
Rebuild Strategies for Redundant Disk Arrays

Gang Fu, Alexander Thomasian∗, Chunqi Han, and Spencer Ng†

Computer Science Department

New Jersey Institute of Technology -NJIT

Newark, NJ 07102, USA

Abstract

RAID5 performance is critical while rebuild is in
progress, since in addition to the increased load to
recreate lost data on demand, there is interference
caused by rebuild requests. We report on simulation
results, which show that processing user requests at
a higher, rather than the same priority as rebuild
requests, results in a lower response time for user re-
quests, as well as reduced rebuild time. Several other
parameters related to rebuild processing are also ex-
plored.

1 Introduction

RAID5 with rotated parity is a popular design, which
tolerates single disk failure and balances disk loads
via striping. Striping allocates successive segments
of files called stripe units on the N − 1 disks in an
array of N disks, with one stripe unit dedicated to
parity, so that a capacity equal to the capacity of
one disk is dedicated to parity. In this case the parity
group size G is equal to N . The parity blocks are kept
up-to-date as data is updated and this is especially
costly when small randomly placed data blocks are
updated, hence the small write penalty.

If a single disk fails, a block of data on that disk
is recreated by exclusive-ORing (XORing) the corre-
sponding blocks on the N − 1 surviving disks. Each
surviving disks needs to process the load due to fork-
join requests to recreate lost data blocks besides its
own load, so that the load on surviving disks is in-
creased, e.g., at worst doubled when all requests are
reads. Clustered RAID solves this problem by se-
lecting a parity group size G < N , so that the
load increase is proportional to the declustering ra-
tio: (G− 1)/(N − 1) [3]. Balanced Incomplete Block
Designs – BIBD [1, 4] and random permutation lay-

∗The first three authors are partially supported by NSF
through Grant 0105485 in Computer Systems Architecture.

†Hitachi Global Storage Technologies, San Jose Research
Center, San Jose, CA.

out [2] are two approaches to balance disk loads from
the viewpoint of parity updates.

The rebuild process is a systematic reconstruction
of the contents of the failed disk, which is started
immediately after a disk fails, provided a hot spare
is available. Of interest is the time to complete the
rebuild Trebuild(u) and the response time of user re-
quests versus time: R(t), 0 < t < Trebuild(u). The
utilization at all disks, which is equal to u before
disk failure occurs, is specified explicitly, since it has
a first order effect on rebuild time.

A distinction is made between stripe-oriented or
rebuild-unit(RU)-oriented and disk-oriented rebuild
in [1]. In the former case the reconstruction pro-
ceeds one RU at a time, so that the reconstruction
of the next RU is started after the previous one
is reconstructed and even written to disk. Disk-
oriented rebuild reads RUs from all surviving disks
asynchronously, so that the number of RUs read from
surviving disks and held in a buffer in the disk ar-
ray controller can vary. It is shown in [1] that disk-
oriented rebuild outperforms stripe-oriented rebuild,
therefore the stripe-oriented rebuild policy will not
be considered further in this study.

Rebuild requests can be processed at the same pri-
ority as user requests, which is the case with the per-
manent customer model – PCM [2], while [1, 6] pro-
cess rebuild requests when the disk is idle according
to the well-known vacationing server model – VSM in
queueing theory: an idle server (resp. disk) takes suc-
cessive vacations (resp. reads successive RUs), but re-
turns from vacation (resp. stops reading RUs) when
a user request arrives at the disk. In effect rebuild
requests are processed at a lower priority than user
requests. In PCM a new RU is introduced at the tail
of the request queue, as soon as the processing of the
previous RU is completed, and hence the name of the
model.

The few studies dealing with rebuild processing
[1, 2, 6] leave several questions unanswered, such

1



as the relative performance of VSM versus PCM,
the effect of disk zoning, etc., but not all issues
are addressed here due to space limitations. We
extended our RAID5 simulator to simulate rebuild
processing. This simulator utilizes a detailed sim-
ulator of single disks, which can handle different
disk drives whose characteristics are available at:
http://www.pdl.cmu.edu/Dixtrac/index.html. The
reason for adopting simulation rather than an ana-
lytic solution method is because of the approxima-
tions required for analysis, which would have required
validation by simulation anyway. Simulation results
are given in the next section, which is followed by
conclusions.

2 Experimental Results

The parameters of the simulation are as follows. We
utilize IBM 18ES 9 GByte, 7200 RPM disk drives.
We assume an OLTP workload generating requests
to small (4KB) randomly placed blocks over the data
blocks of the N = 19 disks in the array. Track align-
ment ensures that all 4 KB accesses are carried out
efficiently, since they will not span track boundaries.
Accesses to randomly placed disk blocks introduce a
high overhead, i.e., 11.54 ms per request with FCFS
scheduling, less than 1% of which is data transfer
time. We assume that the ratio of reads to writes
is R:W=1:0, since reads introduce a heavier perfor-
mance degradation upon disk failure. While we ex-
perimented with different disk utilizations, only re-
sults for u = 0.45, which results in a 90% disk uti-
lization are reported here. We assume zero-latency
read and write capability, which has a significant im-
pact on rebuild time.

The parameter space to be investigated includes:
(i) VSM versus PCM. (ii) The impact of buffer size
per disk B specified as number of tracks. (iii) the
size of the RU (rebuild unit) is a multiple of tracks
and RU = 1 is the default value. (iv) the effect of
preempting rebuild requests. (v) The effect of pig-
gybacking, also considered in [1]. (vi) The effect of
read-redirection and controlling the fraction of reads
redirected. In fact due to its beneficial effect read-
redirection is postulated in all other cases reported
here [1, 5]. (vii) The effect of the number of disks on
rebuild time. (viii) A first order approximation for
rebuild time. Due to space limitations item (iv) is
not investigated.

2.1 VSM versus PCM

The response time of user requests R(t) and the com-
pletion percentage c(t), which is the fraction of tracks

Figure 1: Performance Comparison of VSM and PCM

already rebuilt, versus time (t) for both VSM and
PCM are shown in Figure 1. A disk failed and rebuild
was started at time t = 135 sec. The graphs shown
are averages over ten runs, but even more runs are
required to obtain a tighter confidence interval, say
at 95% confidence level. The following observations
can be made:

(i) Disk utilizations are effectivy 100% utilized in
both cases, but since RU reads are processed at a
lower (nonpreemptive) priority in VSM user requests
are only affected by the mean residual service time
for RU reads, which is close to half a disk rotation at
lower disk utilzations. PCM yields a higher R(t) than
VSM since it reads RUs at the same priority as user
requests. For each n̄ user requests processed (on the
average) by a disk, the disk processes m̄ consecutive
rebuild requests, so that the arrival rate is increased
by a factor of 1 + m̄/n̄. Furthermore, rebuild re-
quests, in spite of zero latency reads, have a longer
service time than user requests. (ii) The rebuild time
in PCM is higher because during the rebuild period,
the disk utilizations due to user requests is approx-
imately the same, but the disk “idleness” is utilized
more efficiently by VSM than PCM. The reading of
consecutive RUs is started in VSM only when the disk
is idle, so that if the reading of an RU is completed
before a user request arrives, the reading of the next
RU can be carried out without incurring seek time.
Uninterrupted processing of rebuild requests is less
likely with PCM, since by the time the request to read
an RU is being served, it is not likely that the disk
queue is empty. This intuition can be ascertained by
comparing the mean number of consecutive RU reads
in the two cases.

2.2 The impact of buffer size

Figures 2 and 3 show R(t) and Trebuild versus buffer
size for VSM and PCM, respectively. We can re-
duce buffer space requirements by XORing the avail-
able blocks right away, but this would introduce con-

2



Figure 2: The impact of buffer size in VSM

Figure 3: The impact of buffer size in PCM

straints on hardware requirements. Two observations
can be made: (i) With disk-oriented rebuild a larger
buffer size leads to shorter rebuild times in both VSM
and PCM. This is because due to temporary load im-
balance, rebuild processing with disk-oriented rebuild
is suspended when the buffer is filled. A shared or
semi-shared buffer requires further investigation. (ii)
The impact of buffer size on R(t) for VSM is very
small, but it is significant in PCM. In VSM, the re-
build requests are processed at a lower priority, so the
R(t) is only affected by the time to read an RU. In
PCM a small buffer size limits the rate of RU reads,
i.e., no new RU reads are inserted into the disk queue
when the buffer is full, but as B is increased, RU reads
are introduced at a rate determined only by u.

2.3 The impact of rebuild unit size

Figures 4 and 5 shows R(t) and Trebuild versus the
RU size = 1, . . . 16 tracks. The following observa-
tions can be made: (i) The larger RU size leads to
higher response times in VSM and PCM. In VSM
the mean residual time to read an RU is added to the
mean waiting time caused by the contention among
user requests [6].(ii) Larger RU sizes lead to shorter
rebuild times in VSM and PCM, because the rebuild
time per RU is reduced, since the cost of one seek is
prorated over the reading of multiple RUs.

Figure 4: The impact of rebuild unit size in VSM

Figure 5: The impact of rebuild unit size in PCM

2.4 The effect of piggybacking

Figure 6: The effect of piggybacking

Figure 6 shows R(t) and c(t) versus t in VSM with
and without piggybacking. Piggybacking is done at
the RU level, rather than at the level of user accesses,
e.g., 4 KB blocks, which has been shown to be ineffec-
tual [1]. In other words, we extend the reconstruction
of a single block into a full track. Piggybacking short-
ens rebuild time, but initially the disk utilization will
exceed 2u in our case, since track reads have a higher
mean service time than the reading of 4 KB blocks,
which are carried out on behalf of fork-join requests
(this is the reason why u = 0.4 in this case). We can
control the initial increase in R(t) by controlling the
fraction of piggybacked user requests.

3



Figure 7: The effect of disk utilization on rebuild time

2.5 The impact of read redirection

Read-redirection shortens the rebuild time (by a fac-
tor of three with 19 disks, u=0.45, and B=64) and
also reduces R(t) as gradually more tracks from the
failed disk are rebuilt. Since we assumed there are no
write requests, we get the maximum improvement in
performance with read redirection, but there will be
less improvement in response time when all requests
are updates. In “unclustered” RAID5 the utilization
of the spare disk remains below the other disks and
there is no need to control the fraction of read re-
quests being redirected, as in [3].

2.6 The effect of the number of the disks

Table 1 gives the rebuild time using VSM versus the
number of disks (N) with various number of buffers.
The disk utilization is u = 0.45. It is observed that
even at high disk utilization, rebuild time with VSM
is not affected very much by N . An additional obser-
vation is that due to the prevailing symmetry, that
the load at all disks is balanced, rebuild time is deter-
mined by the reading time of any of the disks and that
the writing of the spare disk follows shortly there-
after. When the buffer size dedicated to the rebuild
process is small, rebuild time is more sensitive to N .

Number of disks 9 19 29 39

Rebuild
Time
(sec)

B=16384 1604.2 1622.8 1631.9 1632.0

B=64 2586.3 2618.9 2701.4 2704.5

B=16 3033.8 3246.0 3434.7 3526.5

Table 1: The effect of number of disks on rebuild time

2.7 The effect of disk utilization on rebuild time

It follows from Figure 7 that rebuild time increases
sharply with disk utilization. This is especially so
with an infinite source model, where the request ar-
rival rate is not affected by increased disk response
time. Rebuild time can be reduced by not processing

low priority applications.

We obtain a first order approximation for rebuild
time with given disk characteristics by postulating
that the rebuild time Trebuild(u) is simply a func-
tion of the disk utilization u, so that Trebuild(u) =
Trebuild(0)/(1− αu), αu < 1, where Trebuild(0) is the
time to read an idle disk, and α is a measure of the
average increase in disk utilization during rebuild.

With read redirection and R:W=1:0 the utilization
of surviving disks initially doubles, but then it drops
gradually as disk utilization reaches u, so that α ≈ 1.5
is an initial guess. On the other hand the rebuild
time is slow when rebuild starts, so that more time
is spent in the initial stages of rebuild. Curve fitting
shows that α ≈ 1.75 yields an acceptable estimate of
rebuild time, but there is a sensitivity to R:W ratio,
and other factors, which are being explored.

3 Conclusions

It is interesting to note that VSM outperforms PCM
on both counts, user response times and rebuild time.
The latter is counterintuitive since PCM rebuilds
more aggressively. We are also investigating the ef-
fect of preempting rebuild requests, utilizing multiple
rebuild regions, and allowing multiple user requests
before rebuild processing in VSM is stopped. Finally,
we are interested in rebuild processing in RAID6 and
EVENODD, especially when operating with two disk
failures.

References

[1] M. C. Holland, G. A. Gibson, and D. P. Siewiorek.
“Architectures and algorithms for on-line failure re-
covery in redundant disk arrays”, Distributed and
Parallel Databases 11(3): 295-335 (July 1994).

[2] A. Merchant and P. S. Yu. “Analytic modeling of clus-
tered RAID with mapping based on nearly random
permutation”, IEEE Trans. Computers 45(3): 367-
373 (1996).

[3] R. R. Muntz and J. C. S. Lui. “Performance analysis
of disk arrays under failure”, Proc. 16th Int’l Conf.
VLDB, 1990, pp. 162–173.

[4] S. W. Ng and R. L. Mattson. “Uniform parity dis-
tribution in disk arrays with multiple failures”, IEEE
Trans. Computers 43(4): 501-506 (1994).

[5] A. Thomasian and J. Menon. “Performance analysis
of RAID5 disk arrays with a vacationing server model
for rebuild mode operation”, Proc. 10th Int’l Conf.
Data Eng. - ICDE, 1994, pp. 111-119.

[6] A. Thomasian and J. Menon. “RAID5 performance
with distributed sparing”, IEEE Trans. Parallel and
Distributed Systems 8(6): 640-657 (1997).

4


