared to a single
disk. But in a real-world application a data block is ac-
cessed many times and the overhead occurs only once.

3.2. Block Read Performance

SDA 1 Disk 2 Disks 3 Disks 4 Disks 5 Disks
Access Method

0

10000

20000

30000

40000

50000

60000

70000

kB
yt

e 
pe

r 
se

co
nd

I/O Throughput
Read

Figure 4. Comparison of performance of
block accesses.

The read access is different from a write because it has to
wait until the data is delivered from the disk. This gives the
operating system enough time to rearrange a larger number
of data accesses and, hence, accesses the disk in a sweep-
ing manner. Figure 4 gives evidence for that. We lose only
about 9% compared to the performance of a plain disk.
As noted above the access pattern allows little parallelism.
Hence, the increasing of the number of disks has only a
small impact on the overall performance.

3.3. Random Seeks

To get the number of random seeks per second Bon-
nie creates 3 threads performing the data requests. It is
our opinion that this test is closest to practice because on
a storage server there are different application generating
rather unpredictable block accesses. Figure 5 compares the
number of seeks per second for all approaches. Again, the
overhead induced by the V:Drive solution is too small to
measure once the extents are allocated.

Note, that the impact of more disks decreases the more
disk participate in the storage pool. This is due to the fact
that the number of scheduled requests stays constant. That
means, that the likelihood of parallel accesses to all disks
decreases with the number of disks. If we would access the
storage pool with more virtual devices the scaling would be
much better.

SDA 1 Disk 2 Disks 3 Disks 4 Disks 5 Disks
Access Method

0

20

40

60

80

100

120

140

se
ek

s 
pe

r 
se

co
nd

Random Access

Figure 5. Comparison of the performed num-
ber of seeks per second.

4. Conclusion

In this paper we presented a virtualization environment
that is based on the randomized Share-strategy. The shown
results give evidence that such an approach is not only
feasible but also efficient. Especially the performance of
random seeks to files via Bonnie hints that V:Drive scales
nicely with a growing storage network.

References

[1] T. Bray. Bonnie source code. http://www.textuality.com.
[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact,

Adaptive Placement Schemes for Non-Uniform Distribution
Requirements. In Proceedings of the 14th ACM SPAA Con-
ference, 2002.

[3] T. Cortes and J. Labarta. Extending Heterogeneity to RAID
level 5. In Proceedings of the USENIX Annual Technical
Conference, 2001.

[4] R. J. Honicky and E. L. Miller. A Fast Algorithm for On-
line Placement and Reorganization of Replicated Data. In
Proceedings of the 17th IPDPS Conference, 2003.

[5] R. J. Honicky and E. L. Miller. Replication Under Scalable
Hashing: A Family of Algorithms for Scalable Decentralized
Data Distribution. In Proceedings of the 18th IPDPS Confer-
ence, 2004.

[6] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In In Proceeding of the 29th ACM STOC
Conference, pages 654–663, 1997.

[7] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Re-
dundant Arrays of Inexpensive Disks (RAID). In Proceed-
ings of the 1988 ACM Conference on Management of Data
(SIGMOD), 1988.

[8] The Storage Networking Industry Association (SNIA). Stor-
age Virtualization I: What, Why, Where and How.

105


