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Abstract

Storage management costs continue to increase despite
the decrease in hardware costs. We propose a system to
reduce storage maintenance costs by reducing the amount
of data backed up and reclaiming disk space using vari-
ous methods (e.g., transparently compress old files). Our
system also provides a rich set of policies. This allows ad-
ministrators and users to select the appropriate methods
for reclaiming space. Our performance evaluation shows
that the overheads under normal use are negligible. We re-
port space savings on modern systems ranging from 25% to
76%, which result in extending storage lifetimes by 72%.

1. Introduction

Despite seemingly endless increases in the amount of
storage and decreasing hardware costs, managing storage
is still expensive. Furthermore, backing up more data
takes more time and uses more storage bandwidth—thus
adversely affecting performance. Users continue to fill in-
creasingly larger disks. In 1991, Baker reported that the
size of large files had increased by ten times since the 1985
BSD study [1, 8]. In 2000, Roselli reported that large files
were getting ten times larger than Baker reported [9]. Our
recent studies show that just merely by 2003, large files are
ten times larger than Roselli reported.

Today, management costs are five to ten times the cost of
underlying hardware and are actually increasing as a pro-
portion of cost because each administrator can only manage
a limited amount of storage [4, 7]. We believe that reduc-
ing the rate of consumption of storage is the best solution
to this problem. Independent studies [10] as well as ours
indicate that significant savings are possible.

To improve storage management via efficient use of
storage, we designed the Elastic Quota System (Equota).

Elastic quotas enter users into a contract with the system:
users can exceed their quota while space is available, under
the condition that the system does not provide as rigid as-
surances about the file’s safety. Users or applications may
designate some files as elastic. Non-elastic (or persistent)
files maintain existing semantics. Elastic quotas create a hi-
erarchy of data’s importance: the most important data will
be backed up frequently; some data may be compressed
and other data can be compressed in a lossy manner; and
some files may not be backed up at all. Finally, if the sys-
tem is running short on space, the elastic files may even be
removed. Users and administrators can configure flexible
policies to designate which files belong to which part of
the hierarchy. Elastic quotas introduce little overhead for
normal operations and demonstrate that through this new
disk usage model, significant space savings are possible.

2. Motivational study

Storage needs are increasing—often as quickly as larger
storage technologies are produced. Moreover, each up-
grade is costly and carries with it high fixed costs [4]. We
conducted a study to quantify this growth, with an eye to-
ward reducing this rate of growth.

We identified four classes of files, three of which can
reduce the growth rate and also the amount of data to be
backed up. Similar classifications have been used previ-
ously [6] to reduce the amount of data to be backed up.
First, there are files that cannot be considered for reduc-
ing growth. These files are important to users and should
be backed up frequently, say daily. Second, studies indi-
cate that 82–85% of storage is consumed by files that have
not been accessed in more than a month [2]. Our studies
confirm this trend: 89.1% of files or 90.4% of storage has
not been accessed in the past month. These files can be
compressed to recover space. They need not be backed up
with the same frequency as the first class of files as least-
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Figure 1. Space consumed by different
classes. Actual amounts appear to the right
of the bars, with the total size on top.

recently-used files are unlikely to change in the near fu-
ture. Third, multimedia files such as JPEG or MP3 can be
re-encoded with lower quality. This method carries some
risk because not all of the original data is preserved, but the
data is still available and useful. These files can be backed
up less frequently than other files. Fourth, previous stud-
ies show that over 20% of all files—representing over half
of the storage—are regenerable [10]. These files need not
be backed up. Moreover, these files can be removed when
space runs short.

To determine what savings are possible given the current
usage of disk space, we conducted a study of four sites, to
which we had complete access. These sites include a total
of 3,898 users, over 9 million files, and 735.8GB of data
dating back 15 years: (A) a small software development
company with 100 programmers, management, sales, mar-
keting, and administrative users with data from 1992–2003;
(B) an academic department with 3,581 users, mostly stu-
dents, using data from shared file servers, collected over 15
years; (C) a research group with 177 users and data from
2000–2003; and (D) a group of 40 cooperative users with
personal Web sites and data from 2000–2003.

Each of these sites has experienced real costs associated
with storage: A underwent several major storage upgrades
in that period; B continuously upgrades several file servers
every six months; the statistics for C were obtained from a
file server that was recently upgraded; and D has recently
installed quotas to rein in disk usage.

Figure 1 summarizes our study, starting with the top bar.
We considered a transparent compression policy on all un-
compressed files that have not been accessed in 90 days.
We do not include already compressed data (e.g., .gz),
compressed media (e.g., MP3 or JPEG), or files that are
only one block long. In this situation, we save between
4.6% from group B to 51 % from group C. We yield large

savings on group C: it has many .c files that compress
well. Group B contains a large number of active users, so
the percentage of files that were used in the past 90 days
is less than that in the other sites. The next bar down (top
hatched) is the savings from lossy compression of still im-
ages, videos, and sound files. The results varied from a
savings of 2.5% for group A to a savings of 35% for group
D. Groups B and D contain a large number of personal
.mp3 and .avi files. As media files grow in popularity
and size, so will the savings from a lossy compression pol-
icy. The next bar down represents space consumed by re-
generable files, such as .o files (with corresponding .c’s)
and ˜ files, respectively. This varied between 1.7% for
group B to 40.5% for group A. This represents the amount
of data that need not be backed up, or can be removed.
Group A had large temporary backup tar files that were no
longer needed. The amount of storage that cannot be re-
duced through these policies is the dark bar at the bottom.
Overall, using the three space reclamation methods, we can
save between 25% to 76.5% of the total disk space.

To verify if applying the aforementioned space recla-
mation methods would reduce the rate of disk space con-
sumption, we correlated the average savings we obtained
in the above environments with the SEER [5] and Roselli
[9] traces. We require filename and path information, since
our space reclamation methods depend on file types, which
are highly correlated with names [3]. We evaluated sev-
eral other traces, but only the combination of SEER and
Roselli’s traces provides us with the information we re-
quired. The SEER traces have pathname information but do
not have file size information. Roselli’s traces do not con-
tain any file name information, but have the file size infor-
mation. We used the size information obtained by Roselli
to extrapolate the SEER growth rates. The Roselli traces
were taken around the same time of the SEER traces, and
therefore give us a good estimate of the average file size on
a system at the time. At the rate of growth exhibited in the
traces, the hard drives in the machines would need to be
upgraded after 11.14 months. We observed that our poli-
cies extended the disks’ lifetime to 19.2 months. The disk
space growth rates were reduced by 52%. Based on these
results, we have concluded that our policies offer promising
storage management cost-reduction techniques.

3. Design

Our two primary design goals were to allow for versatile
and efficient elastic quota policy management. To achieve
versatility we designed a flexible policy configuration lan-
guage for use by administrators and users. To achieve effi-
ciency we designed the system to run as a kernel file system
with a database, which associates user IDs, file names, and
inode numbers. Our present implementation marks a file as
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Figure 2. Elastic Quota Architecture

elastic using a single inode bit. A more complex hierarchy
could be created using extended attributes.

Architecture Figure 2 shows the overall architecture of
our system. There are four components in our system: (1)
EQFS is a stackable file system that is mounted on top of
another file system such as Ext3 [13]. EQFS includes a
component (Edquot) that indirectly manages the kernel’s
native quota accounting. EQFS also sends messages to a
user space component, Rubberd. (2) Berkeley DB (BDB)
databases record information about elastic files [11]. We
have two types of databases. First, for each user we main-
tain a database that maps inode numbers of elastic files
to their names, allowing us to easily locate and enumer-
ate each user’s elastic files. The second type of database
records an abuse factor for each user denoting how “good”
or “bad” a given user has been with respect to historical
utilization of disk space. (3) Rubberd is a user-level dae-
mon that contains two threads. The database management
thread is responsible for updating the BDB databases. The
policy thread periodically executes cleaning policies. (4)
Elastic Quota Utilities are enhanced quota utilities that
maintain the BDB databases and control both persistent and
elastic quotas.

System Operation EQFS intercepts file system opera-
tions, performs related elastic quota operations, and then
passes the operation to the lower file system (e.g., Ext2).
EQFS also intercepts the quota management system call
and inserts its own set of quota management operations,
edquot. Quota operations are intercepted in reverse (e.g.,
from Ext2 to the VFS), because only the native disk-based
file system knows when an operation has resulted in a
change in the consumption of inodes or disk blocks.

Each user on our system has two UIDs: one that ac-
counts for persistent usage and another that accounts for

elastic usage. The latter, called the shadow UID, is simply
the ones-complement of the former. When an Edquot op-
eration is called, Edquot determines if it was for an elastic
or a persistent file, and informs dquot to account for the
changed resource (inode or disk block) for either the UID
or shadow UID. This allows us to use the existing quota
infrastructure and utilities to account for elastic usage.

EQFS communicates information about creation, dele-
tion, renames, hard links, and ownership changes of elas-
tic files to Rubberd’s database management thread over a
netlink socket. Rubberd records this information in the
BDB databases. Rubberd also records historical abuse fac-
tors for each user periodically, denoting the user’s elastic
space utilization over a period of time.

Elasticity Modes EQFS can determine a file’s elasticity
in five ways. (1) Users can explicitly toggle the file’s elas-
ticity, allowing them to control elasticity on a per file basis.
(2) Users can toggle the elastic bit on a directory inode.
Newly created files or sub-directories inherit the elastic bit.
(3) Users can tell EQFS to create all new files elastically
(or not). (4) Users can tell EQFS which newly-created files
should be elastic by their extension. (5) Developers can
mark files as elastic using two new flags we added to the
open and creat system calls. These flags tell EQFS to
create the new file as elastic or persistent.

4. Elastic quota policies

The core of the elastic quota system is its handling of
space reclamation policies. File system management in-
volves two parties: the running system and the people (ad-
ministrators and users). To the system, file system recla-
mation must be efficient so as not to disturb normal op-
erations. To the people involved, file system reclamation
policies must consider three factors: fairness, convenience,
and gaming. These three factors are important especially
in light of efficiency as some policies can be executed more
efficiently than others. We describe these three factors next.

Fairness Fairness is hard to quantify precisely. It is often
perceived by the individual users as how they personally
feel that the system and the administrators treat them. Nev-
ertheless, it is important to provide a number of policies
that could be tailored to the site’s own needs. For example,
some users might consider a largest-file-first compression
or removal policy unfair because recently-created files may
not remain on the system long enough to be used. For these
reasons, we also provide policies that are based on individ-
ual users’ disk space usage: users that consume more disk
space over longer periods of time are considered the worst
offenders. Once the worst offenders are determined and the
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amount of disk space to clean from the users is calculated,
the system must decide which specific files should be re-
claimed from that user. Basic policies allow for time-based
or size-based policies for each user. For the utmost in flex-
ibility, users are allowed to define their own ordered list of
files to be processed first.

Convenience For a system to be successful, it should be
easy to use and simple to understand. Users should be able
to find out how much disk space they are consuming in per-
sistent and elastic files and which of their elastic files will
be removed first. Administrators should be able to config-
ure new policies easily. The algorithms used to define a
worst offender should be simple and easy to understand.
For example considering the current total elastic usage is
simple and easy to understand. A more complex and fair
algorithm could count the elastic space usage over time as
a weighted average, although it might be more difficult for
users to understand.

Gaming Gaming is defined as the ability of individual
users to circumvent the system and prevent their files from
being processed first. Good policies should be resistant
to gaming. For example, a global LRU policy that com-
presses older files could be circumvented simply by reading
those files. Policies that are difficult to circumvent include
a per-user worst-offender policy. Regardless of the file’s
attributes, a user still owns the same total amount of data.
Such policies work well on systems where it is expected
that users will try to exploit the system.

4.1. Rubberd configuration files

When Rubberd has to reclaim space, it first determines
how much space it should reclaim—the goal. The configu-
ration file defines multiple policies, one per line. Rubberd
then applies each policy in order until the goal is reached
or no more policies can be applied. Each policy in this file
has four parameters. (1) type defines what kind of policy to
use and can have one of three values: global for a global
policy, user for a per-user policy, and user profile
for a per-user policy that first considers the user’s own per-
sonal policy file. (2) method defines how space should be
reclaimed. Our prototype currently defines two policies:
gzip compresses files and rm removes them. This al-
lows administrators to define a system policy that first com-
presses files and then removes them if necessary. A policy
using mv and tar could be used together as an HSM sys-
tem, archiving and migrating files to slower media at clean-
ing time. (3) sort defines the order of files being reclaimed.
We define several keys: size (in disk blocks) for sorting
by largest file first, mtime for sorting by oldest modifica-
tion time first, and similarly for ctime and atime. (4) fil-

ter is an optional list of file name filters to apply the policy
to. If not specified, the policy applies to all files. If users
define their own policy files and Rubberd cannot reclaim
enough space, then Rubberd continues to reclaim space as
defined in the system-wide policy file. HSM systems oper-
ate similarly, however, at a system-wide level [6].

4.2. Abuse factors

When Rubberd reclaims disk space, it must provide a
fair mechanism to distribute the amount of reclaimed space
among users. To decide how much disk space to reclaim
from each user, Rubberd computes an abuse factor (AF)
for all users. Rubberd then distributes the amount of space
to reclaim from each user proportionally to their AF. We
define two types of AF calculations: current usage and
historical usage. Current usage can be calculated in three
ways. First, Equota can consider the total elastic usage (in
disk blocks) the user consumes. Second, it can consider
the total elastic usage minus the user’s available persistent
space. Third, Equota can consider the total amount of space
consumed by the user (elastic and persistent). These three
modes give a system administrator enough flexibility to cal-
culate the abuse fairly given any group of users (we also
have modes based on a percentage of quota). Historical
usage can be calculated either as a linear or as an exponen-
tial average of a user’s disk consumption over a period of
time (using the same metrics as current usage). The linear
method calculates a user’s abuse factor as the linear aver-
age over time, whereas the exponential method calculates
the user’s abuse with an exponentially decaying average.

4.3. Cleaning operation

To reclaim elastic space, Rubberd periodically wakes up
and performs a statfs to determine if the high watermark
has been reached. If so, Rubberd spawns a new thread to
perform the reclamation. The thread reads the global pol-
icy file and applies each policy sequentially, until the low
watermark is met or all policy entries are applied.

The application of each policy proceeds in three phases:
abuse calculation, candidate selection, and application. For
user policies, Rubberd retrieves the abuse factor of each
user and then determines the number of blocks to clean
from each user proportionally to the abuse factor. For
global policies this step is skipped since all files are consid-
ered without regard to the owner’s abuse factor. Rubberd
performs the candidate selection and application phases
only once for global policies. For user policies these two
phases are performed once for each user. Rubberd then gets
the attributes (size and times) for each file (EQFS allows
Rubberd to get these attributes more efficiently by inode
number rather than by name as required by stat). Rub-
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berd then sorts the candidates based on the policy (e.g.,
largest or oldest files first). In the application phase, we
reclaim disk space (e.g., compress the file) from the sorted
candidates. Cleaning terminates once enough space has
been reclaimed.

5. Related work

Elastic quotas are complementary to HSM systems.
HSM systems provide disk backup as well as ways to re-
claim disk space by moving less-frequently accessed files
to a slower disk or tape. These systems then provide a way
to access files stored on the slower media, ranging from file
search software to replacing the migrated file with a link to
its new location. Several HSM systems are in use today in-
cluding UniTree, SGI DMF (Data Migration Facility), the
SmartStor Infinet system, IBM Storage Management, Veri-
tas NetBackup Storage Migrator, and parts of IBM OS/400.
HP AutoRaid migrates data blocks using policies based on
access frequency [12]. Wilkes et. al. implemented this at
the block level, and suggested that per-file policies in the
file system might allow for more powerful policies; how-
ever, they claim that it is difficult to provide an HSM at the
file system level because there are too many different file
system implementations deployed. We believe that using
stackable file systems can mitigate this concern, as they are
relatively portable [13]. In addition, HSMs typically do not
take disk space usage per user over time into consideration,
and users are not given enough flexibility in choosing stor-
age control policies. We believe that integrating user- and
application-specific knowledge into an HSM system would
reduce overall storage management costs significantly.

6. Conclusions

The main contribution of this paper is in the exploration
and evaluation of various elastic quota policies. These poli-
cies allow administrators to reduce the overall amount of
storage consumed and to control what files are backed up
when, thereby reducing overall backup and storage costs.
Our system includes many features that allow both site ad-
ministrators and users to tailor their elastic quota policies
to their needs. Through the concept of an abuse factor we
have introduced historical use into quota systems. Finally,
our work provides an extensible framework for new or cus-
tom policies to be added.

We evaluated our Linux prototype extensively. Per-
formance overheads are small and acceptable for day-
to-day use. We observed an overhead of 1.5% when
compiling gcc. For a worst-case benchmark, cre-
ation and deletion of empty files, our overhead is
5.3% without database operations (a mode that is use-
ful when recursive scans may already be performed by

backup software) and as much as 89.9% with optional
database operations. A full version of this paper, in-
cluding a more detailed design and a performance eval-
uation, is available at www.fsl.cs.sunysb.edu/
docs/equota-policy/policy.pdf.
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