
 101

Quanta Data Storage: A New Storage Paradigm

Prabhanjan C. Gurumohan
Arizona State University

gpj@asu.edu

Sai S. B. Narasimhamurthy
Arizona State University

saib@asu.edu

Joseph Y. Hui
Arizona State University

jhui@asu.edu

Abstract

TCP layer and poor iSCSI implementations
have been identified as the main bottlenecks in
realizing high iSCSI performance. With the
addition of security mechanisms the throughput
achieved by the storage system using iSCSI is
further reduced. Along with the above mentioned
problems, we argue that the excessive processing
redundancy introduced by several protocol layers
and use of protocols designed for non-storage
specific requirements result in poor storage
network architectures. In order to overcome these
issues, we introduce a new storage paradigm in
which data is manipulated, encrypted and stored in
fixed block sizes called quanta. Each quanta is
manipulated by a single effective cross layer (ECL)
that includes security features, iSCSI
functionalities, direct data placement techniques
and data transport mechanisms. Further, the new
architecture emphasizes majority of burden of
computation for achieving security on the clients.

Qualitative description of the idea is presented.
Performance improvements observed during tests
of the idea are presented. Through emulation and
analysis we also show that the size of the quanta
must be equal to the minimum path MTU for
maximum throughput.

1. Introduction

IP has been accepted as a de-facto standard for
Internet applications. IP based networks also
provide relatively inexpensive and convenient
solution [5][13] for transportation of bulk data.
Considering these facts, transportation of storage
data on the IP network provides a cheap and easy
alternative to the SCSI and Fiber Channel based
networks. iSCSI [5] is the proposed protocol for
storage (block) data transport over IP networks.
Most effort has been concentrated on designing the
protocol over the existing TCP/IP protocol. Initial
versions of the implementation of this protocol are
available. Although the idea to develop these new
protocols over existing protocols was done to ease

the integration of iSCSI, it has resulted in over
layering and crowding of protocols stacks.

Stephen et. al [11] have presented the findings
of implementing an iSCSI based target on a
specialized hardware. Their work concentrated on
comparing the overall performance of various
network configurations using iSCSI protocol. The
performance results from their work indicate that
the iSCSI protocol can be severely limited by
implementation. They suspect this problem due to
inefficient handling of underlying network
properties and poor iSCSI implementation.

Y.Lu and D.Du [8] have examined different
storage protocols (viz, iSCSI, NFS,SMB) and have
analyzed their performance. The work shows that
iSCSI storage with Gigabit connection could have
performance very close to directly attached fiber
channel-arbitrated loop storage. From their study
they also show that iSCSI based file access
performance outperforms the NAS schemes on both
Windows and Linux platforms. However, they
point out that the advantage of iSCSI reduces as the
file size increases. The reasoning for this reduction
in performance has not been presented in this work.

Shuang-Yi Tang et. al [10] have also shown
that with addition of security features such as IPsec
below iSCSI and TCP/IP protocol stack leads to
high degradation in throughput. Further the idea of
storage security is not well severed by usage of
IPsec because it does not encrypt the data that will
be stored on the storage device. It only protects
from attacks between two communicating points.
Hence, using iSCSI over TCP/IP/IPsec leads to
high overhead and complex layering structure.
Further, use of IPsec leads to encryption and
decryption at both sever and client ends.

End system copies and TCP packet reassembly
form throughout bottlenecks for many applications
including iSCSI [1][2][3]. End system copies can
be eliminated by Direct Data Placement (DDP)
where the application entities are directly placed
into application buffers without system copies [1].
DDP packets have to be modified to suite the
existing TCP functions. This is enabled by a
Framing protocol for TCP [3]. Additional
extensions to the DDP protocol are provided by the
RDMA protocol, which operates over the DDP
protocol. The RDMA, DDP and the Framing

 102

protocol form the iWARP suite. This is the
proposed solution for end system copy issues [12].
The iWARP suite is also applicable for iSCSI [2].
The iWARP suite is proposed to operate between
iSCSI and TCP [12].

The introduction of iWARP leads to increased
overheads and redundancy. Two simple examples
of redundant functions at different layers are as
follows. First, the CRCs/checksums are computed
at the iSCSI layer, MPA or framing layer, and the
TCP layer. Second, sequencing information is
repeated in both iSCSI and transport layer.

Motivated to overcome these problems, we
propose the use of fixed block size data units called
quanta. These data units are chosen to be of size
512, 1024, 2048 or 4096 bytes. A quanta is
encrypted and formatted according to an Effective
Cross Layer (ECL) by the client wishing to write
data to a server and is stored as is on the storage
device. The effective cross layer combines the
functionalities of encryption, buffer management
for direct data placement, iSCSI formatting and
transport functions. The key used for encryption of
such a quanta is stored on a separate key server.
Any valid client can access the encrypted and
preformatted data from the server and decrypt it
using keys obtained from the key server. The client
does the encryption and decryption, checksum
calculation, and any other formatting. This lets the
target to be implemented with fewer functionalities
of ECL and used for only providing an access point
to the storage device.

 A facility called fast buffers (fbufs) was
introduced by Peter Druschel and Larry L. Peterson
[14]. It was an operating system facility
implemented for I/O buffer management and data
transfer across protection domain boundaries on
shared memory machines. Although, the main goal
of this idea was to provide high bandwidth to user
level processes, this was achieved by implementing
a new facility in the operating system. This is
unlike the ECL and quanta approach that achieves
the similar goal by reducing the overheads in the
protocol stacks. Further, ECL and quanta approach
are specifically designed to improve the
performance of the storage networks instead for the
general networks.

 David D. Clark and David L. Tennenhouse [15]
provide guidelines for designing of new generation
of protocols. Our protocol design efforts are in line
with two important guidelines presented in [15].
They are, the data manipulation costs are more
compared to transfer control operations and the
application data units are the natural pipelining
units.

 In section 2, we provide the architectural goals of
the cross layer design. Section 3 discusses the
encryption mechanism details. We present the ECL
details in section 4. Section 5 provides the test
results for the emulation of ECL using Hyperscsi.
Finally we present the conclusion in section 6.

2. Cross layer architectural goals

CLA (Cross Layer Architecture) enables the
combining of the features of the
SCSI/iSCSI/RDMA /DDP/Framing/TCP/IPsec into
a single layer called the ECL. This obviates
layering overheads and enables the ease of
operation of Storage Area Networks.

CLA has been designed with the following
architectural goals:

1. Minimize data handling and processing by

dividing data units into fixed size blocks
or quanta.

2. Provide security on the wire and on the

storage unit.

3. Provide the features of the iSCSI protocol.

4. Provide application level buffering by

incorporating the features of the DDP
protocol. (Direct Data Placement)

5. Provide the transport layer mechanisms.

3. Encryption Mechanism

In order to include a security mechanism as a
part of a single layer, ECL, a new security
mechanism is proposed. The new scheme for
storage security mainly deals with reducing the
high overheads of authentication and encryption.
This is done by avoiding encryption and decryption
of data on both client and server sides. The new
scheme does both encryption and decryption on the
client side. The new scheme includes several
techniques, which improves the efficiency of
encryption and decryption:

1. The data is stored in the encrypted form on
the server:

2. Encryption and Decryption is never

performed on the server and hence there is
no key management in the server.

 103

3. In addition to encryption, the computation
of parities, packetization, and error-
corrective information is done at the time
the file is stored and never recomputed
again.

4. The majority of the computation load for

providing security and error correction is
performed at the client end.

5. Authentication, key management is

decoupled from data security.

These requirements are met by implementing a
new security mechanism. The data to be stored is
encrypted by the client and preformatted. This data
unit is called the Encrypted Data Unit (EDU). The
EDU is stored on the servers as is. The EDU is
transported to be stored on servers using ECL
headers. The combination of EDUs and the ECL
headers are called quanta. The keys used to encrypt
the data are generated using AES encryption
algorithm. The keys belonging to a particular file is
stored in a file and encrypted. This file is stored in a
centralized key server. A valid client can access the
file on servers stored in the quanta form. The
clients fetch the keys from the key server and
perform decryption. Figure 1 shows the network
architecture that would be used to implement the
security mechanism.
 Several parameters that are used for read and
write operation, encryption, and decryption are
included in the ECL header. This is discussed in the
next section.

Figure 1. System Setup for data storage centric
network

4. Effective Cross Layer

A single layer satisfying the specified objectives
is defined as the ECL. Figure 2 shows the iWARP
stack for iSCSI along with the security layer, IPsec.
Figure 3 shows the corresponding ECL. In the
following paragraphs we identify several common

features in different layers. The necessary and
common functionalities are then retained and
incorporated into the ECL and the rest are
excluded. These functionalities are designed such
that they are scalable over a WAN.

4.1 . ISCSI functionalities of the ECL

iSCSI is an adaptation of SCSI for accessing
data over the Internet. Hence most of the SCSI
functionalities that are part of iSCSI are retained in
ECL [5]. Headers and data digests in iSCSI were
not inherited from SCSI. These were added for
error correction in the iSCSI protocol. Hence
header and the data digests are excluded from the
ECL. Instead, a single checksum for the entire
quanta traversing the channel are utilized.

4.2. Copy avoidance functionalities of the
ECL

Most of the iWARP functionalities are retained
in the ECL. Messages framed using MPA protocol
is obviated by defining a constant MTU in the
SAN. Further, the quanta size is always chosen less
than or equal to the minimum MTU.

Fig 2. iWARP suite for iSCSI

Fig 3. Effective Cross Layer

This obviates the necessity of fragmentation and
thus there is no need for markers. The minimum
MTU over a path between a source and the

 104

destination can be discovered, before any
transmission occurs.

The DDP protocol requires the tags or the
addresses of buffers at the destination. These tags
when available at the source enable direct data
placement. As a consequence the quanta do not
subject themselves to reassembly buffering and
kernel copies. Hence they are directly placed at the
appropriate SCSI buffers from the NIC.

4.3. Transport functionalities of the ECL

Sequencing [6] information is retained from the
iSCSI headers. Thus the sequencing information at
the TCP layer can be excluded. Congestion and
flow control [6] algorithms are implemented in
TCP and they are based on sliding windows [6].
The windows are based on sequence numbers. ECL
has sequencing information similar to TCP. Hence
congestion and flow control mechanisms similar to
that of TCP can be used.

Source and destination ports [6] identification is
due to a requirement of socket level de-
multiplexing. Instead direct data placement
provides buffer addressing information that can be
used to place the data directly into application
buffers. Thus direct data placement alleviates the
need for source and destination port information.

The data checksum is computed during the
encryption process. Therefore there is a need only
for a single quanta header checksum. Message
length information that is a part of UDP can be
excluded because it is also a part of the iSCSI
functionality.

4.4. Security considerations in ECL

The encryption should be done only when a
write or an update operation is done. During a read
operation, only decryption is required. These
operations are indicated in the iSCSI functionality.
Hence it is not necessary to add it into the ECL
separately. Authentication must be performed
before every transaction. Authentication is done by
the login mechanism. iSCSI login mechanism that
are retained can be employed for this purpose.

The final ECL header structure that combines
the features mentioned above is shown in figure 4.

5. Emulation of ECL by HYPERSCSI

In order to evaluate the performance
improvements with the use of ECL, tests were
conducted using Hyperscsi [7]. Hyperscsi was used
because it emulates a simple version of the ECL. In

the current form, Hyperscsi is equivalent to SCSI
packets placed directly over Ethernet that does not
involve copies, reassembly buffering, and
functionality redundancies of layers.

Fig 4. ECL header for WRITE operations

The test setup for ECL throughput
characterization consists of two Dell Power Edge-
Linux boxes (initiator and the target) with Pentium
866 MHz processors connected end to end through
a Gigabit Ethernet link (82546 Dual port GBE).
Linux Kernel 2.4.20-18.7 was used in the end
systems. Throughput was measured using the
bonnie++1.03 tool [16]. Tcpdump and Ethereal [17]
was used to see the packet dumps on the end
systems. iSCSI Reference 0.18 v10 [18] was used
for comparison with iSCSI on TCP. 40 GB
QUANTUM hard disks with ULTRA-160 SCSI
bus were used at the target. Figure 5 shows the
throughput snapshot tests indicating throughput
improvements with the ECL.

Several read operations were performed in three
different scenarios. First, read operations were
performed using only the SCSI protocol. Second
was performed using Hyperscsi and the third
repeated with UNH iSCSI v10. The results
represent an arithmetic mean of 10 trials for a fixed
MTU size of 16000. The read throughput achieved
using Hyperscsi was close to direct access,
whereas, the latest version of the UNH iSCSI code
achieves only 219.6 Mb/s as opposed to 358 Mb/s
and 363 Mb/s achieved by Hyperscsi and local disk
access respectively. The improvement of 63%
denotes the extent of betterment in throughput that
can be obtained by getting rid of system copies,

 105

reassembly buffering and multiplicity of
functionalities in the iWARP stack through the
ECL emulated by Hyperscsi.

Fig 5. Read performance through the ECL

Fig 6. Bulk read throughput results

 We next investigate the throughput characteristics
of the ECL for reads and writes and justify the
quantum data lengths equal to the path MTU.

The ECL needs to accommodate very large
windows when it is operating over a network with
large round trip times. The required changes are
made to the Hyperscsi code to accommodate
infinitely large windows. (Hyperscsi at present can
accommodate only 32 segments in a window
interval). 4K quanta are used for ECL.
Fragmentation of quantum is allowed for MTU
values less than 4K. For MTU values greater than
4K, each quantum is contained within a single
Ethernet packet along with the headers.

Figure 6 compares the iSCSI throughput vs. the
ECL throughput for reads for various possible
MTU sizes in the Gigabit Ethernet platform. The
read throughput shows a constant improvement of
about 63% in the favor of ECL.

Figure 7 compares the iSCSI throughput vs. the
ECL throughput for writes for various possible

MTU sizes in the Gigabit Ethernet platform. The
write throughput is less than the read throughput for
both the iSCSI and the ECL cases, since writes are
more expensive than reads. For large MTU sizes,
the ECL throughput approaches the iSCSI
throughput since we speculate that non-TCP/IP
overheads for large MTU values in an ECL
environment approach the TCP/IP overheads for
large MTU values in the TCP/IP environment.

Figure 8 shows the read throughput variations
for 4K quantum ECL. The throughput peaks at
MTU values equal to the quantum-sized blocks. We
allow for fragmentation in our tests for MTU sizes
less than the quantum sizes. For MTU sizes greater
than the quantum sizes, the throughput gradually
decays since the per packet non-TCP/IP overheads
begin to dominate. This is due to the Ethernet per
packet processing overheads. For MTU sizes less
than the quantum sizes, the fragmentation
overheads exceed the Ethernet per packet
overheads. The optimal values are thus reached for
MTU sizes almost equal to the quantum sizes. The
trend is also seen for writes as shown in figure 9.

An increase in quanta size increases the
throughput. The write throughput for 5K path MTU
and various quanta sizes are depicted in figure 10.

The tests conducted conclude the throughput
characteristics of the ECL and justifies the
Quantum size selections equal to MTU sizes.

6. Conclusions

 Existing iSCSI storage systems exhibit low
performance. Additional protocols have been
proposed for improving the performance. We
presented the argument that this would lead to
further decrease in performance. This is due to
excessive processing redundancy and several
protocol layers. Further, use of protocols designed
for non-storage specific requirements result in poor
storage network architectures. In order to solve
these problems we proposed data handling in the
form of fixed data units called quanta. A new
Effective Cross Layer was proposed that combines
the necessary features of security, iSCSI, direct data
placement, and TCP. A new security mechanism is
proposed that emphasizes burden of computation
on clients. Throughput improvements over the
existing iSCSI are indicated by using the Hyperscsi
protocol for emulation. The characteristics of the
ECL throughput are noted.

Mb/s
363 358

219.6

 106

Fig 7. Bulk write throughput results

Fig 8. ECL bulk read throughput results

References

[1] Hemal Shah, James Pinkerton, Renato
Recio, and Paul Culley, Direct Data
Placement over Reliable Transports, IETF
internet draft, draft-shah-iwarpddp-00.txt
(Work in progress), October 2002

[2] R.Recio, P.Culley, D.Garcia, and J.
Hilland, RDMA Protocol Specification,
IETF internet draft, draft-recio-iwarp-
rdmap-00.txt, October 2002

[3] P.Culley, U.Elzur, R.Recio, and S.Bailey
et. al, Marker PDU Aligned Framing for
TCP specification, IETF internet draft,
draft-culley-iwarp-mpa-03.txt, June 2003

[4] S Kent, IP Encapsulating Security
Payload (ESP), IETF internet draft, draft-
ietf-ipsec-esp-v3-06.txt, July 2003

[5] Julian Satran, Costa Sapuntzakis,
Mallikarjun Chandalapaka and Efri
Zeidner, iSCSI, IETF internet draft, draft-
ietf-ips-iSCSI-20.txt

[6] R Stevens, TCP/IP illustrated, Volume 2,
Addison-Wesley, November 2001

[7] http://www.nst.dsi.a-star.edu.sg/mcsa/

Fig 9. ECL Bulk write throughput results

Fig 10. Write Throughput for 1K, 2K and 4K-

quantum sizes- in Mb/s for 5K path MTU

[8] Yingping Lu and David H.C.Du,

Performance Study of iSCSI-Based
Storage Subsystems, IEEE
communications magazine, August 2003

[9] Yongdae Kim, Fabio Maino, Maithili
Narasimhma, and Gene Tsudik, Secure
Group Key Management for Storage Area
Networks, IEEE communications
magazine, August 2003

[10] Shuang-Yi Tang, Ying-Ping Lu, and
David H.C. Du, Performance Study of
Software-Based iSCSI Security,
Proceedings of the First International
IEEE Security in Storage Workshop,
SISW’02, 2003

[11] StephenAiken, Dirk Grunwald, Andrew
R.Pleszkun, and Jesse Willeke,
Performance Analysis of the iSCSI
protocol, IEEE MSST, 2003

[12] http://www.rdmaconsortium.org
[13] Rodney Van Meter, Gregory G. Finn, and

Steve Hotz, VISA: Netstation’s Virtual
Internet SCSI Adapter, Proceedings of the
eighth international conference on
Architectural Support for Programming

39

80

162
Mb/s

 107

Languages and Operating Systems, Pages
71 - 80 , October 1998

[14] Peter Druschel and Larry L. Peterson, A
High-Bandwidth Cross-Domain Transfer
Facility, Proceedings of the fourteenth
ACM symposium on Operating Systems
Principles, volume 27 issue 5, December
1993

[15] David D. Clark and David L.
Tennenhouse, Architectural
Considerations for a New Generation of
Protocols, ACM SIGCOMM Computer
Communication Review, Proceedings of
the ACM symposium on Communications
architectures & protocols, Volume 20
Issue 4 , August 1990

[16]http://aixpdslib.seas.ucla.edu/packages/b
onnie++.html

[17] http://www.ethereal.com/
[18]http://sourceforge.net/projects/unh-iscsi/

