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Abstract

Promote-IT is an efficient heuristic scheduler that provides QoS guarantees for
accessing data from tertiary storage. It can deal with a widevariety of requests and
jukebox hardware. It provides short response and confirmation times, and makes good
use of the jukebox resources. It separates theschedulinganddispatchingfunctionality
and effectively uses this separation to dispatch tasks earlier than scheduled, provided
that the resource constraints are respected and no task misses its deadline.

To prove the efficiency of Promote-IT we implemented alternative schedulers based
on different scheduling models and scheduling paradigms. The evaluation shows
that Promote-IT performs better than the other heuristic schedulers. Additionally,
Promote-IT provides response-times near the optimum in cases where the optimal
scheduler can be computed.

1 Introduction

Today multimedia data is generally stored in secondary storage (hard disks) and is from
there delivered to the users. However, the amount of storagecapacity needed for a multi-
media archive is large and constantly growing with the expectations of the users. Tertiary-
storage jukeboxes can provide the required storage capacity in an attractive way if the data
can be accessed with real-time guarantees.

A jukebox1 is a large tertiary storage device that can access data from alarge number
of removable storage media (RSM, for example DVDs or tapes) using a small number of
drives and one or more robots to move RSM between their shelves and the drives. A central
problem with this setup is that the RSM switching times are high, in the order of tens of
seconds. Thus, multiplexing between files may be many ordersof magnitudes slower than
on a hard drive, where it takes only a few milliseconds. The second important problem is
the potential for resource contention that results from theshared resources in the jukebox.

1We use the termjukeboxto refer to any type ofRobotic Storage Library (RSL)
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Our hierarchical multimedia archive (HMA)is a service that provides flexible real-time
access to data stored in tertiary storage. The HMA can serve complex requests for the
real-time delivery of any combination of media files it stores. A request consists of a
deadline and a set ofrequest unitsfor individual files (or part of files). Such requests can
for instance result from a database query to compile a historical background for news on-
the-fly, or from a personalized entertainment program consisting of music video clips. The
HMA can also be used to provide real-time guarantees in the access of scientific data, e.g.,
earth measurements, weather forecast. In the latter cases it is especially important to be
able to tell the users in advance when the data will be available in secondary storage.

Tertiary storage plays an important role in supercomputingenvironments and scientific
computing. Essential to these environments is the capacityto deal with petabytes of data
that must be easily accessible to geographically distributed scientists. The storage hierarchy
that stores the data must be transparent to the users, exceptfor the delays of accessing data
in tertiary storage. The IEEE Mass Storage System ReferenceModel [7] describes the
characteristics such systems should posses. Multiplehierarchical storage management
(HSM) systems have been developed, both conforming to the reference model and prior
to it. Some examples are the High Performance Storage System(HPSS) of the National
Storage Laboratory [23], and the Storage and Archive Manager File System (SAM-FS)
of Fujitsu [9]. The openness of the reference model permits to include specific real-time
services as future interfaces [23]. However, no HSM so far supports real-time services.
Our HMA can be incorporated in the reference model as aStorage Servercomponent.

The HMA uses secondary storage as a buffer and cache for the data in its tertiary-storage
jukeboxes. Thejukebox scheduleris the key component of the HMA that guarantees the
in-time promotion of data from tertiary storage to secondary storage. Apart from providing
real-time guarantees, the scheduler also tries to minimizethe number of rejected requests,
minimize the response time for ASAP requests, minimize the confirmation time, and opti-
mize hardware utilization.

We use a new design of jukebox schedulers, where theschedulinganddispatchingfunc-
tionality are clearly separated. This separation allows usto improve the performance of
the system, because the optimality criteria of both functions are different. The goal of the
schedule builderis to find feasible schedules for the requested data. Thus, the scheduler
tries to build schedules as flexible as possible and is not concerned about the optimal use of
the resources. Thedispatcher, instead, is concerned about utilizing the jukebox resources
in an efficient manner. We introduce the concept ofearly dispatching, by which a dis-
patcher can dispatch the tasks earlier than scheduled as long as the resource constraints are
respected and no task misses its deadline.

The first step to build an efficient scheduler is to understandthe scheduling problem thor-
oughly. On the one hand, wemodel the hardwareand identify the parameters that define
the hardware behavior. Our model is flexible and can represent any present and expected
future jukebox hardware. On the other hand, weformalize the scheduling problemusing
scheduling theory so that its characteristics and complexity can be analyzed, and the prob-
lem can be classified and compared with other scheduling problems. Given the complexity
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of the scheduling problem we are dealing with, there are manydifferent ways in which it
can be modeled.

The most important of these models is theminimum switching model, which models the
problem as aflexible flow shopwith three stages—load, read, unload. The model uses
shared resources to guarantee mutual exclusion in the use ofthe jukebox resources. This
model puts only a small restriction on the utilization of theresources, which additionally
results in better use of the resources and system performance. The model requires that once
an RSM is loaded in a drive, all the requested data of the RSM isread before the RSM is
unloaded. Thus, the schedules that can be built with this model have a minimum number
of switches.

Promote-IT is based on the minimum switching model. For every incoming request it
builds a new schedule that includes all the previously scheduled request units plus the
request units of the new request. It uses an efficient heuristic algorithm to find a solution
to an instance of the minimum switching model on-line. Promote-IT can deal with any
type of request and jukebox hardware. Additionally, it provides short response times and
confirmation times, and makes good use of the jukebox resources.

We defined different scheduling strategies for Promote-IT,which vary in the way in which
the jobs are added to the schedule. These strategies can be classified asFront-to-Back
(earliest deadline first (EDF)and earliest starting time first (ESTF)) and Back-to-Front
(latest deadline last (LDL)and latest starting time last (LSTL)). When using Front-to-
Back, each job is scheduled as early as possible, while with Back-to-Front, each job is
scheduled as late as possible. When using Back-to-Front, Promote-IT profits strongly from
the separation of scheduling and dispatching. The scheduler creates schedules with idle
times that are used by the dispatcher to dispatch tasks early. This combination proves
useful in many cases, especially when the use of a shared robot is the bottleneck in the
system.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
presents some more details about Promote-IT. Section 4 evaluates Promote-IT, comparing
it’s capabilities and performance with that of other schedulers. Finally, Section 5 concludes
the paper.

2 Related Work

We first discuss two schedulers that can be used in a HMA. In Section 4 we compare the
performance of these schedulers with that of Promote-IT. Later in this section we briefly
discuss schedulers for more simple requests, schedulers with unsolved contention problems
and schedulers for discrete-media.

Lau et al. [15] present an aperiodic scheduler for Video-on-Demand systems that can use
two scheduling strategies:aggressiveandconservative. When using the aggressive strategy
each job is scheduled and dispatched as early as possible, while when using the conserva-
tive strategy each job is scheduled and dispatched as late aspossible. These two strategies
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are similar to the EDF and LDL strategies that we use in Promote-IT. An important differ-
ence between the strategies of Lau et al. and Promote-IT is that their strategies dispatch the
tasks in the same sequence and time as assigned in the schedule. Thus, the conservative
strategy performs poorly, because it leaves the resources idle, even when there are tasks
that need executing. Another important difference is that their algorithm handles the jobs
to include in the schedule as formed by aread taskand aswitch task. The switch task is
scheduled as a unity, although it involves unloading the RSMloaded in the drive and load-
ing the new RSM. Lau et al. assume that all the drives are identical and that the switching
time is constant, independently of the drive and shelf involved. The former assumption is
reasonable in many jukeboxes, but makes the algorithm difficult to generalize to the case
with non-identical drives. The latter assumption is not reasonable in most of the large juke-
boxes and forces the use of worst-case switching times when building the schedules. Using
more accurate switching times provides better schedules.

Federighi et al. [8] use requests similar to those of the HMA.In their system the videos
may be stored in multiple objects, with different sound tracks and subtitles corresponding
to each video. The requests in their system havesoft deadlines, e.g., the data should be
available at around eight o’clock. Federighi et al. are mainly concerned about balancing
the load on distributed video file servers, which are placed near the users [2]. An important
difference with our approach is that, even if the requests consist of multiple objects, the
playback only begins once all the objects are available at the video file servers. We refer to
this type of approach asFully-Staged-Before-Starting (FSBS).

There are multiple proposals for scheduling continuous data stored in one RSM [4, 6, 5,
21, 25, 11]. The main difference among these proposals is whether the data should be fully
staged before starting, streamed directly to the user, or pipelined (i.e., the data of a request
can be consumed while other data of the request is being staged). We show in our work
that pipelining the data is the best approach.

Various authors try to solve the problem of providing accessto data contained in multiple
RSM, however their schedulers suffer from unsolved contention problems [1, 16, 12, 3].
Therefore, these schedulers cannot guarantee that the real-time deadlines are always met.
We analyze the faults in these schedulers in [17].

There are numerous proposals for scheduling requests for discrete data [24, 10, 22, 19, 20].
The goal of these schedulers is to minimize the average response time. In all cases, the
conclusion is that as much data as possible should be read from an RSM when the RSM
is loaded in the drive. These results support the minimum switching model that we use in
Promote-IT.

More et al. [20] are concerned with performing queries on data that is stored in multiple
tapes. Thus, a query may have multiple request units withoutreal-time constraints. Their
goal is to minimize the response time of each query. They model the scheduling problem as
a two-machine flow-shop with additional constraints. In their model, the unload and load of
a tape are coupled. They propose the longest transfer-time first (LtF) algorithm that for each
query starts reading first the data of the sub-queries that require the longest transfer time. If
there are multiple sub-queries for the same tape they use theSORT algorithm proposed by
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Hillyer et al. [13] to decide the order in which the sub-queries should be read. The rationale
behind the LtF algorithm is that while the data of the longestsub-query is being read, there
is time to switch the tapes on the other drives and read the data corresponding to the shorter
sub-queries. Through analytical analysis and simulationsthey show that LtF provides short
response times.

In our HMA we can represent the type of requests More et al. areconcerned with as a
request with multiple request units with the same delta deadline (see Section 3 for details
about the request of the HMA). The strategies of Promote-IT that use the latest starting time
as parameter to sort the jobs build similar schedules to those of LtF for this type of requests,
even if the length of the transfer is not the scheduling parameter used by Promote-IT. Given
a set of RSM with the same deadline and different transfer times, the ones with longer
transfer times will have earlier latest-starting-times. Thus, these strategies of Promote-IT
will also schedule the RSM to begin earlier.

3 Promote-IT

A requestri, which a user issues to the Hierarchical Multimedia Archive, consist of a
deadline and a set ofli request unitsuij for individual files (or part of files). The request
can represent any kind of static temporal relation between the request units. Formally we
express the user request structure in the following way:

ri = (d̃i, asapi, maxConfi, {ui1, ui2, . . . , uili})

uij = (∆d̃ij, mij , oij, sij, bij)

Thedeadlined̃i of the request is the time by which the user must have guaranteed access
to the data. The flagasapi indicates if the request should be scheduled as soon as possible.
The user may specify no deadline (d̃i = ∞) if the only restriction is that the request should
be scheduled ASAP. The maximum confirmation timemaxConfi is the time the user is
willing to wait in order to get a confirmation from the system,which indicates if the request
was accepted or rejected. The system must provide a confirmation before making the data
available, somaxConfi ≤ d̃i.

The relative deadline of the request unit∆d̃ij is the time at which the data of the request
unit should be available, relative to the starting time of the request. The other parameters of
the request unitmij , oij , sij andbij represent the RSM where the data is stored, the offset
in the RSM, the size of the data, and the bandwidth with which the user wants to access the
data, respectively.

The starting time of the request must not be later than its deadline, sostk ≤ d̃k. If the
request is ASAP, the scheduler assigns the request the earliest possible starting timestk
that will allow it to be incorporated into the system. Thus, the scheduler must find the
minimum starting timestk that makesU ′ schedulable, whereU ′ is the set of request units
that need scheduling. The scheduler tries different candidate starting timesstxk and selects
the earliest feasiblestxk. assigns it the starting time corresponding to its deadline. If the

105



deadline of the request cannot be met, then the scheduler puts the request in the list of
unscheduled requests until it can schedule it ormaxConfi is reached and the request is
rejected.

The structure of the scheduling algorithm of Promote-IT is the following:

1. Generate a candidate starting timestx
k and update the deadline of each request unit

so thatd̃kj = stxk + ∆d̃kj. The algorithm uses a variation of the bisection method for
finding roots of mathematical functions.

2. ModelU ′ as an instance of the minimum switching model. We represent the instance
of the problem by the setJ of jobs to schedule.

3. Compute themedium schedules. For each RSM, computem medium schedules—
one MS for each drive. Set the parameters of the duration and deadline of the read
tasksT2j to the corresponding values of the computed MS

4. Compute the resource assignment. The algorithm must incorporate each jobJj ∈ J
into the schedule. If the algorithm succeeds in finding a valid resource assignment,
the output of this step is a feasible scheduleSx; otherwiseSx = ∅. The pair (Sx, stxk)
is incorporated into the list of analyzed solutions.

5. Repeat from step 1 until the bisection stop-criteria is fulfilled for the list of can-
didates, i.e. the time difference between the last unsuccessful and first successful
candidate is smaller than a threshold.

6. Select the best solution. The best solution is the earliest candidate starting time for
which step 4 could compute a feasible schedule (min{stxk | Sx 6= ∅}). If there is no
suchstxk, the requestrk is placed in the list of unscheduled requests to be scheduled
at a later time. Otherwise, the scheduler confirms the starting timestk to the user and
replaces the active schedule with the new feasible schedule.

In theminimum switching modelwe limit the number of jobs to one per RSM. This model
requires that all the requested data from an RSM must be read before the RSM is unloaded
from a drive. The processing environment of our model is aflexible flow shopwith three
stages (FF3). The first stage is to load an RSM to a drive, the second stage is to read the
data from an RSM and the third is to unload the RSM. The jobs to be processed are of the
form Jj = {T1j , T2j , T3j}, with one task for each stage.

Both the drives and robots may all have different characteristics. Therefore, the processors
at each stage are modeled asunrelated. In the first stage there arel processors representing
the l loader robots. In the second stage there arem processors representing the drives.
In the third stage there areu processors representing the unloader robots. The robots in
the first and third stage may have some elements in common and in the worst case all
the elements will be the same: when all robots are able to loadand unload. Because the
robots may be limited to serve only a subset of drives and shelves, there are jobs that can
be executed only in a subset of resources. In the model we indicate this by usingmachine
eligibility restrictions.

106



The processing time of a reading taskT2j is determined by computing a separate schedule
for all request units that are grouped intoJj. We call this schedule for an RSM aMedium
Schedule (MS). An MS determines in which order the data must be read once theRSM is
in the drive. As the drives may be non-identical, we compute aseparate MS for each drive.
The optimization criterion for an MS is to maximize the time at which the RSM has to be
loaded in a drive to start reading data from it, in such a way that the deadlines of the request
units are met. In other words we want to determine the latest possible starting time of the
read. If the RSM is already loaded in a drive, the goal is to read the requested data before
the RSM must be unloaded.

In step 4 we use a branch-and-bound algorithm to prune the tree of possible assignments
of jukebox resources to the jobs inJ . The branch-and-bound algorithm uses thebest-drive
heuristic to choose which drive will be tried first to schedule a job and prune from the
tree the branches corresponding to drives which offer a worse solution. When pruning the
tree, the algorithm may be throwing away a feasible solutionthat an optimal scheduler
would find. But searching the whole tree of solutions is computationally unacceptable. For
comparison, we have also implemented an optimal scheduler,but it can take up to several
days to compute a feasible schedule for one new request, in contrast to the few milliseconds
needed by Promote-IT.

The jobs are incorporated to the schedule using any of the four strategies presented in Sec-
tion 1. None of the strategies is absolutely better than the others, because each strategy
can find schedules that cannot be found by the others. However, ESTF performs best in
most cases, and when the system load is very high it is convenient to use LDL. The dif-
ference in performance between the different strategies issmall when compared with other
schedulers. Therefore, in the next section we use only ESTF and LDL as representatives of
Promote-IT.

4 Evaluation

To prove the efficiency of Promote-IT, we implemented alternative schedulers based on
different scheduling models and scheduling paradigms. On the one hand, we designed two
new schedulers: thejukebox early quantum scheduler (JEQS)and theoptimal scheduler.
On the other hand, we extended some heuristic schedulers proposed in the literature (see
Section 2): theextended aggressive strategy, theextended conservative strategyandFully-
Staged-Before-Starting (FSBS). Our extensions are able to deal with the requests used in
the HMA, and with jukeboxes with different drive models and multiple robots. Further-
more, they do not assume constant switching and reading times. The extended schedulers
have better properties than the original ones, while still keeping the features of the original
schedulers that we consider most important to evaluate.

The jukebox early quantum scheduler (JEQS)is a periodic scheduler. The basic heuristic
used by a periodic scheduler is to represent the requests as periodic tasks. A restriction
of periodic schedulers is that they can be used only for some special use cases of HMA,
as Video-on-Demand, because they are unable to deal with complex requests. Addition-
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ally, periodic schedulers have serious problems in avoiding resource-contention problems.
JEQS solves these problems by using the robots and drives in acyclic way. The robot ex-
changes the contents of each drive at regular, fixed intervals. This results in a cyclic use of
the drives, which are dedicated to reading data of an RSM while the other drives are being
served by the robot. To our best knowledge, JEQS is the only correct periodic jukebox
scheduler. The other periodic jukebox schedulers presented in the literature do not deal
correctly with the resource-contention problem.

JEQS uses the scheduling theory onearly quantum tasks (EQT)presented in [14]. An early
quantum task is a task whose first instance is executed in the next quantum after its arrival
and the rest of the instances are scheduled in a normal periodic way with the release time
immediately after the first execution. Although, JEQS is generally able to start incoming
requests in the next cycle of a drive, its performance is muchworse than that of any of the
aperiodic schedulers.

Theoptimal scheduleris a scheduler that computes the minimum response time for each
incoming request. The objective of this scheduler is to be used as a baseline for evaluat-
ing the quality of the heuristic schedulers. The optimal scheduler cannot be used in a real
environment due to its computing-time requirements. The computing time increases expo-
nentially with the complexity of the requests and the systemload. Therefore, we can only
use it for evaluation of small test sets and relatively low system load. The comparisons that
we performed show that the performance of Promote-IT is nearthe optimum, at least under
these special testing conditions.

The simulations shown in this section were performed with JukeTools [18], using in each
case representative jukebox architectures and request sets. Except when evaluating the
optimal scheduler, the size of the cache is 10% of the jukeboxcapacity. The number of
requests that can be handled by the schedulers in each of the examples shown depend on the
request set and the hardware used. In each of the individual comparisons all the schedulers
use the same request set and hardware simulation. As we show,some schedulers can handle
load better than others, and in general the load shown in the graphics is determined by the
load that can be handled by the most restrictive scheduler being compared.

Figure 1(a) compares the response time of aperiodic and periodic schedulers. Aperiodic
scheduling is represented by Promote-IT and FSBS, periodicscheduling by JEQS. In this
comparison the performance of Promote-IT is representative for the performance of the
extended aggressive strategy and extended conservative strategy, because the difference
in performance among these schedulers is negligible when compared with the difference
among Promote-IT, FSBS and JEQS. For JEQS we consider two variations: scheduling
normal quantum tasks (shown in the plots as ‘JEQS’) and scheduling only EQTs (shown
in the plots as ‘JEQS only EQTs’). We use FSBS in this comparison, because even though
FSBS is very simple in many cases it performs better than JEQS. FSBS has a similar behav-
ior to a First-Come-First-Serve scheduler, which virtually means that no serious scheduling
is done. It first serves a request completely and only then it provides access to the data of
the request.
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Figure 1: Aperiodic vs. periodic scheduling.
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Figure 2: Pipelining vs. full staging. Mean Response Time.
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The request set consists of 1000 ASAP requests that follow a Zipf distribution. Each request
corresponds to one long-video file, because of the restrictions imposed by JEQS. To be able
to use JEQS the request must be only for data stored in one RSM in a contiguous fashion.
Additionally, JEQS needs the data to be continuous-media. When using Promote-IT the
request is split in request units of 100 MB in size. The requests cannot be rejected, i.e.,
deadline and maximum confirmation time are infinite. The datain the jukebox is stored in
double-layered DVDs and each video is stored completely in one disk. However, one disk
may store multiple videos.

The jukebox has four identical DVD drives and one robot. The load time is between 21.8
and 24.8 seconds, while the unload time is between 14.3 and 17.4 seconds. The drives use
CAV technology and have a transfer speed that ranges between7.96 and 20.53 MBps and
a maximum access time of 0.17 seconds.

The response time of Promote-IT is much shorter than the response time of JEQS. As the
system load increases, the performance of FSBS is also better than that of JEQS. JEQS
uses the resources poorly, because it performs multiple switches for reading data from an
RSM. In contrast, Promote-IT and FSBS use the resources efficiently by performing the
minimum amount of switches required to read the data.

The confirmation time of the aperiodic schedulers is shorterthat that of JEQS (see Fig-
ure 1(b)). The main difference can be seen with ‘JEQS only EQTs’, because this scheduler
waits to accept a request until it can schedule it as an EQT. Asthe system load increases,
the possibilities of accepting a request as an EQT diminish drastically.

Periodic schedulers have a clear advantage over aperiodic schedulers in the computing time,
because they just need to evaluate a couple of formulae to decide if a request is schedulable.
However, this advantage is not visible to the end user, who notices only the response time
and the confirmation time. When evaluating the performance of the optimal scheduler, we
will show that the computing time becomes an important parameter when it influences the
confirmation time.

We conclude that periodic scheduling is a bad technique for scheduling a jukebox, because
even the FSBS scheduler—which is extremely simple—in many cases performs better than
JEQS. The bad performance of JEQS is not a characteristic of this particular scheduler,
but is intrinsic to any periodic jukebox scheduler. A periodic scheduler either needs to use
the robot in a cyclic way, or take into account the worst-casetime for robot contention in
the execution time of the tasks. Therefore, when using a periodic scheduler, the best-case
starting time for a request that does not produce a cache-hitis the maximum time needed to
switch all the drives, even if the system load is very low and all drives are idle. In the same
scenario, the starting time for Promote-IT is in most cases just the time to load the RSM in
the drive and read the data of the first request unit. For FSBS it is the time needed to stage
all the data of the request.

The response time of Promote-IT is also shorter than that of FSBS, as can be seen in
Figure 1(a). FSBS stages the whole file before giving access to the user. Therefore, the
response of FSBS has as lower limit the time to buffer the whole file, while the lower limit
for Promote-IT is the time to buffer the first request unit.
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Figure 3: Early vs. conservative dispatching

Moreover, Figure 2 shows that the difference in performancebetween Promote-IT and
FSBS is even bigger when the data of a request is stored in multiple RSM. In this case,
FSBS needs to perform multiple switches before giving access to the data, while in most
cases Promote-IT only needs to perform one switch to read thedata corresponding to the
first request unit and the rest of the switches are performed at a later time, when the sched-
uler finds time for them. In this case the data in the jukebox consists of 30% long videos,
30% short videos, 30% music and 10% discrete data. The requests follow that pattern as
well. The data of a request may be stored in multiple RSM.

Figure 3(a) compares the response time of Promote-IT and theextended conservative strat-
egy (denoted as ’Conservative’). The main difference between LDL and the extended con-
servative strategy is the early dispatching of the tasks. Asthe system load increases, the
difference in performance between Promote-IT and Conservative grows very fast. At the
highest load level plotted, Conservative is unable to handle the load, because the waiting
queue is too long. The test set is the same one described for comparing Promote-IT and
FSBS with the requested data stored in multiple RSM.

The response time and confirmation time of LDL and ESTF are very similar when com-
pared against the corresponding times of Conservative. Furthermore, when the system load
is high, LDL performs slightly better than ESTF. This reinforces the idea that Back-to-
Front is an interesting scheduling mechanism, when it is combined with early dispatching.

The confirmation time of Promote-IT is also lower than of Conservative (see Figure 3(b)).
Conservative often fails to schedule incoming requests, because the starting time they
should be assigned is too far into the future. Thus, the requests stay in the queue of un-
scheduled requests until the scheduler can incorporate them to the schedule.

The robot and drive utilization of Conservative is much lessthan that of LDL. When not
using early dispatching, the resources are left idle, even if there are tasks in the schedule.
Thus, when new requests arrive, their chances to be scheduled immediately are lower, even
when the system load is low, because the scheduler has tasks scheduled for the future.
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Figure 4: Uncoupled vs. Coupled load and unload. Mean Response Time

Figure 4 compares the response time of Promote-IT and the extended aggressive strategy
(denoted as ’Aggressive’). The main difference between Aggressive and the ESTF strategy
of Promote-IT is that Aggressive couples the load and unloadinto a single switch opera-
tion. This means that the RSM stay loaded in the drives until the drives are needed again.
Therefore, Aggressive needs to perform first an unload before using a drive, even if the
drive and the robot are idle before the request arrival.

When the system load is low and medium, Promote-IT provides shorter response times
than Aggressive. However, when the system load is high and the robot is a clear bottleneck
in the system, as in the case plotted in Figure 4(a), Aggressive has a better mean response
time than Promote-IT. In this situation, the response time of Aggressive is similar to that
of LDL, although Aggressive builds schedules Front-to-Back and LDL builds them Back-
to-Front. However, Aggressive delays the last unload of a drive as much as possible, until
the drive is needed again, which is the original goal of a Back-to-Front strategy. When the
system load is low or medium, it is highly probable that at thetime when a new request
arrives there are idle resources. Therefore, delaying the unloads as much as Aggressive
does affects the performance negatively. When the load is high it does not really matter,
because there is no opportunity to unload the drives early anyhow. When the robot is
not a strong bottleneck, as in the case plotted in Figure 4(b), Promote-IT provides shorter
response times than Aggressive, even under high system loads. In this case unloading late
is not beneficial: also ESTF performs better than LDL.

The request set used to compare Promote-IT and Aggressive isthe same as the one used
for FSBS and the extended conservative strategy. The ‘Fast Jukebox’ has the same config-
uration as previously described, in this configuration the robot is a clear bottleneck. The
‘Slow Jukebox’ has four DVD drives based on CLV technology with a transfer speed of
7.96 MBps and an maximum access time of 1.5 seconds.

Figure 5(a) shows that the response time provided by Promote-IT is near the optimal re-
sponse time. Moreover, the difference in response time between Promote-IT and the opti-
mal scheduler is smaller than the difference between Aggressive and Promote-IT. The plots
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Figure 5: Heuristic vs. Optimal

indicate that the difference in response time between Promote-IT and the optimal is larger
as the system load increases. Therefore, we regret that we cannot run the optimal scheduler
with higher loads.

The computing time of the optimal scheduler increases exponentially when the load of the
system increases, while the computation time of the heuristic schedulers is nearly con-
stant (see Figure 5(b)). The computing times of the optimal scheduler are so high that the
scheduler cannot be used in an on-line system.

Additionally, we have observed that the optimal scheduler does not unload an RSM before
all the data has been read in any of the runs we have performed.This is an important result
in favor of the minimum switching model, on which Promote-ITis based, because even if
the optimal scheduler has the possibility of performing intermediate switches, it does not
do so.

The request set consists of 200 ASAP requests for long videos. The optimal scheduler does
not deal with the cache administration. Therefore, each request corresponds to a different
video and the cache is empty at the beginning of the runs. Thus, there are no cache-hits.

The jukebox only contains long videos, which were generatedin the same way as those
described in the comparison against JEQS. However, the datain the jukebox is stored in
single-layered DVDs and the drives use CLV technology with atransfer speed of 6.45
MBps and a constant access time of 0.1 seconds.

When building the request sets we have to make a trade-off between keeping the number
of request units per request low and having more than one request unit per RSM. The com-
putational complexity of the optimal scheduler increases exponentially with the number of
request units to schedule, so we should only split each file ina small number of request
units. On the other hand, we want to give the optimal scheduler the possibility to switch
an RSM without reading all the requested data from the RSM. Therefore, it is desirable
to have more than one request unit per RSM. In the tests that weshow here, we chose to

113



F
S

B
S

E
xt

en
de

d
A

gg
re

ss
iv

e
S

tr
at

eg
y

E
xt

en
de

d
C

on
se

rv
at

iv
e

S
tr

at
eg

y

P
ro

m
ot

e-
IT

JE
Q

S

O
pt

im
al

Flexibility: requests ++ ++ ++ ++ −− +

Flexibility: hardware ++ + ++ ++ − −

Response time −− + − ++ −− +++

Confirmation time + ++ + ++ − −−−

Computing time ++ ++ ++ ++ +++ −−−

Deal with high load + ++ −− ++ −− −−−

Table 1: Summary of the performance comparison. The notation used is: excellent (+++),
very good (++), good (+), bad (−), very bad (−−), and unusable (−−−).

chop the files in request units of 2.5 GB. Thus, the number of request units per request is
between 1 and 4 and the number of RSM involved is 1 or 2.

Throughout this section we have shown that Promote-IT performs better than the other
schedulers. However, the magnitude of the performance difference varies in each case. We
put the differences in context and compare all the schedulers among each other.

We evaluate the capacity of the schedulers to deal with flexible requests and hardware.
We also evaluate the schedulers regarding the response time, confirmation time, computing
time and the capacity to deal with high load. Table 1 summarizes the evaluation. The clas-
sification we assigned to the schedulers in the last four categories is the result of observing
their performance in multiple test setups. Although, the classification is quite subjective
and difficult to quantify, we believe that it reflects correctly the average performance of
the schedulers. Note that the original conservative and aggressive strategy and FSBS can
only handle very limited types of jukeboxes and requests. The extensions we performed
are discussed in [17].

5 Conclusions

Through Promote-IT we show that tertiary storage can be usedeffectively in systems with
real-time requirements, for instance in a hierarchical multimedia archive. However, careful
scheduling is needed in order to provide those guarantees, to use the resources efficiently,
and to provide short response times to the users. A performance comparison of different
schedulers, shows that Promote-IT performs better than theother heuristic schedulers, and
additionally provides response-times near the optimum in cases where the optimal sched-
uler can be evaluated.
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