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Abstract

Promote-ITis an efficient heuristic scheduler that provides QoS gueesnfor
accessing data from tertiary storage. It can deal with a wadity of requests and
jukebox hardware. It provides short response and confioméitnes, and makes good
use of the jukebox resources. It separatestmedulinganddispatchingfunctionality
and effectively uses this separation to dispatch taskseed#nan scheduled, provided
that the resource constraints are respected and no tasksitisgleadline.

To prove the efficiency of Promote-IT we implemented altémesschedulers based
on different scheduling models and scheduling paradigmbke &valuation shows
that Promote-IT performs better than the other heuristitedalers. Additionally,
Promote-IT provides response-times near the optimum iescagere the optimal
scheduler can be computed.

1 Introduction

Today multimedia data is generally stored in secondarnagKhard disks) and is from
there delivered to the users. However, the amount of staragacity needed for a multi-
media archive is large and constantly growing with the etqiens of the users. Tertiary-
storage jukeboxes can provide the required storage cgpaeih attractive way if the data
can be accessed with real-time guarantees.

A jukebox is a large tertiary storage device that can access data frtarga number

of removable storage media (RSM, for example DVDs or tapsgigua small number of
drives and one or more robots to move RSM between their shahethe drives. A central
problem with this setup is that the RSM switching times aghhin the order of tens of
seconds. Thus, multiplexing between files may be many oaferegnitudes slower than
on a hard drive, where it takes only a few milliseconds. Thmsd important problem is
the potential for resource contention that results fromstiered resources in the jukebox.

We use the terrjukeboxto refer to any type oRobotic Storage Library (RSL)
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Our hierarchical multimedia archive (HMAIs a service that provides flexible real-time
access to data stored in tertiary storage. The HMA can sem®lex requests for the
real-time delivery of any combination of media files it streA request consists of a
deadline and a set eéquest unitgor individual files (or part of files). Such requests can
for instance result from a database query to compile a estidsackground for news on-
the-fly, or from a personalized entertainment program &imgj of music video clips. The
HMA can also be used to provide real-time guarantees in tbessoof scientific data, e.qg.,
earth measurements, weather forecast. In the latter dasesspecially important to be
able to tell the users in advance when the data will be availatsecondary storage.

Tertiary storage plays an important role in supercompuéngironments and scientific
computing. Essential to these environments is the captxital with petabytes of data
that must be easily accessible to geographically diseibstientists. The storage hierarchy
that stores the data must be transparent to the users, éacém delays of accessing data
in tertiary storage. The IEEE Mass Storage System Referbtomel [7] describes the
characteristics such systems should posses. Multigerchical storage management
(HSM) systems have been developed, both conforming to the refenmodel and prior
to it. Some examples are the High Performance Storage Sy$tBi8S) of the National
Storage Laboratory [23], and the Storage and Archive Mankde System (SAM-FS)
of Fujitsu [9]. The openness of the reference model pernmiiadlude specific real-time
services as future interfaces [23]. However, no HSM so fapstis real-time services.
Our HMA can be incorporated in the reference model &csage Servecomponent.

The HMA uses secondary storage as a buffer and cache for thendiés tertiary-storage
jukeboxes. Thgukebox scheduleis the key component of the HMA that guarantees the
in-time promotion of data from tertiary storage to secogddorage. Apart from providing
real-time guarantees, the scheduler also tries to minithe@umber of rejected requests,
minimize the response time for ASAP requests, minimize trdiomation time, and opti-
mize hardware utilization.

We use a new design of jukebox schedulers, wheresthedulinganddispatchingfunc-
tionality are clearly separated. This separation allowsousprove the performance of
the system, because the optimality criteria of both fumdtiare different. The goal of the
schedule builders to find feasible schedules for the requested data. Thassdheduler
tries to build schedules as flexible as possible and is nataroed about the optimal use of
the resources. Thaispatcheyinstead, is concerned about utilizing the jukebox reseairc
in an efficient manner. We introduce the concepeafly dispatching by which a dis-
patcher can dispatch the tasks earlier than scheduled gasaime resource constraints are
respected and no task misses its deadline.

The first step to build an efficient scheduler is to understardscheduling problem thor-
oughly. On the one hand, weodel the hardwarand identify the parameters that define
the hardware behavior. Our model is flexible and can reptesgnpresent and expected
future jukebox hardware. On the other hand, fmenalize the scheduling probleosing
scheduling theory so that its characteristics and comyiean be analyzed, and the prob-
lem can be classified and compared with other schedulindgmrab Given the complexity
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of the scheduling problem we are dealing with, there are nufifigrent ways in which it
can be modeled.

The most important of these models is tineéimum switching modelvhich models the
problem as dlexible flow shopwith three stages—Ioad, read, unload. The model uses
shared resources to guarantee mutual exclusion in the ubke gfkebox resources. This
model puts only a small restriction on the utilization of tlesources, which additionally
results in better use of the resources and system perfoend@he model requires that once
an RSM is loaded in a drive, all the requested data of the RSiglaid before the RSM is
unloaded. Thus, the schedules that can be built with thiseiwale a minimum number

of switches.

Promote-ITis based on the minimum switching model. For every incomeguest it
builds a new schedule that includes all the previously saleedrequest units plus the
request units of the new request. It uses an efficient haualkgorithm to find a solution
to an instance of the minimum switching model on-line. Prt¥id can deal with any
type of request and jukebox hardware. Additionally, it pd@s short response times and
confirmation times, and makes good use of the jukebox ressurc

We defined different scheduling strategies for Promoteafich vary in the way in which
the jobs are added to the schedule. These strategies caadsified ag-ront-to-Back
(earliest deadline first (EDFand earliest starting time first (ESTF)and Back-to-Front
(latest deadline last (LDLpnd latest starting time last (LST)L) When using Front-to-
Back, each job is scheduled as early as possible, while waitkBo-Front, each job is
scheduled as late as possible. When using Back-to-Framfdte-IT profits strongly from
the separation of scheduling and dispatching. The schedtdates schedules with idle
times that are used by the dispatcher to dispatch tasks. e@His combination proves
useful in many cases, especially when the use of a shared ibte bottleneck in the
system.

The rest of the paper is organized as follows. Section 2 dsasurelated work. Section 3
presents some more details about Promote-IT. Section d4aesal Promote-IT, comparing
it's capabilities and performance with that of other schedu Finally, Section 5 concludes
the paper.

2 Related Work

We first discuss two schedulers that can be used in a HMA. Itidde4 we compare the
performance of these schedulers with that of Promote-ITerLia this section we briefly
discuss schedulers for more simple requests, scheduldgrsmgolved contention problems
and schedulers for discrete-media.

Lau et al. [15] present an aperiodic scheduler for Videdamand systems that can use
two scheduling strategieaggressivandconservative\When using the aggressive strategy
each job is scheduled and dispatched as early as possible witen using the conserva-

tive strategy each job is scheduled and dispatched as |lpi@sagle. These two strategies
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are similar to the EDF and LDL strategies that we use in Preniibt An important differ-
ence between the strategies of Lau et al. and Promote-I&atstair strategies dispatch the
tasks in the same sequence and time as assigned in the seh&tuk, the conservative
strategy performs poorly, because it leaves the resoudbesdaven when there are tasks
that need executing. Another important difference is thairtalgorithm handles the jobs
to include in the schedule as formed byead taskand aswitch task The switch task is
scheduled as a unity, although it involves unloading the R&Med in the drive and load-
ing the new RSM. Lau et al. assume that all the drives areicbdraind that the switching
time is constant, independently of the drive and shelf wwdl The former assumption is
reasonable in many jukeboxes, but makes the algorithm wliffic generalize to the case
with non-identical drives. The latter assumption is nosogeble in most of the large juke-
boxes and forces the use of worst-case switching times wihiédiny the schedules. Using
more accurate switching times provides better schedules.

Federighi et al. [8] use requests similar to those of the HMAtheir system the videos

may be stored in multiple objects, with different sound keaand subtitles corresponding
to each video. The requests in their system heofé deadlinese.g., the data should be
available at around eight o’clock. Federighi et al. are hyamoncerned about balancing
the load on distributed video file servers, which are plagat the users [2]. An important
difference with our approach is that, even if the requestsisb of multiple objects, the

playback only begins once all the objects are availableeavittheo file servers. We refer to
this type of approach daully-Staged-Before-Starting (FSBS)

There are multiple proposals for scheduling continuoua dadred in one RSM [4, 6, 5,
21, 25, 11]. The main difference among these proposals ishehthe data should be fully
staged before starting, streamed directly to the userpaiipied (i.e., the data of a request
can be consumed while other data of the request is beingdjtagée show in our work
that pipelining the data is the best approach.

Various authors try to solve the problem of providing acdesgata contained in multiple
RSM, however their schedulers suffer from unsolved cormargroblems [1, 16, 12, 3].

Therefore, these schedulers cannot guarantee that themeadleadlines are always met.
We analyze the faults in these schedulers in [17].

There are numerous proposals for scheduling requestsdonetie data [24, 10, 22, 19, 20].
The goal of these schedulers is to minimize the average megpiime. In all cases, the
conclusion is that as much data as possible should be readanoRSM when the RSM

is loaded in the drive. These results support the minimunicéivig model that we use in
Promote-IT.

More et al. [20] are concerned with performing queries oradhaat is stored in multiple
tapes. Thus, a query may have multiple request units witreaktime constraints. Their
goal is to minimize the response time of each query. They ribdescheduling problem as
a two-machine flow-shop with additional constraints. Inthedel, the unload and load of
atape are coupled. They propose the longest transfer-tish éfiF) algorithm that for each
query starts reading first the data of the sub-queries thatneethe longest transfer time. If
there are multiple sub-queries for the same tape they use@fd algorithm proposed by
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Hillyer et al. [13] to decide the order in which the sub-qeershould be read. The rationale
behind the LtF algorithm is that while the data of the longest-query is being read, there
is time to switch the tapes on the other drives and read tlzecdatesponding to the shorter
sub-queries. Through analytical analysis and simulatioex show that LtF provides short
response times.

In our HMA we can represent the type of requests More et alcareerned with as a
request with multiple request units with the same delta lileagsee Section 3 for details
about the request of the HMA). The strategies of Promotdwil wise the latest starting time
as parameter to sort the jobs build similar schedules teetbbistF for this type of requests,
even if the length of the transfer is not the scheduling patanused by Promote-IT. Given
a set of RSM with the same deadline and different transfeeginthe ones with longer
transfer times will have earlier latest-starting-timefw$, these strategies of Promote-IT
will also schedule the RSM to begin earlier.

3 Promote-IT

A requestr;, which a user issues to the Hierarchical Multimedia Archigensist of a
deadline and a set @f request units.;; for individual files (or part of files). The request
can represent any kind of static temporal relation betwhemnréquest units. Formally we
express the user request structure in the following way:

T, = (CZZ, asap,, maXConlf, {Uﬂ, Uiy o v - ,uili})

uij = (Adij, mij, 0ij, Sij, bij)

Thedeadlined; of the request is the time by which the user must have guadrgtecess
to the data. The flagsap indicates if the request should be scheduled as soon adfgossi
The user may specify no deadling & o) if the only restriction is that the request should
be scheduled ASAP. The maximum confirmation timaxConf is the time the user is
willing to wait in order to get a confirmation from the systemhich indicates if the request
was accepted or rejected. The system must provide a confamizéfore making the data
available, sanaxConf < d;.

The relative deadline of the request uait;; is the time at which the data of the request
unit should be available, relative to the starting time eftbquest. The other parameters of
the request unit;;, o;;, s;; andb;; represent the RSM where the data is stored, the offset
in the RSM, the size of the data, and the bandwidth with wHiehuser wants to access the
data, respectively.

The starting time of the request must not be later than itglldeg sost, < Jk. If the
request is ASAP, the scheduler assigns the request thestgsbissible starting timst,
that will allow it to be incorporated into the system. Thuse scheduler must find the
minimum starting timest, that makeg/’ schedulable, wher&’ is the set of request units
that need scheduling. The scheduler tries different catelistarting timest; and selects
the earliest feasiblst;. assigns it the starting time corresponding to its deadlifiéhe
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deadline of the request cannot be met, then the schedulertipairequest in the list of
unscheduled requests until it can schedule itmaxConf is reached and the request is
rejected.

The structure of the scheduling algorithm of Promote-IThisfollowing:

1. Generate a candidate starting tiet¢ and update the deadline of each request unit
so thatdy; = sty + Ady;. The algorithm uses a variation of the bisection method for
finding roots of mathematical functions.

2. Modeli/’ as an instance of the minimum switching model. We representistance
of the problem by the sgf of jobs to schedule.

3. Compute thenedium scheduled~or each RSM, compute medium schedules—
one MS for each drive. Set the parameters of the duration aadlithe of the read
tasksT5; to the corresponding values of the computed MS

4. Compute the resource assignment. The algorithm mustdocate each jol; € J
into the schedule. If the algorithm succeeds in finding advadsource assignment,
the output of this step is a feasible schedtife otherwiseS* = (). The pair 6%, st})
is incorporated into the list of analyzed solutions.

5. Repeat from step 1 until the bisection stop-criteria iillied for the list of can-
didates, i.e. the time difference between the last unssfideand first successful
candidate is smaller than a threshold.

6. Select the best solution. The best solution is the eadasdidate starting time for
which step 4 could compute a feasible schedulen{st; | S* # (0}). If there is no
suchst}, the request;, is placed in the list of unscheduled requests to be scheduled
at a later time. Otherwise, the scheduler confirms the statitnest,, to the user and
replaces the active schedule with the new feasible schedule

In theminimum switching modelve limit the number of jobs to one per RSM. This model
requires that all the requested data from an RSM must be efadetthe RSM is unloaded
from a drive. The processing environment of our model ikexible flow showith three
stages ['F3). The first stage is to load an RSM to a drive, the second statgeread the
data from an RSM and the third is to unload the RSM. The job®tprbcessed are of the
form J; = {11;,T5;,T5; }, with one task for each stage.

Both the drives and robots may all have different charasties. Therefore, the processors
at each stage are modeledusselated In the first stage there atgrocessors representing
the [ loader robots. In the second stage thererarprocessors representing the drives.
In the third stage there are processors representing the unloader robots. The robots in
the first and third stage may have some elements in commonnratiek iworst case all
the elements will be the same: when all robots are able todnadunload. Because the
robots may be limited to serve only a subset of drives andsekgethere are jobs that can
be executed only in a subset of resources. In the model weatedthis by usingnachine
eligibility restrictions
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The processing time of a reading takk is determined by computing a separate schedule
for all request units that are grouped infp We call this schedule for an RSMNedium
Schedule (MS)An MS determines in which order the data must be read oncBR8M is

in the drive. As the drives may be non-identical, we compgeparate MS for each drive.
The optimization criterion for an MS is to maximize the tintendnich the RSM has to be
loaded in a drive to start reading data from it, in such a waytte deadlines of the request
units are met. In other words we want to determine the latessiple starting time of the
read. If the RSM is already loaded in a drive, the goal is td tbe requested data before
the RSM must be unloaded.

In step 4 we use a branch-and-bound algorithm to prune teeofrpossible assignments
of jukebox resources to the jobs.jn The branch-and-bound algorithm uses blest-drive
heuristicto choose which drive will be tried first to schedule a job amdne from the
tree the branches corresponding to drives which offer asveotution. When pruning the
tree, the algorithm may be throwing away a feasible soluti@t an optimal scheduler
would find. But searching the whole tree of solutions is cotaponally unacceptable. For
comparison, we have also implemented an optimal scheduleit can take up to several
days to compute a feasible schedule for one new requestirastto the few milliseconds
needed by Promote-IT.

The jobs are incorporated to the schedule using any of threstoategies presented in Sec-
tion 1. None of the strategies is absolutely better than thers, because each strategy
can find schedules that cannot be found by the others. Howe®aiF performs best in
most cases, and when the system load is very high it is coeneto use LDL. The dif-
ference in performance between the different strategies &l when compared with other
schedulers. Therefore, in the next section we use only ERAREBL as representatives of
Promote-IT.

4 Evaluation

To prove the efficiency of Promote-IT, we implemented akiiie schedulers based on
different scheduling models and scheduling paradigms.h@mhe hand, we designed two
new schedulers: thikebox early quantum scheduler (JEG@®) theoptimal scheduler

On the other hand, we extended some heuristic schedulegpeg®d in the literature (see
Section 2): theextended aggressive stratetjyeextended conservative strategydFully-
Staged-Before-Starting (FSB®)ur extensions are able to deal with the requests used in
the HMA, and with jukeboxes with different drive models andltiple robots. Further-
more, they do not assume constant switching and reading tififee extended schedulers
have better properties than the original ones, while stdling the features of the original
schedulers that we consider most important to evaluate.

Thejukebox early quantum scheduler (JEQS# periodic scheduler. The basic heuristic
used by a periodic scheduler is to represent the requestsrislip tasks. A restriction
of periodic schedulers is that they can be used only for sgeeial use cases of HMA,
as Video-on-Demand, because they are unable to deal witplegmequests. Addition-
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ally, periodic schedulers have serious problems in avgidasource-contention problems.
JEQS solves these problems by using the robots and drivesyidia way. The robot ex-
changes the contents of each drive at regular, fixed interi¥dilis results in a cyclic use of
the drives, which are dedicated to reading data of an RSMewhé other drives are being
served by the robot. To our best knowledge, JEQS is the ontgcioperiodic jukebox
scheduler. The other periodic jukebox schedulers predentéhe literature do not deal
correctly with the resource-contention problem.

JEQS uses the scheduling theoryeamly quantum tasks (EQpyesented in [14]. An early
guantum task is a task whose first instance is executed inetktegmantum after its arrival
and the rest of the instances are scheduled in a normal peviag with the release time
immediately after the first execution. Although, JEQS isegalty able to start incoming
requests in the next cycle of a drive, its performance is muatse than that of any of the
aperiodic schedulers.

The optimal schedulers a scheduler that computes the minimum response time &br ea
incoming request. The objective of this scheduler is to Bxles a baseline for evaluat-
ing the quality of the heuristic schedulers. The optimaksither cannot be used in a real
environment due to its computing-time requirements. Themating time increases expo-
nentially with the complexity of the requests and the sysiaad. Therefore, we can only
use it for evaluation of small test sets and relatively losteyn load. The comparisons that
we performed show that the performance of Promote-IT is thesoptimum, at least under
these special testing conditions.

The simulations shown in this section were performed witkeJools [18], using in each
case representative jukebox architectures and request Eetcept when evaluating the
optimal scheduler, the size of the cache is 10% of the jukelagacity. The number of
requests that can be handled by the schedulers in each ofahgkes shown depend on the
request set and the hardware used. In each of the individugbarisons all the schedulers
use the same request set and hardware simulation. As westrow,schedulers can handle
load better than others, and in general the load shown inrtqEhges is determined by the
load that can be handled by the most restrictive scheduieglmempared.

Figure 1(a) compares the response time of aperiodic anddgierschedulers. Aperiodic
scheduling is represented by Promote-IT and FSBS, pergmiieduling by JEQS. In this
comparison the performance of Promote-IT is represemtdtiv the performance of the
extended aggressive strategy and extended conservaiegst because the difference
in performance among these schedulers is negligible wherpaced with the difference
among Promote-IT, FSBS and JEQS. For JEQS we consider tvativas: scheduling
normal quantum tasks (shown in the plots as ‘JEQS’) and sdimgdonly EQTs (shown
in the plots as ‘JEQS only EQTS’). We use FSBS in this comparibecause even though
FSBS is very simple in many cases it performs better than JEQBS has a similar behav-
ior to a First-Come-First-Serve scheduler, which virtpatleans that no serious scheduling
is done. It first serves a request completely and only theroitiges access to the data of
the request.
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The request set consists of 1000 ASAP requests that follopfalistribution. Each request
corresponds to one long-video file, because of the restmisimposed by JEQS. To be able
to use JEQS the request must be only for data stored in one R@Mantiguous fashion.
Additionally, JEQS needs the data to be continuous-mediaeMusing Promote-IT the
request is split in request units of 100 MB in size. The retpieannot be rejected, i.e.,
deadline and maximum confirmation time are infinite. The dathe jukebox is stored in
double-layered DVDs and each video is stored completelynandisk. However, one disk
may store multiple videos.

The jukebox has four identical DVD drives and one robot. Tdalltime is between 21.8
and 24.8 seconds, while the unload time is between 14.3 addsgconds. The drives use
CAV technology and have a transfer speed that ranges betww@6rand 20.53 MBps and
a maximum access time of 0.17 seconds.

The response time of Promote-IT is much shorter than theoresptime of JEQS. As the
system load increases, the performance of FSBS is alsa biedte that of JEQS. JEQS
uses the resources poorly, because it performs multiplels@s for reading data from an
RSM. In contrast, Promote-IT and FSBS use the resourceseetfic by performing the
minimum amount of switches required to read the data.

The confirmation time of the aperiodic schedulers is shdhat that of JEQS (see Fig-
ure 1(b)). The main difference can be seen with ‘JEQS only QEcause this scheduler
waits to accept a request until it can schedule it as an EQThésystem load increases,
the possibilities of accepting a request as an EQT diminiaktiatally.

Periodic schedulers have a clear advantage over aperidslers in the computing time,
because they just need to evaluate a couple of formulae idedéa request is schedulable.
However, this advantage is not visible to the end user, whice®only the response time
and the confirmation time. When evaluating the performardtleeoptimal scheduler, we
will show that the computing time becomes an important patamwhen it influences the
confirmation time.

We conclude that periodic scheduling is a bad techniquectoeduling a jukebox, because
even the FSBS scheduler—which is extremely simple—in masgs performs better than
JEQS. The bad performance of JEQS is not a characteristitioparticular scheduler,
but is intrinsic to any periodic jukebox scheduler. A pertscheduler either needs to use
the robot in a cyclic way, or take into account the worst-dase for robot contention in
the execution time of the tasks. Therefore, when using a@erscheduler, the best-case
starting time for a request that does not produce a cachgthié maximum time needed to
switch all the drives, even if the system load is very low alhdréves are idle. In the same
scenario, the starting time for Promote-IT is in most casssthe time to load the RSM in
the drive and read the data of the first request unit. For FEBShe time needed to stage
all the data of the request.

The response time of Promote-IT is also shorter than thatSBS; as can be seen in
Figure 1(a). FSBS stages the whole file before giving acaesiset user. Therefore, the
response of FSBS has as lower limit the time to buffer the e/fitd, while the lower limit
for Promote-IT is the time to buffer the first request unit.
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Figure 3: Early vs. conservative dispatching

Moreover, Figure 2 shows that the difference in performamegveen Promote-IT and
FSBS is even bigger when the data of a request is stored inpeURSM. In this case,

FSBS needs to perform multiple switches before giving axt@eshe data, while in most
cases Promote-IT only needs to perform one switch to readatecorresponding to the
first request unit and the rest of the switches are perforrhadeader time, when the sched-
uler finds time for them. In this case the data in the jukebamsiis of 30% long videos,

30% short videos, 30% music and 10% discrete data. The regiodiew that pattern as

well. The data of a request may be stored in multiple RSM.

Figure 3(a) compares the response time of Promote-IT anekileeded conservative strat-
egy (denoted as 'Conservative’). The main difference betweDL and the extended con-
servative strategy is the early dispatching of the tasksth&ssystem load increases, the
difference in performance between Promote-IT and Conteevgrows very fast. At the
highest load level plotted, Conservative is unable to hatik load, because the waiting
gueue is too long. The test set is the same one describeddgrarong Promote-IT and
FSBS with the requested data stored in multiple RSM.

The response time and confirmation time of LDL and ESTF arg s@nilar when com-
pared against the corresponding times of Conservativeh&umore, when the system load
is high, LDL performs slightly better than ESTF. This reirdes the idea that Back-to-
Front is an interesting scheduling mechanism, when it islinad with early dispatching.

The confirmation time of Promote-IT is also lower than of Gawative (see Figure 3(b)).
Conservative often fails to schedule incoming requestsaliee the starting time they
should be assigned is too far into the future. Thus, the tqustay in the queue of un-
scheduled requests until the scheduler can incorporate tinéhe schedule.

The robot and drive utilization of Conservative is much l#smn that of LDL. When not
using early dispatching, the resources are left idle, el#hrere are tasks in the schedule.
Thus, when new requests arrive, their chances to be schitiduteediately are lower, even
when the system load is low, because the scheduler has t@sdded for the future.
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Figure 4. Uncoupled vs. Coupled load and unload. Mean Respbime

Figure 4 compares the response time of Promote-IT and tlemdst aggressive strategy
(denoted as 'Aggressive’). The main difference betweenréggjve and the ESTF strategy
of Promote-IT is that Aggressive couples the load and uniota single switch opera-
tion. This means that the RSM stay loaded in the drives umgildrives are needed again.
Therefore, Aggressive needs to perform first an unload baismg a drive, even if the
drive and the robot are idle before the request arrival.

When the system load is low and medium, Promote-IT provitester response times
than Aggressive. However, when the system load is high amtbibot is a clear bottleneck
in the system, as in the case plotted in Figure 4(a), Aggresss a better mean response
time than Promote-IT. In this situation, the response tifhAggressive is similar to that
of LDL, although Aggressive builds schedules Front-to4Band LDL builds them Back-
to-Front. However, Aggressive delays the last unload ofivaedrs much as possible, until
the drive is needed again, which is the original goal of a Baekront strategy. When the
system load is low or medium, it is highly probable that at tihee when a new request
arrives there are idle resources. Therefore, delaying th@ads as much as Aggressive
does affects the performance negatively. When the loadyis ihidoes not really matter,
because there is no opportunity to unload the drives eagh@m When the robot is
not a strong bottleneck, as in the case plotted in Figure #fimmote-IT provides shorter
response times than Aggressive, even under high systers.lbathis case unloading late
is not beneficial: also ESTF performs better than LDL.

The request set used to compare Promote-IT and Aggresdile same as the one used
for FSBS and the extended conservative strategy. The ‘B&sbdx’ has the same config-

uration as previously described, in this configuration thigot is a clear bottleneck. The

‘Slow Jukebox’ has four DVD drives based on CLV technologyhna transfer speed of

7.96 MBps and an maximum access time of 1.5 seconds.

Figure 5(a) shows that the response time provided by Preiiiatenear the optimal re-
sponse time. Moreover, the difference in response timedstiPromote-IT and the opti-
mal scheduler is smaller than the difference between Agyreand Promote-IT. The plots
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Figure 5: Heuristic vs. Optimal

indicate that the difference in response time between Pi@Toand the optimal is larger
as the system load increases. Therefore, we regret thatrwetain the optimal scheduler
with higher loads.

The computing time of the optimal scheduler increases exipioaily when the load of the

system increases, while the computation time of the heusshedulers is nearly con-
stant (see Figure 5(b)). The computing times of the optirdlaéduler are so high that the
scheduler cannot be used in an on-line system.

Additionally, we have observed that the optimal scheduterschot unload an RSM before
all the data has been read in any of the runs we have perforileslis an important result
in favor of the minimum switching model, on which Promotei$Tbased, because even if
the optimal scheduler has the possibility of performingintediate switches, it does not
do so.

The request set consists of 200 ASAP requests for long viddesoptimal scheduler does
not deal with the cache administration. Therefore, eachasijcorresponds to a different
video and the cache is empty at the beginning of the runs., There are no cache-hits.

The jukebox only contains long videos, which were generatetie same way as those
described in the comparison against JEQS. However, theirdéte jukebox is stored in

single-layered DVDs and the drives use CLV technology wittnaamsfer speed of 6.45
MBps and a constant access time of 0.1 seconds.

When building the request sets we have to make a trade-offdest keeping the number
of request units per request low and having more than onestguit per RSM. The com-
putational complexity of the optimal scheduler increasgmaentially with the number of
request units to schedule, so we should only split each fiee sSmall number of request
units. On the other hand, we want to give the optimal schedh&possibility to switch

an RSM without reading all the requested data from the RSMrdfore, it is desirable
to have more than one request unit per RSM. In the tests thahwowe here, we chose to
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Flexibility: hardware | ++ + ++ ++ — -
Response time —— + - ++ — it
Confirmation time + ++ + ++ — -
Computing time ++ ++ ++ ++ +++ —
Deal with high load + ++ —— ++ — —

Table 1: Summary of the performance comparison. The notased is: excellent{++),
very good ¢-+), good (), bad (), very bad (—), and unusable{—-).

chop the files in request units of 2.5 GB. Thus, the numberaiest units per request is
between 1 and 4 and the number of RSM involved is 1 or 2.

Throughout this section we have shown that Promote-IT pegabetter than the other
schedulers. However, the magnitude of the performancerdiite varies in each case. We
put the differences in context and compare all the scheslal®ong each other.

We evaluate the capacity of the schedulers to deal with flexibguests and hardware.
We also evaluate the schedulers regarding the responsectmi@mation time, computing
time and the capacity to deal with high load. Table 1 sumnearibe evaluation. The clas-
sification we assigned to the schedulers in the last fougoaites is the result of observing
their performance in multiple test setups. Although, thessification is quite subjective
and difficult to quantify, we believe that it reflects cortgdhe average performance of
the schedulers. Note that the original conservative andeagiye strategy and FSBS can
only handle very limited types of jukeboxes and requestse &ttensions we performed
are discussed in [17].

5 Conclusions

Through Promote-IT we show that tertiary storage can be afedtively in systems with
real-time requirements, for instance in a hierarchicaltimadia archive. However, careful
scheduling is needed in order to provide those guaranteesetthe resources efficiently,
and to provide short response times to the users. A perfaeneomparison of different
schedulers, shows that Promote-IT performs better thaatties heuristic schedulers, and
additionally provides response-times near the optimunases where the optimal sched-
uler can be evaluated.
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