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Abstract 

TCP layer and poor iSCSI implementations 
have been identified as the main bottlenecks in 
realizing high iSCSI performance. With the 
addition of security mechanisms the throughput 
achieved by the storage system using iSCSI is 
further reduced. Along with the above mentioned 
problems, we argue that the excessive processing 
redundancy introduced by several protocol layers 
and use of protocols designed for non-storage 
specific requirements result in poor storage 
network architectures. In order to overcome these 
issues, we introduce a new storage paradigm in 
which data is manipulated, encrypted and stored in 
fixed block sizes called quanta.  Each quanta is 
manipulated by a single effective cross layer (ECL) 
that includes security features, iSCSI 
functionalities, direct data placement techniques 
and data transport mechanisms. Further, the new 
architecture emphasizes majority of burden of 
computation for achieving security on the clients.  

Qualitative description of the idea is presented.  
Performance improvements observed during tests 
of the idea are presented. Through emulation and 
analysis we also show that the size of the quanta 
must be equal to the minimum path MTU for 
maximum throughput. 

1. Introduction 

IP has been accepted as a de-facto standard for 
Internet applications. IP based networks also 
provide relatively inexpensive and convenient 
solution [5][13] for transportation of bulk data. 
Considering these facts, transportation of storage 
data on the IP network provides a cheap and easy 
alternative to the SCSI and Fiber Channel based 
networks. iSCSI [5] is the proposed protocol for 
storage (block) data transport over IP networks. 
Most effort has been concentrated on designing the 
protocol over the existing TCP/IP protocol. Initial 
versions of the implementation of this protocol are 
available. Although the idea to develop these new 
protocols over existing protocols was done to ease 

the integration of iSCSI, it has resulted in over 
layering and crowding of protocols stacks. 

Stephen et. al [11] have presented the findings 
of implementing an iSCSI based target on a 
specialized hardware. Their work concentrated on 
comparing the overall performance of various 
network configurations using iSCSI protocol. The 
performance results from their work indicate that 
the iSCSI protocol can be severely limited by 
implementation. They suspect this problem due to 
inefficient handling of underlying network 
properties and poor iSCSI implementation. 

Y.Lu and D.Du [8] have examined different 
storage protocols (viz, iSCSI, NFS,SMB) and have 
analyzed their performance. The work shows that 
iSCSI storage with Gigabit connection could have 
performance very close to directly attached fiber 
channel-arbitrated loop storage. From their study 
they also show that iSCSI based file access 
performance outperforms the NAS schemes on both 
Windows and Linux platforms. However, they 
point out that the advantage of iSCSI reduces as the 
file size increases. The reasoning for this reduction 
in performance has not been presented in this work. 

Shuang-Yi Tang et. al [10]  have also shown 
that with addition of security features such as IPsec 
below iSCSI and TCP/IP protocol stack leads to 
high degradation in throughput. Further the idea of 
storage security is not well severed by usage of 
IPsec because it does not encrypt the data that will 
be stored on the storage device. It only protects 
from attacks between two communicating points. 
Hence, using iSCSI over TCP/IP/IPsec leads to 
high overhead and complex layering structure. 
Further, use of IPsec leads to encryption and 
decryption at both sever and client ends.  

End system copies and TCP packet reassembly 
form throughout bottlenecks for many applications 
including iSCSI [1][2][3]. End system copies can 
be eliminated by Direct Data Placement (DDP) 
where the application entities are directly placed 
into application buffers without system copies [1]. 
DDP packets have to be modified to suite the 
existing TCP functions. This is enabled by a 
Framing protocol for TCP [3]. Additional 
extensions to the DDP protocol are provided by the 
RDMA protocol, which operates over the DDP 
protocol. The RDMA, DDP and the Framing 
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protocol form the iWARP suite. This is the 
proposed solution for end system copy issues [12]. 
The iWARP suite is also applicable for iSCSI [2]. 
The iWARP suite is proposed to operate between 
iSCSI and TCP [12].   

The introduction of iWARP leads to increased 
overheads and redundancy. Two simple examples 
of redundant functions at different layers are as 
follows. First, the CRCs/checksums are computed 
at the iSCSI layer, MPA or framing layer, and the 
TCP layer. Second, sequencing information is 
repeated in both iSCSI and transport layer.   

Motivated to overcome these problems, we 
propose the use of fixed block size data units called  
quanta. These data units are chosen to be of size 
512, 1024, 2048 or 4096 bytes. A quanta is 
encrypted and formatted according to an Effective 
Cross Layer (ECL) by the client wishing to write 
data to a server and is stored as is on the storage 
device. The effective cross layer combines the 
functionalities of encryption, buffer management 
for direct data placement, iSCSI formatting and 
transport functions. The key used for encryption of 
such a quanta is stored on a separate key server. 
Any valid client can access the encrypted and 
preformatted data from the server and decrypt it 
using keys obtained from the key server. The client 
does the encryption and decryption, checksum 
calculation, and any other formatting. This lets the 
target to be implemented with fewer functionalities 
of ECL and used for only providing an access point 
to the storage device. 

 A facility called fast buffers (fbufs) was 
introduced by Peter Druschel and Larry L. Peterson 
[14]. It was an operating system facility 
implemented for I/O buffer management and data 
transfer across protection domain boundaries on 
shared memory machines. Although, the main goal 
of this idea was to provide high bandwidth to user 
level processes, this was achieved by implementing 
a new facility in the operating system. This is 
unlike the ECL and quanta approach that achieves 
the similar goal by reducing the overheads in the 
protocol stacks. Further, ECL and quanta approach 
are specifically designed to improve the 
performance of the storage networks instead for the 
general networks. 

 David D. Clark and David L. Tennenhouse [15] 
provide guidelines for designing of new generation 
of protocols. Our protocol design efforts are in line 
with two important guidelines presented in [15]. 
They are, the data manipulation costs are more 
compared to transfer control operations and the 
application data units are the natural pipelining 
units.  

 In section 2, we provide the architectural goals of 
the cross layer design. Section 3 discusses the 
encryption mechanism details. We present the ECL 
details in section 4.  Section 5 provides the test 
results for the emulation of ECL using Hyperscsi. 
Finally we present the conclusion in section 6. 

2. Cross layer architectural goals 

CLA (Cross Layer Architecture) enables the 
combining of the features of the 
SCSI/iSCSI/RDMA /DDP/Framing/TCP/IPsec into 
a single layer called the ECL. This obviates 
layering overheads and enables the ease of 
operation of Storage Area Networks. 

CLA has been designed with the following 
architectural goals: 

 
1. Minimize data handling and processing by 

dividing data units into fixed size blocks 
or quanta. 

 
2. Provide security on the wire and on the 

storage unit.  
 
3. Provide the features of the iSCSI protocol.  
 
4. Provide application level buffering by 

incorporating the features of the DDP 
protocol. (Direct Data Placement)  

 
5. Provide the transport layer mechanisms.  

3. Encryption Mechanism 

In order to include a security mechanism as a 
part of a single layer, ECL, a new security 
mechanism is proposed. The new scheme for 
storage security mainly deals with reducing the 
high overheads of authentication and encryption. 
This is done by avoiding encryption and decryption 
of data on both client and server sides. The new 
scheme does both encryption and decryption on the 
client side. The new scheme includes several 
techniques, which improves the efficiency of 
encryption and decryption: 
 

1. The data is stored in the encrypted form on 
the server: 

 
2. Encryption and Decryption is never 

performed on the server and hence there is 
no key management in the server.  
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3. In addition to encryption, the computation 
of parities, packetization, and error-
corrective information is done at the time 
the file is stored and never recomputed 
again.  

 
4. The majority of the computation load for 

providing security and error correction is 
performed at the client end.  

 
5. Authentication, key management is 

decoupled from data security. 
 

These requirements are met by implementing a 
new security mechanism. The data to be stored is 
encrypted by the client and preformatted. This data 
unit is called the Encrypted Data Unit (EDU). The 
EDU is stored on the servers as is. The EDU is 
transported to be stored on servers using ECL 
headers. The combination of EDUs and the ECL 
headers are called quanta. The keys used to encrypt 
the data are generated using AES encryption 
algorithm. The keys belonging to a particular file is 
stored in a file and encrypted. This file is stored in a 
centralized key server. A valid client can access the 
file on servers stored in the quanta form. The 
clients fetch the keys from the key server and 
perform decryption. Figure 1 shows the network 
architecture that would be used to implement the 
security mechanism. 
 Several parameters that are used for read and 
write operation, encryption, and decryption are 
included in the ECL header. This is discussed in the 
next section. 
 

 
Figure 1. System Setup for data storage centric 
network 

4. Effective Cross Layer 

A single layer satisfying the specified objectives 
is defined as the ECL. Figure 2 shows the iWARP 
stack for iSCSI along with the security layer, IPsec. 
Figure 3 shows the corresponding ECL. In the 
following paragraphs we identify several common 

features in different layers. The necessary and 
common functionalities are then retained and 
incorporated into the ECL and the rest are 
excluded. These functionalities are designed such 
that they are scalable over a WAN.  

4.1 . ISCSI functionalities of the ECL 

iSCSI is an adaptation of SCSI for accessing 
data over the Internet. Hence most of the SCSI 
functionalities that are part of iSCSI are retained in 
ECL [5]. Headers and data digests in iSCSI were 
not inherited from SCSI. These were added for 
error correction in the iSCSI protocol. Hence 
header and the data digests are excluded from the 
ECL. Instead, a single checksum for the entire 
quanta traversing the channel are utilized.  

4.2. Copy avoidance functionalities of the 
ECL 

Most of the iWARP functionalities are retained 
in the ECL. Messages framed using MPA protocol 
is obviated by defining a constant MTU in the 
SAN. Further, the quanta size is always chosen less 
than or equal to the minimum MTU. 

 

 
Fig 2. iWARP suite for iSCSI 

 
Fig  3. Effective Cross Layer 

This obviates the necessity of fragmentation and 
thus there is no need for markers. The minimum 
MTU over a path between a source and the 
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destination can be discovered, before any 
transmission occurs. 

The DDP protocol requires the tags or the 
addresses of buffers at the destination. These tags 
when available at the source enable direct data 
placement. As a consequence the quanta do not 
subject themselves to reassembly buffering and 
kernel copies. Hence they are directly placed at the 
appropriate SCSI buffers from the NIC.  

4.3. Transport functionalities of the ECL 

Sequencing [6] information is retained from the 
iSCSI headers. Thus the sequencing information at 
the TCP layer can be excluded. Congestion and 
flow control [6] algorithms are implemented in 
TCP and they are based on sliding windows [6]. 
The windows are based on sequence numbers. ECL 
has sequencing information similar to TCP. Hence 
congestion and flow control mechanisms similar to 
that of TCP can be used. 

Source and destination ports [6] identification is 
due to a requirement of socket level de-
multiplexing. Instead direct data placement 
provides buffer addressing information that can be 
used to place the data directly into application 
buffers. Thus direct data placement alleviates the 
need for source and destination port information. 

The data checksum is computed during the 
encryption process. Therefore there is a need only 
for a single quanta header checksum. Message 
length information that is a part of UDP can be 
excluded because it is also a part of the iSCSI 
functionality. 

4.4. Security considerations in ECL 

The encryption should be done only when a 
write or an update operation is done. During a read 
operation, only decryption is required. These 
operations are indicated in the iSCSI functionality. 
Hence it is not necessary to add it into the ECL 
separately. Authentication must be performed 
before every transaction. Authentication is done by 
the login mechanism. iSCSI login mechanism that 
are retained can be employed for this purpose. 

The final ECL header structure that combines 
the features mentioned above is shown in figure 4.  

5. Emulation of ECL by HYPERSCSI 

In order to evaluate the performance 
improvements with the use of ECL, tests were 
conducted using Hyperscsi [7]. Hyperscsi was used 
because it emulates a simple version of the ECL. In 

the current form, Hyperscsi is equivalent to SCSI 
packets placed directly over Ethernet that does not 
involve copies, reassembly buffering, and 
functionality redundancies of layers. 

 

 
Fig 4. ECL header for WRITE operations 

The test setup for ECL throughput 
characterization consists of two Dell Power Edge-
Linux boxes (initiator and the target) with Pentium 
866 MHz processors connected end to end through 
a Gigabit Ethernet link (82546 Dual port GBE). 
Linux Kernel 2.4.20-18.7 was used in the end 
systems. Throughput was measured using the 
bonnie++1.03 tool [16]. Tcpdump and Ethereal [17] 
was used to see the packet dumps on the end 
systems. iSCSI Reference 0.18 v10 [18] was used 
for comparison with iSCSI on TCP. 40 GB 
QUANTUM hard disks with ULTRA-160 SCSI 
bus were used at the target. Figure 5 shows the 
throughput snapshot tests indicating throughput 
improvements with the ECL.  

Several read operations were performed in three 
different scenarios. First, read operations were 
performed using only the SCSI protocol. Second 
was performed using Hyperscsi and the third 
repeated with UNH iSCSI v10. The results 
represent an arithmetic mean of 10 trials for a fixed 
MTU size of 16000. The read throughput achieved 
using Hyperscsi was close to direct access, 
whereas, the latest version of the UNH iSCSI code 
achieves only 219.6 Mb/s as opposed to 358 Mb/s 
and 363 Mb/s achieved by Hyperscsi and local disk 
access respectively. The improvement of 63% 
denotes the extent of betterment in throughput that 
can be obtained by getting rid of system copies, 
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reassembly buffering and multiplicity of 
functionalities in the iWARP stack through the 
ECL emulated by Hyperscsi. 

 

 
Fig 5. Read performance through the ECL 

 
Fig 6. Bulk read throughput results 

 We next investigate the throughput characteristics 
of the ECL for reads and writes and justify the 
quantum data lengths equal to the path MTU.  

The ECL needs to accommodate very large 
windows when it is operating over a network with 
large round trip times. The required changes are 
made to the Hyperscsi code to accommodate 
infinitely large windows. (Hyperscsi at present can 
accommodate only 32 segments in a window 
interval). 4K quanta are used for ECL. 
Fragmentation of quantum is allowed for MTU 
values less than 4K. For MTU values greater than 
4K, each quantum is contained within a single 
Ethernet packet along with the headers. 

Figure 6 compares the iSCSI throughput vs. the 
ECL throughput for reads for various possible 
MTU sizes in the Gigabit Ethernet platform. The 
read throughput shows a constant improvement of 
about 63% in the favor of ECL.  

Figure 7 compares the iSCSI throughput vs. the 
ECL throughput for writes for various possible 

MTU sizes in the Gigabit Ethernet platform. The 
write throughput is less than the read throughput for 
both the iSCSI and the ECL cases, since writes are 
more expensive than reads. For large MTU sizes, 
the ECL throughput approaches the iSCSI 
throughput since we speculate that non-TCP/IP 
overheads for large MTU values in an ECL 
environment approach the TCP/IP overheads for 
large MTU values in the TCP/IP environment. 

Figure 8 shows the read throughput variations 
for 4K quantum ECL. The throughput peaks at 
MTU values equal to the quantum-sized blocks. We 
allow for fragmentation in our tests for MTU sizes 
less than the quantum sizes. For MTU sizes greater 
than the quantum sizes, the throughput gradually 
decays since the per packet non-TCP/IP overheads 
begin to dominate. This is due to the Ethernet per 
packet processing overheads. For MTU sizes less 
than the quantum sizes, the fragmentation 
overheads exceed the Ethernet per packet 
overheads. The optimal values are thus reached for 
MTU sizes almost equal to the quantum sizes. The 
trend is also seen for writes as shown in figure 9. 

An increase in quanta size increases the 
throughput. The write throughput for 5K path MTU 
and various quanta sizes are depicted in figure 10. 

The tests conducted conclude the throughput 
characteristics of the ECL and justifies the 
Quantum size selections equal to MTU sizes. 

6. Conclusions 

 Existing iSCSI storage systems exhibit low 
performance. Additional protocols have been 
proposed for improving the performance.  We 
presented the argument that this would lead to 
further decrease in performance. This is due to 
excessive processing redundancy and several 
protocol layers. Further, use of protocols designed 
for non-storage specific requirements result in poor 
storage network architectures. In order to solve 
these problems we proposed data handling in the 
form of fixed data units called quanta. A new 
Effective Cross Layer was proposed that combines 
the necessary features of security, iSCSI, direct data 
placement, and TCP. A new security mechanism is 
proposed that emphasizes burden of computation 
on clients. Throughput improvements over the 
existing iSCSI are indicated by using the Hyperscsi 
protocol for emulation. The characteristics of the 
ECL throughput are noted. 

 
 

Mb/s 
363  358 

219.6 
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Fig 7. Bulk write throughput results 

 
Fig 8. ECL bulk read throughput results 
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