
 100

A DESIGN OF METADATA SERVER CLUSTER IN LARGE
DISTRIBUTED OBJECT-BASED STORAGE

Jie Yan, Yao-Long Zhu, Hui Xiong, Renuga Kanagavelu, Feng Zhou, So LihWeon
Data Storage Institute, DSI building, 5 Engineering Drive 1, Singapore 117608

{Yan_jie, Zhu_Yaolong}@dsi.a-star.edu.sg
tel +65-68748085

Abstract
In large distributed Object-based Storage Systems, the performance, availability and
scalability of the Metadata Server (MDS) cluster are critical. Traditional MDS cluster
suffers from frequent metadata access and metadata movement within the cluster. In this
paper, we present a new method called Hashing Partition (HAP) for MDS cluster design
to avoid these overheads. We also demonstrate a design using HAP to achieve good
performance of MDS cluster load balancing, failover and scalability.

1. Introduction
Unlike traditional file storage systems with
metadata and data managed by the same
machine and stored on the same device [1],
the object-based storage system separates
the data and metadata management. An
Object-based Storage Device (OSD) [2]
cluster manages low-level storage tasks such
as object-to-block mapping and request
scheduling, and presents an object access
interface instead of block-level interface [3].
A separate cluster of MDS manages
metadata and file-to-object mapping, as
shown in Figure 1. The goal of such storage
system with specialized metadata
management is to efficiently manage
metadata and improve the overall system
performance. In this paper, we mainly
address performance, availability and
scalability issues for the design of MDS
cluster in Object-based Storage Systems.

Two key concerns about MDS cluster are
the request load of metadata and load
balancing within the cluster. In our
preliminary OSD prototype, which adopts
the traditional directory sub-tree to manage
metadata, we find that more than 70 percent
of all file system access requests are for
metadata when using Postmark [4] to access
0.5k files, as shown in Figure 2. Although

Application Server Cluster

Object-based Storage Device Cluster

Storage Network
(Fibre Channel) MDS

Cluster

Web
Server

Database
Server

E-mail
Server

File
Server

Data

Metadata

Security

VoD
Server

Figure 1. Object-based Storage System

Figure 2 shows the data request percent (Dreq%)
and the metadata request percent (Mreq%) of the
total requests. This test is based on our OSD
prototype (one client, one MDS and one OSD)
connected by Fibre Channel, using Postmark
(1000 files, 10 subdirectories, random access,
500 transactions).

 101

the size of the metadata is generally small compared to the overall storage capacity, the
traffic volume of such metadata access degrades the system performance. The large
number of metadata requests can be attributed to the use of directory sub-tree metadata
management.

Apart from metadata requests, an uneven load distribution within a MDS cluster would
also raise severe bottleneck. Based on traditional cluster architecture, the performance of
the load balancing, failover and scalability in the MDS cluster is limited, because most of
these operations lead to the inevitable massive metadata movement within cluster. The
Lazy Hybrid metadata management method [5] presented a hashing metadata
management with the hierarchical directory support, which dramatically reduced the total
number of metadata requests, but Lazy Hybrid did not deal with reducing metadata
movement between MDSs for load balancing, failover and scalability.

This paper presents the new method called Hashing Partition (HAP) for MDS cluster
design. HAP herein also adopts the hashing method, but focuses on reducing the cross
MDS metadata movement in a clustered design, in order to achieve high performance of
load balancing, failover and scalability.

The rest of the paper is organized as follows. The next section details the design of HAP
and section 3 demonstrates our solutions of MDS Cluster load balancing, failover and
scalability. Section 4 discusses MDS Cluster Rebuild. Finally, the conclusion of the paper
is drawn in section 5.

2. Hashing Partition
Hashing Partition (HAP) provides a total solution for the file hashing, metadata
partitioning, and metadata storage. There are three logical modules in the HAP: file

Pathname: /Dir1/Dir2/filename

Mapping Manager

Metadata Server Cluster

18

Logical Partitions

Pathname Hashing
Result (i)
Pathname
Metadata

&
etc

Pathname Hashing
Result (i+1)
Pathname
Metadata

&
etc

1

2

3

4

Figure 4. Metadata Access Pattern
①.Filename hashing, ②.Selecting MDS through
Mapping Manager, ③ .Accessing metadata by
pathname hashing result, ④.Returning metadata
to application server.

Application Servers

Mapping Manager
File Hashing Manager

Application

Application Servers

Mapping Manager
File Hashing Manager

Application

Metadata Server Cluster

Metadata Server Backend

Logical Partition Manager

Common Storage Space

H
ashing Partition

Figure 3. Hashing Partition

 102

hashing manager, mapping manager, and logical partition manager, as shown in Figure 3.

In addition, HAP employs an independent common storage space for all MDSs to store
metadata, and this space is divided into multiple logical partitions. Each logical partition
contains part of global metadata table. Each MDS can mount and then exclusively access
logical partitions allocated to it. Thus as a whole, MDS cluster can access a unique global
metadata table.

The procedure of metadata access is described as follows. Firstly, file hashing manager
hashes a filename to an integer, which can be mapped to the partition that stores the
metadata of the file. Secondly, mapping manager can figure out the identity number of
MDS that currently mounts that partition. Then client can send metadata request with the
hash value of pathname to the MDS. Finally, logical partition manager located in MDS
side accesses metadata on the logical partition in the common storage space. Figure 4
describes this efficient metadata access procedure. Normally, only a single message to a
single metadata server is required to access a file’s metadata.

2.1. File Hashing Manager
File hashing manager performs two kinds of hashing: filename hashing for partitioning
metadata in MDS cluster, and pathname hashing for the metadata allocation in MDS. To
access metadata of a file in MDS cluster, client needs to know two facts: which MDS
manages the metadata and where the metadata is located in the logical partition. Filename
hashing answers the first question and pathname hashing solves the second one. For
example, if the client needs to access the file, “/a/b/filec”, client uses the hashing result of
“filec” to select MDS that manages the metadata. Then instead of accessing directory “a”
and “b” to know where is the metadata of “filec”, a hash result of “/a/b/filec”, directly
indicates where to retrieve the metadata.

But the filename hashing may introduce a potential bottleneck when a large parallel
access to different files with the same name in different directories. Fortunately, the
different hash values of various popular filenames, such as readme and makefile, make all
these “hot points” distributed among MDS cluster and reduce the possibility of the
potential bottleneck. In addition, even if certain MDS is over-loaded, our dynamic load
balancing policy (section 3.1) can effectively handle this scenario and shift the “hot
points” from overloaded MDS to the less-loaded MDSs.

2.2. Logical Partition Manager
Logical partition manager manages all logical partitions in the common storage space. It
performs many logical partition management tasks, e.g. mount/un-mount, backup and
Journal recovery. For instance, logical partition manager can periodically backup logical
partitions to a remote backup server.

2.3. Mapping Manager
Mapping manager performs two kinds of mapping tasks: hashing result to logical
partition mapping and logical partition to MDS mapping. Equation 1 describes these two
mapping functions.

 103

{ } { }
)0(

},0{;,0)(;,0
),,(

))((

>≥≥
∈∈∈

=
=

MnPnHn
MnMDSiHnfilenameHPnPi

MWiPWiPiMLMDSi
filenameHfPi

 (1)

Where, H represents a filename hashing function; f stands for the mapping function that
transfers hashing result to partition number (Pi); ML represents the function that figures
out MDS number (MDSi) from partition number and related parameters (PW and MW
will be explained in section 3.1); Pn is the total number of partitions; Hn is the maximum
hashing value and Mn is the total number of MDSs.

When PW and MW are set, mapping
manager simplifies the mapping function
ML to a mapping table MLT, which
describes the current mapping between
MDS and logical partition. It is noted that
one MDS can mount multiple partitions, but
one partition can only be mounted to one
MDS. To access metadata, mapping
manager can indicate the logical partition that stores the metadata of a file based on the
hash result of the filename. Then through MLT, mapping manager knows which MDS
mounts that partition and manages the metadata of the file. Finally the client contacts the
selected metadata server to obtain the file’s metadata, file-to-object mapping and security
information. Table 1 gives an example of MLT. Based on this table, in order to access
metadata on logical partition 18, client needs to send request to MDS1.

3. Load Balancing, Failover and Scalability
3.1. MDS Cluster Load Balancing Design
We propose a simple Dynamic Weight algorithm to dynamically balance the load of
MDSs. HAP assigns a MDS Weight (MW) to each MDS according to its CPU power,
memory size and bandwidth, and uses a Partition Weight (PW) to reflect the access
frequency of each partition. MW is a stable value if the hardware configuration of the
MDS cluster does not change, and PW can be dynamically adjusted according to the
access rate and pattern of partitions. In order to balance the load between MDSs, mapping
manager allocates partitions to MDS based on Equation 2.

∑
∑∑

=

== Mn

a

Pn

a

MWa

PWa
MWi

PWi

0

0 (2)

Where, ∑PWi presents the sum of PW of all partitions mounted by MDSi; Pn stands for
the total number of partitions; Mn presents the total number of MDSs.

In addition, each MDS needs to maintain load information about itself and all partitions
mounted on it, and periodically uses Equation 3 to calculate new values.

Table 1. Example of MLT
Logical partition

Number
MDS

ID
MDS Weight

0~15 0 300
16~31 1 300
32~47 2 300
48~63 3 300

 104

%)1(%)()1(αα −×+×=+ MDSCURLOADiMDSLOADiMDSLOAD (3)
%)1(%)()1(ββ −×+×=+ PCURLOADiPLOADiPLOAD

Where, MDSCURLOAD is the current load of the MDS; PCURLOAD is the current load
of the logical partition; MDSLOAD(i) represents the load status of a MDS at time i;
PLOAD(i) stands for the load status of a logical partition at time i; αandβare constant
used to balance the effects of old value and new value.

However, MDSs don’t report their load information to the master node, e.g. one
particular MDS, until a MDS alarms in its overloaded situation, such as the MDSLOAD
exceeding the preset maximum load of the MDS. After receiving load information from
all MDSs, the master node sets the PW using new PLOAD values. Then according to new
PW and Equation 2, HAP shifts the control of certain partitions from the over-loaded
MDS to some less-loaded MDSs and modifies MLT accordingly. This adjustment does
not involve any physical metadata movement between MDSs.

3.2. MDS Cluster Failover Design
Typically, a conventional failover design
adopts a standby server to take over all
services of the failed server. In our design,
the failover strategy relies on the clustered
approach. In the case of a MDS failure,
mapping manager assigns other MDSs to
take over the work of the failed MDS
based on Equation 2. Then the logical
partition manager allocates the logical
partitions managed by the failed MDS to
its successors, as shown in Figure 5. So
application servers can still access
metadata on the same logical partition in
the common storage space through the
successors.

3.3. MDS Cluster Scalability Design
HAP significantly simplifies the procedure to scale the metadata servers. If the current
MDS cluster cannot handle metadata request effectively due to the heavy load, new
MDSs can be dynamically set up to release the overhead of others. HAP method allows
the addition of MDS by adjusting MWs and thus generating a new MLT based on ML.
This process doesn’t touch the mapping relationship between filename and logical
partition, because the number of logical partitions is unchanged. Following the new MLT,
logical partition manager un-mounts certain partitions from existing MDSs and mounts
them to the new MDS. This procedure also doesn’t introduce any physical metadata
movement within MDS cluster.

4. MDS Cluster Rebuild
Although HAP method can dramatically simplify the operation of MDS addition and
removal, HAP actually has a scalability limitation, called Scalability Capability. The

Common Storage Space

Metadata Server Cluster

Logical Partitions

Hashing Partition
Mapping Manager

2

1 3

4

Figure 5. MDS cluster failover procedure
① .Detecting the MDS failure, ② .Recalculating
MW and adjusting MLT, ③.Other MDSs take over
logical partitions of the failure one, ④ .Journal
recovery

 105

preset number of logical partitions limits Scalability Capability, since one partition can
only be mounted and accessed by one MDS at a time. For instance 64 logical partitions
can only support up to 64 MDSs without rebuild. In order to improve Scalability
Capability, we can add storage hardware to create new logical partitions and redistribute
metadata among the entire cluster. This metadata redistribution introduces multi-MDS
communication because the change in the number of logical partitions requires a new
mapping function f in Equation 1, and affects the metadata location of the existing files in
logical partitions. For example, after Scalability Capability is improved from 64 to 256,
the metadata of a file may need to move from logical partition 18 to logical partition 74.
The procedure that redistributes all metadata based on new mapping policy and improves
Scalability Capability, is called MDS Cluster Rebuild.

In order to reduce the response time of MDS cluster rebuild, HAP adopts Deferred
Update algorithm, which defers metadata movement and distributes its overhead. After
receiving the cluster rebuild request, HAP saves a copy of the mapping function f, creates
a new f based on the new number of logical partitions, and generates a new MLT. Then
logical partition manager mounts all logical partitions including both the old and new
according to the new MLT. After that, HAP responses immediately to the rebuild request
and changes MDS cluster to a rebuild mode. Thus the initial operation for this entire
process is very fast.

18

Logical Partitions

74

MDS Cluster

Metadata Asker
(MDS or Client)

Pathname: /a/b/filec

Metadata Asker
(MDS or Client)

Pathname: /a/b/filec

1

2

3

New

Old

Metadata
in local?

Where?

Metadata
in remote?

3 4

Y

Metadata
in local?

5 5 6

Metadata Request
From Client

From other MDS

N

N

Y
Y N

Op. A

Op. A
1.Computing old partition

number based on the old f
2.Finding the MDS that

mounting the old partition
based on the new MLT

3.Issuing a request to get
metadata from the MDS.

Op. A

5
6

4

Figure 6. MDS Cluster Rebuild
①.Sending request to MDS based on new mapping result, ②.Searching for metadata and making
judgment (the rectangle on the left shows the internal logic and Op. A is explained in the bottom
rectangle), ③ .Returning metadata and deleting it in local, ④ .Reporting Error, ⑤ .Returning
metadata, ⑥.Wrong filename

 106

During the rebuild, the behavior of the system is as if all the metadata had been moved to
the right logical partitions. Actually, HAP updates or moves the metadata upon the first
access. If a MDS receives a metadata request, and the metadata hasn’t been moved to the
logical partition that is mounted by it, the MDS needs to use the old mapping function f to
calculate the original logical partition number based on the filename. Then through the
new MLT, the MDS can find the MDS that currently mounts the original logical partition
and send a metadata request to it. So the MDS can retrieve the metadata and complete the
metadata movement. Figure 6 describes this procedure in detail. In addition, in order to
accelerate the metadata movement progress, HAP can also adopt an independent thread to
travel the metadata database and move the affected metadata only during the spare time
of system.

5. Conclusion
We present a new method of Hashing Partition to manage metadata server cluster in large
distributed object-based storage system. We use hashing method to avoid the numerous
metadata accesses, and use filename hashing policy to remove the overhead of multiple
MDS communication. Furthermore, based on the concept of logical partitions in the
common storage space, HAP method significantly simplifies the implementation of the
MDS cluster and provides efficient solutions for load balancing, failover and scalability.

The design described in this paper is part of our BrainStor project that targets to provide
the full object-based storage solution. Currently we are implementing the Hashing
Partition management for MDS Cluster in the BrainStor prototype. We also plan to
explore the application of BrainStor technologies in Grid storage.

References
[1] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. H. Rosenthal,
and F. D. Smith. “Andrew: A distributed personal computing environment”,
Communications of the ACM, 29(3):184–201, Mar. 1986.
[2] R. O. Weber. “Information technology—SCSI object-based storage device commands
(OSD)”, Technical Council Proposal Document T10/1355-D, Technical Committee T10,
Aug. 2003.
[3] Thomas M. Ruwart, “OSD: A Tutorial on Object Storage Devices”, 19th IEEE
Symposium on Mass Storage Systems and Technologies, University of Maryland,
Maryland, USA, April 2002.
[4] KATCHER, J. “Postmark: A new file system benchmark”, Tech. Rep. TR3022 (Oct.
1997). Network Appliance.
[5] Scott A. Brandt, Lan Xue, Ethan L. Miller, and Darrell D. E. Long. “Efficient
metadata management in large distributed file systems”, Proceedings of the 20th IEEE /
11th NASA Goddard Conference on Mass Storage Systems and Technologies, pages
290–298, April 2003.

