
An Efficient Data Sharing Scheme for iSCSI-Based File Systems �
Dingshan He and David H.C. Du

Department of Computer Science and Engineering
DTC Intelligent Storage Consortium

University of Minnesotafhe,dug@cs.umn.edu

Abstract

iSCSI is an emerging transport protocol for transmitting
SCSI storage I/O commands and data blocks over TCP/IP
networks. It allows storage devices to be shared by multi-
ple network hosts. A fundamental problem is how to enable
consistent and efficient data sharing in iSCSI-based envi-
ronments. In this paper, we propose a suite of data sharing
schemes for iSCSI-based file systems and use ext2 as an ex-
ample for implementation. Finally, we use simulations to
verify the correctness of our designs and to study the per-
formances.

1. Introduction

iSCSI [2] combines two popular and mature protocols
in the data storage area and the network communication
area - SCSI and TCP/IP. Small Computer System Interface
(SCSI) enables host computer systems to perform I/O op-
erations of data blocks with peripheral devices. iSCSI ex-
tends the connection of SCSI from traditional parallel ca-
bles, which could only stretch to several meters, to ubiqui-
tous TCP/IP networks. iSCSI encapsulates and reliably de-
livers SCSI Protocol Data Units (PDUs) over TCP/IP net-
works.

iSCSI is expected to expand the coverage of System
Area Networks (SAN). One major feature of SAN is to pro-
vide a shared pool of storage resources for multiple access-
ing hosts. As storage devices are not directly attached to
any hosts, they can be easily shared. However, data sharing
is going beyond sharing storage devices. With data shar-
ing, a single piece of data could actually be shared by mul-
tiple clients. The integrity of data content has to be en-
forced. Therefore, concurrency control mechanism is nec-
essary when multiple hosts could read/write a single piece
of data concurrently.�This project is partially supported by members of DTC Intelligent
Storage Consortium (DISC) at UMN, and gifts from Intel and Cisco.

iSCSI Disk Array

iSCSI Tape Subsystem

File Server

Database Server

Database Server

File Server

IP Network

Figure 1. iSCSI network architecture scenario

When using iSCSI-based storage subsystems, applica-
tion servers (as initiators) and their shared storage subsys-
tems (as targets) could be connected by TCP/IP networks
over long distances as depicted in Figure 1. Applications
like file systems on the application servers are not aware
of the fact that iSCSI-based storage subsystems are ac-
cessed and these storage subsystems are potentially shared
with other application servers. Remote iSCSI devices are
mounted at mounting points of application servers’ lo-
cal file systems and corresponding file system modules
are loaded to manage data blocks. The file systems for
mounted iSCSI devices are not adapted for iSCSI at all.
Although these mounted file system modules in IP hosts
are able to use their existing file system locks locally, mul-
tiple IP hosts still can not guarantee consistent data sharing.
Therefore, our design is to coordinate the accesses of mul-
tiple iSCSI initiators.

Since iSCSI-based architectures could be deployed over
WANs, latency introduced by large physical distance will
be a severe restriction on performance. To improve per-
formance, caching at application servers is necessary. In
addition to hiding physical latency, caching at application

101



servers can also reduce load at iSCSI targets. However,
it incurs the problem of cache consistency, which is the
consistency between cached data on initiators (application
servers) and data on targets (iSCSI-based storage subsys-
tems). In our design, we will enforce strong consistency on
cached data by using a callback cache similar to the Coda
file system [6]. An iSCSI target keeps track of cached phys-
ical blocks on all connected iSCSI initiators. The iSCSI
target forces the iSCSI initiators to discard their stale copy,
when it is going to modify a physical block.

Metadata are also concurrently accessed, and cached by
multiple initiators. However, a general solution for both
metadata and normal file data would be inefficient since
metadata and normal file data are different in terms of ac-
cess patterns. We design different mechanisms for them
separately as discussed in Section 3.1 and Section 3.2.

Finally, most existing SAN file systems, such as Lus-
tre, only provide UNIX file sharing semantics. However,
the UNIX file sharing semantics is not suitable for transac-
tional execution of a sequence of operations. In the trans-
action file sharing semantics, there should be a consistent
view of any involved data throughout the execution of a
transaction. Deadlocks are possible, so detection and res-
olution of deadlocks are considered. In addition, rollback
capability is required in case a transaction is unable to com-
plete due to deadlocks.

The rest of this paper is organized as following. In Sec-
tion 2, we will summarize related work. In Section 3, we
are going to give an overview of our design and implemen-
tation. In Section 4, we present the simulation results over
ns-2 simulator to study the performance of our design.

2. Related Work

The performance of iSCSI-based storage subsystems is
studied by Lu and Du in [3]. It is shown that iSCSI storage
with Gigabit connection could have performance very close
to directly attached FC-AL storage, and iSCSI storage in
campus network can achieve reasonable performance re-
stricted by available bandwidth. Tang et al [5] have study
performance of software-based iSCSI security using IPSec
and SSL. In application side, researchers start to consider
using iSCSI to implement hierarchical web proxy server
and remote mirroring and backup.

Several distributed or clustered file systems have de-
signed different data sharing schemes. GFS uses Device
Lock mechanisms, which has been included in SCSI 3
specification as Dlock command. The IBM Distributed
Lock Manager (DLM) is an implementation of the classic
VAX Cluster locking semantics. Another simpler imple-
mentation is the DLM in Lustre with introduction of object
concept. Our work is mainly different from these designs in
network environment and locking granularity. We explic-

Table 1. Compatibility of metadata locks
M S M X

M S +
M X + +

itly take possible long network latency into design consid-
eration. Our locking granularity is at physical block level.

3. Design Overview

Our proposed scheme for data sharing in iSCSI-based
file systems consists of two major parts. The first part is
a concurrency control mechanism to coordinate multiple
concurrent accesses for shared data. The second part is
a cache consistency control mechanism. We assume that
no single operation will involve data from more than one
iSCSI target/LUN.

Roselli et al [1] found that the percentage of metadata
reads is much larger than metadata writes. In order to take
advantage of this fact, our design allows iSCSI initiators to
cache shared locks (referred to as semi-preemptible shared
locks [4]) on metadata objects.

On the other hand, normal data are organized into files.
The access patterns for files are application dependent.
Therefore, in addition to integrity of shared data, we are
trying to design a general locking scheme to achieve high
concurrency and to reduce maintenance costs of locks. Un-
fortunately, these two goals are conflicting with each other.
Fine granularity of locks are preferred to maximize con-
currency, meanwhile coarse granularity reduces number of
locking requests and memory space used to maintain locks.
Our design is trying to balance between these two conflict-
ing goals. The detail of our hierarchical locking scheme
will be discussed later in Section 3.2.

3.1. Locking scheme for metadata

The locks for metadata are applied on metadata objects.
We define following 5 kinds of metadata objects: 1) direc-
tory files, 2) normal file inodes, 3) super block, 4) inode
bitmap blocks, and 5) data-block bitmap blocks.

For each metadata object, there are two possible kinds of
locks: M SandM X. M S lock gives shared access to the
requested metadata object.M X lock gives exclusive ac-
cess to the requested object. The compatibility of the locks
is shown in Table 1, where ’+’ indicates incompatibility.

The M S lock is semi-preemptible. An initiator is al-
lowed to hold anM S lock until the lock manager asks it
to release thatM S lock. A callback mechanism is used
to force the holder to release the lock, when some initiator
requestsM X on the same metadata object. The holding

102



Table 2. Compatibility of hierarchical locks
D S D X D IS D IX

D S + +
D X + + + +
D IS +
D IX + +

initiator only comply the request when it has no conflicting
usage of the object.

An M X lock for a metadata object is requested by an
initiator when it is going to modify the metadata object.
TheM X locks will not be cached at the initiators, so ini-
tiators have to contact targets every time. AnM X lock is
always released immediately after the involved operations
have finished.

Another possible operation on anM Slock is to upgrade
it to a M X lock. This happens when an metadata object is
first read and cached locally, and later a write request for
the same metadata object arrives at the same initiator.

3.2. Locking scheme for normal data

Normal data are organized into files. In order to balance
between high concurrency and high resource consumption,
we design a two level hierarchical locking scheme. The
upper level is an entire file and the lower level contains fix-
sized block groups.

There are 4 possible locks applicable to nodes of such
hierarchy.� D IS: intention shared access; allowing explicitly

locking on descendant nodes inD S or D IS mode;
no implicit locking to the sub-tree.� D IX : intention exclusive access; allowing explicitly
locking on descendent nodes inD X, D S, D IX , or
D IS mode; no implicit locking to the sub-tree.� D S: shared access; implicitD S locking to all de-
scendants.� D X: exclusive access; implicitD X locking to all de-
scendants.

Intention mode is used to indicate that compatible locks
are going to be requested at finer level and thereby prevents
incompatible non-intention locks (D SandD X) on upper
level. Table 2 gives the compatibility of lock modes, where
’+’ means conflict.

Locks are always requested from root to leaves. On the
other hand, locks should be reversely released from leaves
to root. Intention modes are not applicable to leaf nodes.

3.3. Cache consistency control

Physical blocks fetched over networks are cached in
iSCSI initiators’ buffer caches. Buffer caches will be
checked first when a physical block is requested. In or-
der to avoid revalidating consistency of cached data blocks
every time, we employ a mechanism based on callback. A
callback record will be set up on iSCSI target side when
a physical block is read out. When an iSCSI initiator is
going to write a physical block, it first sends a SCSI CDB
with write request. The iSCSI initiator will wait for a R2T
response before starting transmitting data. When an iSCSI
target receives a SCSI CDB with write request, it will check
callback records for the requested physical blocks. If there
are outstanding callback records, callback requests will be
sent to those iSCSI initiators to ask them to purge the re-
quested physical blocks out of their buffer caches. A iSCSI
target will not send R2T response until it receives confir-
mations for all callback requests that it sent out.

3.4. Transaction file sharing semantics

In our design, file-accessing operations are grouped into
transactions. Every transaction will be assigned a unique
transaction id within the session between an iSCSI initiator
and an iSCSI target.

Deadlocks are going to happen since we are support-
ing transactions. Due to the nature of random access of
file data, it is difficult to prevent deadlocks from happen-
ing. Therefore, we use deadlock detection mechanism to
detect deadlock when they have happened. When detecting
a deadlock, a victim transaction will be selected and rolled
back. The mechanism to detect deadlocks is to find a loop
among transactions and locks.

3.5. Implementation components

Figure 2 shows the architecture overview of our imple-
mentations. We insert new modules in to both iSCSI ini-
tiators and iSCSI targets. Our implementation is based on
the ext2 file system. The metadata and file data stored on
storage devices are intact.

In iSCSI initiators, vfs is used between the upper level
system call layer and the lower level iSCSI layer. we have
inserted following two modules into the kernel of iSCSI
initiators.� iSCSI client module is actually a modified ext2 file

system module. It manages transactions and various
metadata and normal data locks.� Initiator cache manager module manages a dedi-
cated buffer cache for the iSCSI client module. It sup-
ports callback mechanism to assure cache consistency.

103



Local
FS 1

Local
FS 2

iSCSI
client

Driver Driver Driver

manager
cache

Initiator

IP Network

Driver Driver Driver

Buffer cache Buffer cache

Network
portal

Network
portal

manager
cache

Target

metadata lock manager
open file manager

iSCSI
stack

System call layer

Virtual File System layer

Local disks Logical units

iSCSI initiator kernel iSCSI target kernel

Figure 2. Overview of the architecture

An iSCSI target is responsible for maintaining active
transactions, maintaining opened files, supporting call-
backs for cached physical blocks, and so on. In iSCSI tar-
gets, we have inserted following three modules into iSCSI
targets’ kernel.� Metadata lock manager modulemanages lock re-

quests for metadata objects mentioned in Section 3.1.
It handles deadlock detection and resolution caused by
metadata locking requests.� File lock manager modulemanages transaction re-
quests, file open/close requests, and block group lock
requests. It is also responsible for deadlock detection
and resolution.� Target cache manager modulemaintains callback
records for physical blocks cached at iSCSI initiators.
When there is a SCSI CDB with write command trig-
gering callbacks, this module is also responsible for
suspending the write command until all confirmations
for callback requests are received.

4. Simulation Results

We use network simulator ns-2 to simulate network en-
vironments. Our schemes are implemented as modules run-
ning on host nodes in ns-2. The implementation is based on
the ext2 file system as described in Section 3.5. We imple-
ment application-level iSCSI initiators and iSCSI targets,
which contain components as presented in Section 3.5.

Table 3 shows the parameters we used for SCSI disk
modules in all of our simulations. These parameters are
following the specification of Seagate Cheetah 15K.3
family disk drives. However, no cache of disk modules

1average of 49 to 75 Mbytes/sec

Table 3. Parameters of SCSI disk modules
Average Latency 2.0 msec

Average Read Seek Time 3.6 msec
Average Write Seek Time 3.9 msec

Internal Transfer Rate 62 Mbytes/sec1

is assumed in our simulations. Once a Read/Write
command leaves the waiting queue on an iSCSI tar-
get for execution, the delay for Read/Write access
one block of data is computed asDelayRead=Write =
AverageLatency + AverageSeekTimeRead=Write +
BlockSize=InternalTrans f erRate.

In our simulations, we let iSCSI drivers on iSCSI ini-
tiators send a SCSI CDB for every physical block. iSCSI
targets process requests, including locking requests and
read/write requests, sequentially.

4.1. Scheme Overhead

In order to investigate the overhead of our concurrency
control and cache consistency scheme, we run simulations
for single sequential writing of a single file. The operations
are run as a single transaction as defined in Section 3.4.
The file size we used in these simulations is 100MB. For
writing of each physical block, we assume that each physi-
cal block should be read from its iSCSI target first and then
written back. We have run this simulation for several dif-
ferent network configurations. Due to space limit, we only
show the result that we get under one configuration. Fig-
ure 3 shows the composition of transaction time under this
configuration. We use different size for physical blocks and
different size for block groups defined in Section 3.2. For
certain block group size, the total transaction time will de-
crease as the physical block size increasing. This is because
larger physical block size requires less number of transmis-
sion and hence saves propagation delay. On the other hand,
when using the same physical block size and varying block
group size, the time spent on normal data locks decrease
as we increase block group size. Larger group size would
require less number of locking requests.

4.2. Effectiveness of Caching

In our design, physical blocks are cached in iSCSI ini-
tiators’ buffer cache to improve performance. Our next set
of simulations is trying to understand the effectiveness of
such caching as the environment of iSCSI extending from
LAN to WAN. In addition, we also try to investigate what
are the major factors affecting effectiveness of caching and
how.

In order to reflect file access patterns of real world, we
use trace data generated from modified TPC-C benchmark

104



1KB 2KB 4KB 8KB
0

500

1000

1500

2000

block size

tim
e 

(s
ec

)

Group Size 1

block read/write
metadat locks
data locks
transaction overhead
ohters

1KB 2KB 4KB 8KB
0

500

1000

1500

2000

block size

tim
e 

(s
ec

)

Group Size 2

block read/write
metadat locks
data locks
transaction overhead
ohters

1KB 2KB 4KB 8KB
0

500

1000

1500

2000

block size

tim
e 

(s
ec

)

Group Size 4

block read/write
metadat locks
data locks
transaction overhead
ohters

1KB 2KB 4KB 8KB
0

500

1000

1500

2000

block size

tim
e 

(s
ec

)

Group Size 8

block read/write
metadat locks
data locks
transaction overhead
ohters

Figure 3. Composition of total transac-
tion time for sequential access with band-
width=100Mbps and latency=1msec

of the Transaction Processing Performance Council (TPC).
The TPC-C benchmark is an OnLine Transaction Process-
ing (OLTP) benchmark for database systems. We adapt this
benchmark to generate file access traces. TPC-C bench-
mark involves a warehouse management database with 9
relation tables. We view each relation table as a file storing
fix-sized records consecutively. TPC-C benchmark has 5
different transactions in SQL. For each transaction, we only
trace the location of real reading or writing of records in the
table files. We totally ignore additional database metadata
such as index for keys in real database systems. For a trans-
action involving one or more than one table files, all table
files are opened with proper mode before any reading or
writing of data blocks.

Network bandwidth and latency are two potential factors
that could affect effectiveness of iSCSI initiator caching.
We set up a configuration of TPC-C with 4 warehouses.
Each warehouse has 10 distinct districts. There are a num-
ber of customers registered to a district. Initially, we gen-
erate information to load the 9 table files. After loading
initial data, the size of these 9 files range from over 380B
to 120MB. We collect trace data from one client terminal,
which is bond to one of the 4 warehouses. There are 200
transactions generated from this client terminal. The dis-
tribution of these transaction is 45% new order, 43% pay-
ment, 4% order status, 4% delivery, and 4% store level.
In this set of simulation, we use 4K as physical block size
and 1 as block group size. In Table 4, we show the com-
parison of with and without iSCSI initiator caching. The
network bandwidth is 100Mbps and the network latency is
1msec. There are 724888 blocks accessed from cache. We
also run simulations for other network configuration, which

Table 4. Comparison of w/ and w/o iSCSI
initiator caching bandwidth=100Mbps la-
tency=1msec

Time (sec) w/ cache w/o cache
reading blocks 29.5 5785.5
total 50.2 5806.3

show the performance will be intolerable without caching
as iSCSI-based systems extend to WAN.

Our cache consistency scheme employs callback mech-
anism. A SCSI write command will be blocked at an iSCSI
target until all response for callback requests are received.
Therefore, access patterns for blocks will affect effective-
ness of caching and performance of caching consistency
control scheme. Still using the aforementioned TPC-C con-
figuration, we run simulations three times with 2, 3, and 4
client terminals, respectively. Each simulation is run for
3600 seconds. In each simulation, only one client is re-
peatedly writing 10 physical blocks. For the other clients,
they are repeatedly reading the same 10 physical blocks.
Each reading and each writing is a single transaction, so
no deadlock could happen. The result show that as the
number of concurrent readers increases, the single writer
spends more time on getting block from iSCSI target. This
is caused by two reasons. First, with higher concurrency,
writing command conflicts more with reading command.
Secondly, with more reader, there is a higher chance that
when a write command is sent, a copy of the requested
block is cached on some other clients.

References

[1] D. Roselli, J. Lorch, and T. Anderson. A comparison of file
system workloads. InIn Proceedings of USENIX Technical
Conference, pages 41–54, San Diego, California, June 2000.

[2] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E.
Zeidner.iSCSI. IP Storage Working Group, January 2003.

[3] Y. Lu and D. Du. Performance study of iscsi-based storage
subsystems.IEEE Communication Magazine, 41(8):76–82,
2003.

[4] R. Burns, R. Rees, and D. Long. Semi-preemptible locks
for a distributed file system. InIn proceedings of the 2000
International Performance Computing and Communication
Conference(IPCCC), Phoenix, AZ, February 2000.

[5] S. Tang, Y. Lu, and D. Du. Performance study of software-
based iscsi security. InProceedings of First International
IEEE Security in Storage Workshop, pages 70–79, 2002.

[6] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E.
Siegel, and D. Steere. Coda: A highly available file system
for a distributed workstation environment.IEEE Transac-
tions on Computers, 39(4):447–459, 1990.

105


