
Clotho: Transparent Data Versioning
at the Block I/O Level

Michail D. Flouris
Department of Computer Science,

University of Toronto,

10 King’s College Road,

Toronto, Ontario M5S 3G4, Canada

Tel: +1-416-978-6610, Fax: +1-416-978-1931

e-mail: flouris@cs.toronto.edu

Angelos Bilas1

Institute of Computer Science

Foundation for Research and Technology - Hellas

Vassilika Vouton, P.O.Box 1385,

GR 711 10 Heraklion, Greece

Tel: +30-281-039-1600, Fax: +30-281-039-1601

e-mail: bilas@ics.forth.gr

Abstract

Recently storage management has emerged as one of the main
problems in building cost effective storage infrastructures. One
of the issues that contribute to management complexity of stor-
age systems is maintaining previous versions of data. Up till now
such functionality has been implemented by high-level applica-
tions or at the filesystem level. However, many modern systems
aim at higher scalability and do not employ such management
entities as filesystems.

In this paper we propose pushing the versioning functionality
closer to the disk by taking advantage of modern, block-level
storage devices. We presentClotho, a storage block abstraction
layer that allows transparent and automatic data versioning at the
block level. Clotho provides a set of mechanisms that can be
used to build flexible higher-level version management policies
that range from keeping all data modifications to version captur-
ing triggered by timers or other system events.

Overall, we find that our approach is promising in offloading sig-
nificant management overhead and complexity from higher sys-
tem layers to the disk itself and is a concrete step towards building
self-managed storage devices. Our specific contributions are: (i)
We implementClotho as a new layer in the block I/O hierarchy
in Linux and demonstrate that versioning can be performed at the
block level in a transparent manner. (ii) We investigate the impact
on I/O path performance overhead using both microbenchmarks
as well as SPEC SFS V3.0 over two real filesystems, Ext2FS and
ReiserFS. (iii) We examine techniques that reduce the memory
and disk space required for metadata information.

1. Introduction

Storage is currently emerging as one of the major prob-
lems in building tomorrow’s computing infrastructure. Fu-
ture systems will provide tremendous storage, CPU pro-

1Also, with the Department of Computer Science, University of Crete,
P.O. Box 2208, Heraklion, GR 714 09, Greece

cessing, and network transfer capacity in a cost-efficient
manner and they will be able to process and store ever in-
creasing amounts of data. The cost of managing these large
amounts of stored data becomes the dominant complex-
ity and cost factor for building, using, and operating mod-
ern storage systems. Recent studies [10] show that stor-
age expenditures represent more than 50% of the typical
server purchase price for applications such as OLTP (On-
Line Transaction Processing) or ERP (Enterprise Resource
Planning) and these percentages will keep growing. Fur-
thermore, the cost of storage administration is estimated at
several times the purchase price of the storage hardware
[2, 5, 7, 12, 33, 34, 36]. Thus, building self-managed stor-
age devices that reduce management-related overheads and
complexity is of paramount importance.

One of the most cumbersome management tasks that re-
quires human intervention is creating, maintaining, and
recovering previous versions of data for archival, dura-
bility, and other reasons. The problem is exacerbated as
the capacity and scale of storage systems increases. To-
day, backup is the main mechanism used to serve these
needs. However, traditional backup systems are limited in
the functionality they provide. Moreover they usually in-
cur high access and restore overheads on magnetic tapes,
they impose a very coarse granularity in the allowable
archival periods, usually at least one day, and they result
in significant management overheads [5, 27]. Automatic
versioning, in conjunction with increasing disk capacities,
has been proposed [5, 27] as a method to address these is-
sues. In particular, magnetic disks are becoming cheaper
and larger and it is projected that disk storage will soon be
as competitive as tape storage [5, 9]. With the advent of in-
expensive high-capacity disks, we can perform continuous,
real-time versioning and we can maintain online reposito-
ries of archived data. Moreover,online storage versioning
offers a new range of possibilities compared to simply re-
covering users’ files that are available today only in expen-

101



sive, high-end storage systems:

• Recovery from user mistakes. The users themselves
can recover accidentally deleted or modified data by
rolling-back to a saved version.

• Recovery from system corruption. In the event of
a malicious incident on a system, administrators can
quickly identify corrupted data as well as recover to a
previous, consistent system state [28, 30].

• Historical analysis of data modifications. When it is
necessary to understand how a piece of data has reached
a certain state, versioning proves a valuable tool.

Our goal in this paper is to provide online storage ver-
sioning capabilities in commodity storage systems, in a
transparent andcost-effective manner. Storage versioning
has been previously proposed and examined purely at the
filesystem level [24, 26] or at the block level [14, 31] but
being filesystem aware. These approaches to versioning
were intended for large, centralized storage servers or ap-
pliances. We argue that to build self-managed storage sys-
tems, versioning functionality should be pushed to lower
system layers, closer to the disk to offload higher system
layers [30]. This is made possible by underlying tech-
nologies that drive storage systems. Disk storage, network
bandwidth, processor speed, and main memory are reach-
ing speeds and capacities that make it possible to build
cost-effective storage systems with significant processing
capabilities [9, 11, 13, 22] that will be able to both store
vast amounts of information [13, 17] and to provide ad-
vanced functionality.

Our approach of providing online storage versioning is to
provide all related functionality at the block level. This
approach has a number of advantages compared to other
approaches that try to provide the same features either at
the application or the filesystem level. First, it provides
a higher level of transparency and in particular is com-
pletely filesystem agnostic. For instance, we have used
our versioned volumes with multiple, third party, filesys-
tems without the need for any modifications. Data snap-
shots can be taken on demand and previous versions can
be accessed online simultaneously with the current ver-
sion. Second, it reduces complexity in higher layers of
storage systems, namely the filesystem and storage man-
agement applications [15]. Third, it takes advantage of the
increased processing capabilities and memory sizes of ac-
tive storage nodes and offloads expensive host-processing
overheads to the disk subsystem, thus, increasing the scal-
ability of a storage archival system [15].

However, block-level versioning poses certain challenges
as well: (i) Memory and disk space overhead: Because we
only have access to blocks of information, depending on
application data access patterns, there is increased danger

for higher space overhead in storing previous versions of
data and the related metadata. (ii) I/O path performance
overhead: It is not clear at what cost versioning function-
ality can be provided at the block-level. (iii) Consistency
of the versioned data when the versioned volume is used in
conjunction with a filesystem. (iv) Versioning granularity:
Since versioning occurs at a lower system layer, informa-
tion about the content of data is not available, as is, for
instance, the case when versioning is implemented in the
filesystem or the application level. Thus, we only have ac-
cess to full volumes as opposed to individual files.

We designClotho2, a system that provides versioning at
the block-level and addresses all above issues, demonstrat-
ing that this can be done at minimal space and perfor-
mance overheads. First,Clotho has low memory space
overhead and uses a novel method to avoid copy-on-write
costs when the versioning extent size is larger than the
block size. Furthermore,Clotho employs off-linedifferen-
tial compression (or diffing) to reduce disk space overhead
for archived versions. Second, using advanced disk man-
agement algorithms,Clotho’s operation is reduced in all
cases to simply manipulating pointers in in-memory data
structures. Thus,Clotho’s common-path overhead follows
the rapidly increasing processor-memory curve and does
not depend on the much lower disk speeds. Third,Clotho
deals with version consistency by providing mechanisms
that can be used by higher system layers to guarantee that
either all data is consistent or to mark which data (files)
are not. Finally, we believe that volumes are an appropri-
ate granularity for versioning policies. Given the amounts
of information that will need to be managed in the future,
specifying volume-wide policies and placing files on vol-
umes with the appropriate properties, will result in more
efficient data management.

We implementClotho as an additional layer (driver) in
the I/O hierarchy of Linux. Our implementation approach
allows Clotho the flexibility to be inserted in many dif-
ferent points in the block layer hierarchy in a single ma-
chine, a clustered I/O system, or a SAN.Clotho works
over simple block devices such as a standard disk driver or
more advanced device drivers such as volume managers or
hardware/software RAIDs. Furthermore, our implementa-
tion provides to higher layers the abstraction of a standard
block device and thus, can be used by other disk drivers,
volume/storage managers, object stores or filesystems.

We evaluate our implementation with both microbench-
marks as well as real filesystems and the SPEC SFS 3.0
suite over NFS. The main memory overhead ofClotho for
metadata is about 500 Kbytes per GByte of disk space and
can be further reduced by using larger extents. Moreover,
the performance overhead ofClotho for I/O operations is

2Clotho, one of the Fates in ancient Greek mythology, spins the thread
of life for every mortal.

102



minimal, however, it may change the behavior of higher
layers (including the filesystem), especially if they make
implicit assumptions about the underlying block device,
e.g. the location of disk blocks. In such cases, co-design
of the two layers, or system tuning maybe necessary to
not degrade system performance. Overall, we find that our
approach is promising in offloading significant manage-
ment overhead and complexity from higher system layers
to the disk itself and is a concrete step towards building
self-managed storage systems.

The rest of this paper is organized as follows. Section 2.
presents our design and discusses the related challenges
in building block-level versioning systems. Section 3.
presents our implementation. Section 4. presents our ex-
perimental evaluation and results. Section 5. discusses re-
lated work, while section 6. presents limitations and future
work. Finally, Section 7. draws our conclusions.

2. System Design

The design ofClotho is driven by the following high-level
goals and challenges:

• Flexibility and transparency.

• Low metadata footprint and low disk space overhead.

• Low-overhead common I/O path operation.

• Consistent online snapshots.

Next we discuss how we address each of these challenges
separately.

2.1. Flexibility and Transparency

Clotho provides versioned volumes to higher system lay-
ers. These volumes look similar to ordinary physical disks
that can, however, be customized, based on user-defined
policies to keep previous versions of the data they store.
Essentially,Clotho provides a set of mechanisms that allow
the user to add time as a dimension in managing data by
creating and manipulating volume versions. Every piece
of data passing throughClotho is indexed based not only
on its location on the block device, but also on the time
the block was written. When a new version is created, a
subsequent write to a block will create a new block pre-
serving the previous version. Multiple writes to the same
data block between versions result in overwriting the same
block. UsingClotho, device versions can be captured ei-
ther on demand or automatically at prespecified periods.
The user can view and access all previous versions of the
data online, as independent block devices along with the
current version. The user can compact and/or delete previ-
ous volume versions. In this work we focus on the mech-

anismsClotho provides and we only present simple poli-
cies we have implemented and tested ourselves. We expect
that systems administrators will further define their own
policies in the context of higher-level storage management
tools.

Clotho provides a set of primitives (mechanisms) that
higher-level policies can use for automatic version man-
agement:

• CreateVersion() provides a mechanism for cap-
turing the lower-level block device’s state into a version.

• DeleteVersion() explicitly removes a previously
archived version and reclaims the corresponding vol-
ume space.

• ListVersions() shows all saved version of a spe-
cific block device.

• ViewVersion() enables creating a virtual device
that corresponds to a specific version of the volume and
is accessible in read-only mode.

• CompactVersion() and UncompactVer-
sion() provide the ability to compact and uncompact
existing versions for reducing disk space overhead.

Versions of a volume have the following properties: Each
version is identified by a uniqueversion number, which
is an integer counter starting from value 0 and increasing
with each new version. Version numbers are associated
with timestamps for presentation purposes. All blocks of
the device that are accessible to higher layers during a pe-
riod of time will be part of the version of the volume taken
at that moment (if any) and will be identified by the same
version number. Each of the archived versions exists solely
in read-only state and will be presented to the higher levels
of the block I/O hierarchy as a distinct, virtual, read-only
block device. The latest version of a device is both read-
able and writable, exists through the entire lifetime of the
Clotho’s operation, and cannot be deleted.

Clotho can be inserted arbitrarily in a system’s layered
block I/O hierarchy. This stackable driver concept has
been employed to design other block-level I/O abstrac-
tions, such as software RAID systems or volume man-
agers, in a clean and flexible manner [31]. Theinput
(higher) layer can be any filesystem or other block-level
abstraction or application, such as a RAID, volume man-
ager, or another storage system.Clotho accepts block
I/O requests (read, write, ioctl) from this layer. Similarly,
the output (lower) layer can be any other block device or
block-level abstraction. This design provides great flexibil-
ity in configuring a system’s block device hierarchy. Fig-
ure 1 shows some possible configurations forClotho. On
the left part of Figure 1,Clotho operates on top of a physi-
cal disk device. In the middle,Clotho acts as a wrapper of

103



FS, Database, NFS, etc.

Disk DiskDisk Disk ...

Virtual Block Volume

DiskDisk

RAID Controller

Disk ...

FS, Database, NFS, etc.

Clotho (Versioning Layer)

Clotho (Versioning Layer)

Clotho (Versioning Layer)

FS, Database, NFS, etc.

Figure 1:Clotho in the block device hierarchy.

a single virtual volume constructed by a volume manager,
which abstracts multiple physical disks. In this configura-
tion Clotho captures versions of the whole virtual volume.
On the right side of Figure 1,Clotho is layered on top of a
RAID controller which adds reliability to the system. The
result is a storage volume that is both versioned and can
tolerate disk failures.

Most higher level abstractions that are built on top of exist-
ing block devices assume a device of fixed size, with few
rare exceptions such as resizable filesystems. However,
the space taken by previous versions of data inClotho,
depends on the number and the amount of modified data
between them.Clotho can provide both a fixed size block
device abstraction to higher layers, as well as dynamically
resizable devices, if the higher layers support it. At device
initialization timeClotho reserves a configurable percent-
age of the available device space for keeping previous ver-
sions of the data. This essentially partitions (logically not
physically) the capacity of the wrapped device into two
logical segments as illustrated in Figure 2. ThePrimary
Data Segment (PDS), which contains the data of the cur-
rent (latest) version and theBackup Data Segment (BDS),
which contains all the data of the archived versions. When
BDS becomes full,Clotho simply returns an appropriate
error code and the user has to reclaim parts of the BDS
by deleting or compacting previous versions, or by mov-
ing them to some other device. These operations can also
be performed automatically by a module that implements
high-level data management policies. The latest version
of the block device continues to be available and usable at
all times. Clotho enforces this capacity segmentation by
reporting as its total size to the input layer, only the size
of the PDS. The space reserved for storing versions is hid-
den from the input layer and is accessed and managed only
through the API provided byClotho.

Finally, Clotho’s metadata needs to be saved on the output
device along with the actual data. Losing metadata used
for indexing extents would render the data stored through-
out the block I/O hierarchy unusable. This is similar to

most block-level abstractions, such as volume managers,
and software RAID devices.Clotho stores metadata to the
output device periodically. The size of the metadata de-
pends on the size of the encapsulated device and the extent
size. In general,Clotho’s metadata are much less than the
metadata of a typical filesystem and thus, saving them to
stable storage is not an issue.

2.2. Reducing Metadata Footprint

The three main types of metadata inClotho are theLogical
Extent Table (LXT), the Device Version List (DVL), and
theDevice Superblock (DSB).

TheLogical Extent Table (LXT) is a structure used for log-
ical to physical block translation.Clotho presents to the
input layerlogical block numbers as opposed to thephys-
ical block numbers provided by the wrapped device. Note
that these block numbers need not directly correspond to
actual physical locations, if another block I/O abstraction,
such as a volume manager (e.g. LVM [32]) is used as the
output layer.Clotho uses the LXT to translate logical block
numbers to physical block numbers.

The Device Version List (DVL) is a list of all versions of
the output device that are available to higher layers as sep-
arate block devices. For every existing version, it stores its
version number, the virtual device it may be linked to, the
version creation timestamp, and a number of flags.

The Device Superblock (DSB) is a small table contain-
ing important attributes of the output versioned device. It
stores information about the capacity of the input and out-
put device, the space partitioning, the size of the extents,
the sector and block size, the current version counter, the
number of existing versions and other usage counters.

The LXT is the most demanding type of metadata and is
conceptually an array indexed by block numbers. The ba-
sic block size for most block devices varies between 512
Bytes (the size of a disk sector) and 8 KBytes. This results

104



����������������
����������������
����������������
����������������

Output Layer Capacity

����
����
����
����

Input Layer Capacity

M
et

ad
at

a Data Segment
Segment

Backup
Data

Primary

Figure 2: Logical space segments inClotho.

in large memory requirements. For instance, for 1 TByte
of disk storage with 4-KByte blocks, the LXT has 256M
entries. In the current version ofClotho, every LXT en-
try is 128-bits (16 bytes). These include 32 bits for block
addressing and 32 bits for versions that allow for a prac-
tically unlimited number of versions. Thus, the LXT re-
quires about 4 GBytes per TByte of disk storage. Note that
a 32-bit address space, with 4 KByte blocks, can address
16 TBytes of storage.

To reduce the footprint of the LXT and at the same time
increase the addressing range of LXT, we useextents as
opposed to device blocks as our basic data unit. An extent
is a set of consecutive (logical and physical) blocks. Ex-
tents can be thought asClotho’s internal block size, which
one can configure to arbitrary sizes, up to several hundred
KBytes or a few MBytes. Similarly to physical and logi-
cal blocks, we denote extents as logical (input) extents or
physical (output) extents. We have implemented and tested
extent sizes ranging from 1 KByte to 64 KBytes. With 32-
KByte extents and subextent addressing, we need only 500
MBytes of memory per TByte of storage. Moreover with
a 32-KByte extent size we can address 128 TBytes of stor-
age.

However, large extent sizes may result in significant per-
formance overhead. When the extent size and the oper-
ating system block size forClotho block devices are the
same (e.g. 4KBytes),Clotho receives from the operating
system the full extent for which it has to create a full ver-
sion. When using extents larger than this maximum size,
Clotho sees only a subset of the extent for which it needs
to create a new version. Thus, it needs to copy the rest
of the extent in the new version, even though only a small
portion of it written by the higher system layers. This copy
can significantly decrease performance in the common I/O
path, especially for large extent sizes. However, large ex-
tents are desirable for reducing metadata footprint. Given
that operating systems support I/O blocks of up to a max-
imum size (e.g. 4K in Linux), this may result in severe
performance overheads.

0 1 0 0

4−KByte extent

0 0 01

32−KByte extent with
4−KByte subextents

Valid subextent
bitmap

Device Block Size (input and output): 4 Kbytes

Figure 3: Subextent addressing in large extents.

To address this problem we usesubextent addressing. Us-
ing a small (24-bit) bitmap in each LXT entry we need not
copy the whole extent in a partial update. Instead we just
translate the block write to a subextent of the same size and
mark it in the subextent bitmap as valid, using just 1 bit. In
a subsequent read operation we search for the valid subex-
tents in the LXT before translating the read operation. For
a 32-Kbyte extent size, we need only 8 bits in the bitmap
for 4-KByte subextents.

Another possible approach to reduce memory footprint is
to store only part of the metadata in main memory and
perform swapping of active metadata from stable storage.
However, this solution is not adequate for storage systems
where large amounts of data need to be addressed. More-
over it is orthogonal to subextent addressing and can be
combined with it.

2.3. Version Management Overhead

All version management operations can be performed at a
negligible cost by manipulating in-memory data structures.
Creating a new version inClotho involves simply incre-
menting the current version counter and does not involve
copying any data. WhenCreateVersion() is called,
Clotho stalls all incoming I/O requests for the time re-
quired to flush all its outstanding writes to the output layer.
When everything is synchronized on stable storage,Clotho
increases the current version counter, appends a new entry
to the device version list, and creates a new virtual block
device that can be used to access the captured version of
the output device, as explained later. Since each version
is linked to exactly one virtual device, the (OS-specific)
device number that sends the I/O request can be used to
retrieve the I/O request’s version.

The fact that device versioning is a low-overhead opera-
tion makes it possible to create flexible versioning poli-
cies. Versions can be created by external processes peri-
odically or based on system events. For instance, the user
processes can specify that it requires a new version every
1 hour, or whenever all files to the device are closed or on
every single write to the device. Some of the mechanisms
to detect such events, e.g. if there are any open files on a
device, may be (and currently are) implemented inClotho

105



but could also be provided by other system components.

In order to free backup disk space,Clotho provides a
mechanism to delete volume versions. On aDeleteV-
ersion() operation,Clotho traverses the primary LXT
segment and for every entry that has a version number
equal to the delete candidate, changes the version num-
ber to the next existing version number. It then traverses
the backup LXT segment and frees the related physi-
cal extents. As with version creation, all operations for
version deletion are performed in-memory and can over-
lap with regular I/O.DeleteVersion() is provided to
higher layer in order to implementversion cleaning poli-
cies. Since storage space is finite, such policies are neces-
sary in order to continue versioning without running out of
backup storage. Finally, even if the backup data segment
(BDS) is full, I/O to the primary data segment and the lat-
est version of data can continue without interruption.

2.4. Common I/O Path Overhead

We consider the common path forClotho, as the I/O path
to read and write to the latest (current) version of the out-
put block device, while versioning occurs frequently. Ac-
cesses to older versions are of less importance since they
are not expected to occur as frequently as current version
usage. Accordingly, we divide read and write access to
volume versions in two categories, accesses to the current
version and accesses to any previous version. The main
technique to reduce common path overhead is to divide
the LXT in two logical segments, corresponding to the pri-
mary and backup data segments of the output device as
illustrated in Figure 2. The primary segment of the LXT
(mentioned as PLX in figures) has an equal number of logi-
cal extents as the input layer to allow a direct, 1-1 mapping
between the logical extents and the physical extents of the
current version on the output device. By using a direct, 1-1
mapping,Clotho can locate a physical extent of thecurrent
version of a data block with asingle lookup in the primary
LXT segment, when translating I/O requests to the current
version of the versioned device. If the input device needs
to access previous versions of a versioned output device,
then multiple accesses to the LXT maybe required to lo-
cate the appropriate version of the requested extent.

To find the physical extent that holds the specific version
of the requested block,Clotho first references the primary
LXT segment entry to locate the current version of the
requested extent (a single table access). Then it uses the
linked list that represents the version history of the extent
to locate the appropriate version of the requested block.
Depending on the type of each I/O request and the state
of the requested block, I/O requests can be categorized as
follows:

Write requests can only be performed on the current ver-
sion of a device, since older versions are read-only. Thus,
Clotho can locate the LXT entry of a current version ex-
tent with asingle LXT access. Write requests can be one
of three kinds as shown in Figure 4:

a. Writes to new, unallocated blocks. In this case,Clotho
calls its extent allocator module, which returns an avail-
able physical extent of the output device, it updates the
corresponding entry in the LXT, and forwards the write
operation to the output device. Theextent allocation
policy in our current implementation is a scan-type pol-
icy, starting from the beginning of the PDS to its end.
Free extents are ignored until we reach the end of the
device, when we rewind the allocation pointer and start
allocating the free extents.

b. Writes to existing blocks that have been modified after
the last snapshot was captured (i.e. their version number
is equal to the current version number). In this case
Clotho locates the corresponding entry in the primary
LXT segment with a single lookup and translates the
request’s block address to the existing physical block
number of the output device. Note that in this case the
blocks areupdated in place.

c. Writes to existing blocks that have not been modified
since the last snapshot was captured (i.e. their version
number is lower than the current version number). The
data in the existing physical extent must not be over-
written, but instead the new data should be written in a
different location and a new version of the extent must
be created.Clotho allocates a new LXT entryin the
backup segment andswaps the old and new LXT entries
so that the old one is moved to the backup LXT seg-
ment. The block address is then translated to the new
physical extent address, and the request is forwarded to
the output layer. This “swapping” of LXT entries main-
tains the 1-1 mapping of current version logical extents
in the LXT which optimizes common-path references to
a single LXT lookup.

This write translation algorithm allows for independent,
fine grain versioning at the extent level. Every extent in
the LXT is versioned according to its updates from the in-
put level. Extents that are updated more often have more
versions than extents written less frequently.

Read request translation is illustrated in Figure 5. First
Clotho determines the desired version of the device by
the virtual device name and number in the request (e.g.
/dev/clt1-01 corresponds to version 1 and /dev/clt1-02 to
version 2). Then,Clotho traverses the version list on the
LXT for the specific extent or subextent and locates the
appropriate physical block.

106



Keep
Old PX

Allocate
New PX
& Write

����
����
����
����

����������������
����������������
����������������
����������������

type (a) type (b)

Output
Physical
Extents

Extents

Input
Logical

Allocate
New PX

Overwrite

type (c)

& Link

& Write

WriteWriteWrite

Old PX

LXT

Old LX
Move

MappingDirect

Arbitrary Mapping

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

Figure 4: Translation path for write requests.

LXsBackup
�
�
�
�

�
�
�
�

����
����
����

����
����
����

�
�
�
�
�

�
�
�
�
�

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

Read request

Mapping

Direct

Read Physical
Extents (PXs)

Output
Physical
Extents

Extents

Input
Logical

LXT

Lookup

(Latest Version)
Read request

(Older Version)

Mapping
Arbitrary

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

Figure 5: Translation path for read requests.

Finally, previous versions of aClotho device appear as dif-
ferent virtual block devices. Higher layers, e.g. filesys-
tems, can use these devices to access old versions of the
data. If the device id of a read request is different from
the normal input layer’s device id, the read request refers
to an extent belonging to a previous version.Clotho de-
termines from the device id the version of the extent re-
quested. Then, it traverses the version list associated with
this extent to locate the backup LXT entry that holds the
appropriate version of the logical extent. This translation
process is illustrated in Figure 5.

2.5. Reducing Disk Space Requirements

SinceClotho operates at the block level, there is an induced
overhead in the amount of space it needs to store data up-
dates. If an application for instance, using a file modifies a
few consecutive bytes in the file,Clotho will create a new
version for the full block that contains the modified data.
To reduce the space overhead inClotho we provide a dif-
ferential, content-based compaction mechanism, which we
describe next.

Clotho provides the user with the ability to compact de-
vice versions and still be able to transparently access them
online. The policy decision on when to compact a ver-
sion is left to higher-layers in the system, similarly to all
policy decisions inClotho. We use a form of binary dif-
ferential compression [1] to only store the data that has
been modified since the last version capture. WhenCom-
pactVersion() is called,Clotho constructs a differen-
tial encoding (or delta) between the blocks that belong to
a given version with corresponding blocks in its previous
version [1]. Although a lot of differential policies can be
applied in this case, such as to compare the content of a
specific version with its next version, or both the previous
and the next version, at this stage we only explore diff-

Backup LXs

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

�������������
�������������
�������������
�������������

Direct
Mapping

Reading
Compact LX

Ancestor PX Compact PX
(stores multiple LXs)

Diff LX

Lookup

Output
Physical
Extents

Extents

Input
Logical

LXT

Arbitrary
Mapping

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 6: Read translation for compact versions.

ing with the previous version. Furthermore, although ver-
sions can also be compressed independently of differential
compression using algorithms such as Lempel-Ziv encod-
ing [37] or Wheeler-Burrows encoding [3], this is beyond
the scope of our work. We envision that such functionality
can be provided by other layers in the I/O device stack.

The differential encoding algorithm works as follows.
When a compaction operation is triggered, the algorithm
runs through the backup data segment of the LXT and lo-
cates the extents that belong to the version under consid-
eration. If an extent does not have a previous version, it
is not compacted. For each of the extents to be compacted
the algorithm locates its previous version, diffs the two ex-
tents, and writes the diffs to a physical extent on the output
device. If the diff size is greater than a threshold and diff-
ing is not very effective, thenClotho discards this pair and
proceeds with the next extent of the version to be com-
pacted. In other words,Clotho’s differential compression
algorithm works selectively on the physical extents, com-
pacting only the extents that can be reduced in size. The

107



rest are left in their normal format to avoid performance
penalties necessary for their reconstruction.

Since the compacted form of an extent requires less size
than a whole physical extent, the algorithm stores multi-
ple deltas in the same physical extent, effectively imposing
a different structure on the output block device. Further-
more, for compacted versions, multiple entries in the LXT
may point to the same physical extent. The related entries
in the LXT and the ancestor extent are kept inClotho’s
metadata. Physical extents that are freed after compaction
are reused for storage. Figure 6 shows sample LXT map-
pings for a compacted version of the output layer.

Data on a compacted version can be accessed transparently
online as data on uncompacted volumes (Figure 6).Clotho
follows the same path to locate the appropriate version of
the logical extent in the LXT. To recreate the original, full
extent data we need the differential data of the previous
version of the logical extent. With this informationClotho
can reconstruct the requested block and return it to the in-
put driver. We evaluate the related overheads in Section 4..

Clotho supports recursive compaction of devices. The next
version of a compacted version can still be compacted.
Also, compacted versions can be uncompacted to their
original state with the reverse process. A side-effect of
the differential encoding concept is that it creates depen-
dences between two consecutive versions of a logical ex-
tent, which affects the way versions are accessed, as ex-
plained next.

When deleting versions,Clotho checks for dependencies
of compacted versions on a previous version and does not
delete extents that are required for un-diffing, even if their
versions are deleted. These logical extents are marked as
"shadow" and are attached to the compacted version. It
is left to higher-level policies to decide if keeping such
blocks increases the space overhead and it would be bet-
ter to uncompact the related version and delete any shadow
logical extents.

2.6. Consistency

One of the main issues in block device versioning at ar-
bitrary times is consistency of the stored data. There are
three levels of consistency for online versioning:

System state consistency: This refers to consistency of sys-
tem buffers and data structures that are used in the I/O path.
To deal with this,Clotho flushes all device buffers in the
kernel as well as filesystem metadata before version cre-
ation. This guarantees that the data and metadata on the
block device correspond to a valid snapshot of the filesys-
tem at a point-in-time. That is, there are no consistency
issues in internal system data structures.

Open file consistency: When a filesystem is used on top of
a versioned device, certain files may be open at the time
of a snapshot. AlthoughClotho does not deal with this
issue, it provides a mechanism to assist users. When a
new version is created,Clotho’s user-level module queries
the system for open files on the particular device. If such
files are open,Clotho creates a special directory with links
to all open files and includes the directory in the archived
version. Thus, when accessing older versions the user can
find out which files were open at versioning time.

Application consistency: Applications using the versioned
volume may have a specialized notion of consistency. For
instance, an application may be using two files that are
both updated atomically. If a version is created after the
first file is updated and closed but before the second one is
open and updated, then, although no files were open dur-
ing version creation, the application data may still be in-
consistent. This type of consistency is not possible to deal
with transparently without application knowledge or sup-
port, and thus, is not addressed byClotho.

3. System Implementation

We have implementedClotho as a block device driver
module in the Linux 2.4 kernel and a user-level control
utility, in about 6,000 lines of C code. The kernel mod-
ule can be loaded at runtime and configured for any output
layer device by means of anioctl() command triggered
by the user-level agent. After configuring the output layer
device, the user can manipulate theClotho block device
depending on the higher layer that they want to use. For
instance, the user can build a filesystem on top of aClotho
device withmkfs ornewfs and thenmount it as a regu-
lar filesystem.

Our module adheres to the framework of block I/O devices
in the Linux kernel and provides two interfaces to user pro-
grams: anioctl command interface and a/proc inter-
face for device information and statistics. All operations
described in the design section to create, delete, and man-
age version have been implemented through theioctl
interface and are initiated by the user-level agent. The
/proc interface provides information about each device
version through readable ASCII files.Clotho also uses
this interface to report a number of statistics, including the
times of creation, a version’s time span, the size of mod-
ified data from the previous version and some specific in-
formation to compacted versions, such as the compaction
level and the number ofshadow extents.

The Clotho module uses the zero-copy mechanism of the
make request fn() fashion that is used by LVM [32].
With this mechanismClotho is able to translate the device
driver id(kdev t) and the sector address of a block re-

108



2000

2500

3000

3500

4000

4500

5000

5500

6000

1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

)

Block Size (KBytes)

Bonnie++ I/O Performance - Write, Rewrite & Read

Disk Write
Clotho Write
Clotho Read

Disk Read
Disk Rewrite

Clotho Rewrite

Figure 7: Bonnie++ throughput for write, rewrite, and read
operations.

60
70
80
90

100
110
120
130
140
150
160
170

1 2 4 8 16 32 64

S
ee

ks
/s

ec

Block Size (KBytes)

Bonnie++ I/O Performance - Seek

Disk
Clotho

Figure 8: Bonnie “seek and read” performance.

quest(struct buffer head) and redirect it to other
devices with minimal overhead. To achieve persistence of
metadata,Clotho uses a kernel thread created at module
load time, which flushes the metadata to the output layer at
configurable (currently 30s) intervals.

The virtual device creation uses the partitionable block de-
vice concepts in the Linux kernel. A limit in the Linux ker-
nel minor numbering is that there can be at most 255 minor
numbers for a specific device and thus, only 255 versions
can be seen simultaneously as partitions ofClotho. How-
ever, the number of partitions supported byClotho can be
much larger. To overcome this limitation we have created a
mechanism through anioctl call that allows the user to
link and unlink on demand any of the available versions to
any of the 255 minor number partitions of aClotho device.
As mentioned, each of these partitions is read-only and can
be used as a normal block device, e.g. can be mounted to a
mount-point.

4. Experimental Results

Our experimental environment consists of two identical
PCs running Linux. Each system has two Pentium III 866
MHz CPUs, 768 MBytes of RAM, an IBM-DTLA-307045
ATA Hard Disk Drive with a capacity of 46116 MBytes
(2-MByte cache), and a 100MBps Ethernet NIC. The op-
erating system is Red Hat Linux 7.1, with the 2.4.18 SMP
kernel. All experiments are performed on a 21-GByte par-
tition of the IBM disk. With a 32-KByte extent, we need
only 10.5 MBytes of memory for our 21-GByte partition.

Although a number of system parameters are worth inves-
tigation, we evaluateClotho with respect to two param-
eters: memory and performance overhead. We use two
extent sizes, 4 and 32 KBytes. Smaller extent sizes have

higher memory requirements. For our 21-GByte partition,
Clotho with 4-KByte extent size uses 82 MBytes of in-
memory metadata, the dirty parts of which are flushed
to disk every 30 seconds. We evaluateClotho using
both microbenchmarks (Bonnie++ version 1.02 [4] and an
in-house developed microbenchmark) and real-life setups
with production-level filesystems. The Bonnie++ bench-
mark is a publicly available filesystem I/O benchmark [4].
For the real-life setup we run the SPEC SFS V3.0 suite on
top of two well-known Linux filesystems, Ext2FS, and the
high-performance journaled ReiserFS [20]. In our results
we use the labelDisk to denote experiments with the regu-
lar disk, without theClotho driver on top.

4.1. Bonnie++

We use the Bonnie++ microbenchmark to quantify the ba-
sic overhead ofClotho. The filesystem we use in all Bon-
nie++ experiments is the Ext2FS with a 4-KByte extent
size. The size of the file to be tested is 2 GBytes with block
sizes ranging from 1 KByte to 64 KBytes. We measure ac-
cesses to the latest version of a volume with the following
operations:

• Block Write: A large file is created using thewrite()
system call.

• Block Rewrite: Each block of the file is read with
read(), dirtied, and rewritten withwrite(), requir-
ing anlseek().

• Block Read: The file is read using aread() for every
block.

• Random Seek: Processes running in parallel are per-
forming lseek() to random locations in the file and
read()ing the corresponding file blocks.

109



1

1.5

2

2.5

3

3.5

4

300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(M
se

c/
op

er
at

io
n)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Response Time vs. Load (4KB Extents)

Clotho Reiser No Ver.
Disk Ext2 FS

Disk Reiser FS
Clotho Reiser 10min Ver.
Clotho Reiser 5min Ver.

Clotho Ext2 No Ver.
Clotho Ext2 10min Ver.
Clotho Ext2 5min Ver.

Figure 9: SPEC SFS response time using 4-KByte extents.

300

400

500

600

700

800

900

200 300 400 500 600 700 800 900 1000

M
ea

su
re

d 
T

hr
ou

gh
pu

t (
O

pe
ra

tio
ns

/S
ec

)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Req. Load vs. Measured Load (4KB Extents)

Clotho Ext2 5min Ver.
Clotho Ext2 10min Ver.

Clotho Ext2 No Ver.
Clotho Reiser 5min Ver.
Clotho RFS 10min Ver.

Disk Reiser FS
Disk Ext2 FS

Clotho Reiser No Ver.

Figure 10: SPEC SFS throughput using 4-KByte extents.

1

1.5

2

2.5

3

3.5

4

300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(M
se

c/
op

er
at

io
n)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Response Time vs. Load (32KB /w sub-extents)

Clotho RFS No Ver.
Disk Ext2 FS

Disk Reiser FS
Clotho RFS 10min Ver.
Clotho RFS 5min Ver.

Clotho Ext2 No Ver.
Clotho Ext2 10min Ver.
Clotho Ext2 5min Ver.

Figure 11: SPEC SFS response time using 32-Kbyte extents
with subextents (RFS denotes ReiserFS).

300

400

500

600

700

800

900

200 300 400 500 600 700 800 900 1000

M
ea

su
re

d 
T

hr
ou

gh
pu

t (
O

pe
ra

tio
ns

/S
ec

)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Req. Load vs. Meas. Load (32KB /w sub-extents)

Clotho Ext2 5min Ver.
Clotho Ext2 10min Ver.

Clotho Ext2 No Ver.
Clotho RFS 5min Ver.

Clotho RFS 10min Ver.
Disk Reiser FS

Disk Ext2 FS
Clotho RFS No Ver.

Figure 12: SPEC SFS throughput using 32-Kbyte extents
with subextents (RFS denotes ReiserFS).

Figure 7 shows that the overhead in write throughput is
minimal and the two curves are practically the same. In
the read throughput case,Clotho performs slightly better
than the regular disk. We believe this is due to the logging
(sequential) disk allocation policy thatClotho uses. In the
rewrite case, the overhead ofClotho becomes more signif-
icant. This is due to the random “seek and read” operation
overhead, as shown in Figure 8. Since the seeks in this
experiment are random,Clotho’s logging allocation has
no effect and the overhead of translating I/O requests and
flushing filesystem metadata to disk dominates. Even in
this case, however, the overhead observed is at most 7.5%
of the regular disk.

4.2. SPEC SFS

We use the SPEC SFS 3.0 benchmark suite to mea-
sure NFS file server throughput and response time over
Clotho. We use one NFS client and one NFS server.
The two systems that serve as client and server are

connected with a switched 100 MBit/s Ethernet net-
work. We use the following settings: NFS version
3 protocol over UDP/IP, one NFS exported directory,
biod max read=2, biod max write=2, and re-
quested loads ranging from 300 to 1000 NFS V3 opera-
tions/s with a 100 increment step. Both warm-up and run
time are 300 seconds for each run and the time for all the
SPEC SFS runs in sequence is approximately 3 hours. As
mentioned above, we report results for the Ext2FS and
ReiserFS (with -notail option) filesystems [20]. A new
filesystem is created before every experiment.

We conduct four experiments with SPEC SFS for each of
the two filesystems: Using the plain disk, usingClotho
over the disk without versioning, usingClotho and ver-
sioning every 5 minutes, and usingClotho with 10 minute
versioning. Versioning is performed throughout the en-
tire 3 hour run of SPEC SFS. Figures 9 and 10 show our
throughput and latency results for 4-Kbyte extents, while
Figures 11 and 12 show the results using 32-KByte extents
with subextent addressing.

110



0

512

1024

2048

3072

1 2 4 8 16 32 64

R
ea

d 
T

hr
ou

gh
pu

t (
K

B
yt

es
/s

ec
)

Read Buffer Size (KBytes)

Packed vs. Unpacked Snapshots -- Random Read Throughput

100% Packed Snapshot
75% Packed Snapshot
50% Packed Snapshot
25% Packed Snapshot
0% Packed Snapshot

Figure 13: Random “compact-read” throughput.

5

10

15

20

25

30

1 2 4 8 16 32 64A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(M
se

c/
op

er
at

io
n)

Read Buffer Size (KBytes)

Packed vs. Unpacked Snapshots -- Random Read Latency

100% Packed Snapshot
75% Packed Snapshot
50% Packed Snapshot
25% Packed Snapshot
0% Packed Snapshot

Figure 14: Random “compact-read” latency.

Our results show thatClotho outperforms the regular disk
in all cases except ReiserFS without versioning. The
higher performance is due to the logging (sequential) block
allocation policy thatClotho uses. This explanation is rein-
forced by the performance in the cases where versions are
created periodically. In this case, frequent versioning pre-
vents disk seeks caused by overwriting of old data, which
are now written to new locations on the disk in a sequential
fashion. Furthermore, we observe that the more frequent
the versioning, the higher the performance. The 32-KByte
extent size experiments (Figures 11 and 12) show that even
with much lower memory requirements, subextent map-
ping offers almost the same performance as the 4-KByte
case. We attribute this small difference to the disk rota-
tional latency, when skipping unused space to write subex-
tents, while in the 4-KByte extent size, the extents are writ-
ten “back-to-back” in a sequential manner.

Finally, comparing the two filesystems, Ext2 and ReiserFS,
we find that the latter performs worse on top ofClotho. We
attribute this behavior to the journaled metadata manage-
ment of ReiserFS. While Ext2 updates metadata in place,
ReiserFS appends metadata updates to a journal. This
technique in combination withClotho’s logging disk al-
location appears to have a negative effect on performance
in the SPEC SFS workload, compared to Ext2.

4.3. Compact version performance

Finally, we measure the read throughput of compacted ver-
sions to evaluate the space-time tradeoff of diff-based com-
paction. Since old versions are only accessible in read-only
mode, we developed a two-phase microbenchmark that
performs onlyread operations. In the first stage, our mi-
crobenchmark writes a number of large files and captures
multiple versions of the data throughClotho. In writing
the data the benchmark is also able to control the amount

of similarity between two versions, and thus, the percent-
age of space required by compacted versions. In the sec-
ond stage, our benchmarkmounts a compacted version
and performs 2000 random read operations on the files of
the compacted version. Before every run, the benchmark
flushes the system’s buffer cache.

Figures 13 and 14 present latency and throughput results
for different percentages of compaction. For 100% com-
paction, the compacted version takes up minimal space on
the disk, whereas in the 0% case compaction is not space-
effective at all. The difference in performance is mainly
due to the higher number of disk accesses per read opera-
tion required for compacted versions. Each such read op-
eration requires two disk reads to reconstruct the requested
block. One read to fetch the block of the previous version
and one to fetch the diffs. In particular, with 100% com-
paction, each and every read results in two disk accesses
and thus, performance is about half of the 0% compaction
case.

5. Related Work

A number of projects have highlighted the importance and
issues in storage management [13, 16, 22, 36]. Our goal in
this work is to define innovative functionality that can be
used in future storage protocols and APIs to reduce man-
agement overheads.

Block-level versioning was recently discussed and used in
WAFL [14], a file system designed for Network Appli-
ance’s NFS appliance. WAFL works in the block-level of
the filesystem and can create up to 20 snapshots of a vol-
ume and keep them available online through NFS. How-
ever, since WAFL is a filesystem and works in an NFS ap-
pliance, this approach depends on the filesystem. In our
work we demonstrate thatClotho is filesystem agnostic

111



by presenting experimental data with two production-level
filesystems. Moreover, WAFL can manage a limited num-
ber of versions (up to 20), whereasClotho can manage a
practically unlimited number. The authors in [14] men-
tion that WAFL’s performance cannot be compared to other
general purpose file systems, since it runs on a specialized
NFS appliance and much of its performance comes from
its NFS-specific tuning. The authors in [15] use WAFL to
compare the performance of filesystem- and block-level-
based snapshots (within WAFL). They advocate the use
of block-level backup, due to cost and performance rea-
sons. However, they do not provide any evidence on the
performance overhead of block-level versioned disks com-
pared to regular, non-versioned block devices. In our work
we thoroughly evaluate this with both microbenchmarks as
well as standard workloads. SnapMirror [23] is an exten-
sion of WAFL, which introduces management of remote
replicas in WAFL’s snapshots to optimize data transfer and
ensure consistency.

Venti [27] is a block-level network storage service, in-
tended as a repository for backup data. Venti follows a
write-once storage model and uses content based address-
ing by means of hash functions to identify blocks with
identical content. Instead,Clotho uses differential com-
pression concepts. Furthermore, Venti does not supper ver-
sioning features.Clotho and Venti are designed to perform
complementary tasks, the former to version data and the
latter as a repository to store safely the archived data blocks
over the network. Distributed block-level versioning sup-
port was included in Petal [7]. Although the concepts are
similar to Clotho, Petal also targets networks of worksta-
tions as opposed to active storage devices.

Since backup and archival of data is an important problem,
there are many products available that try to address the
related issues. However, specific information about these
systems and their performance with commodity hardware,
filesystems, or well-known benchmarks are scarce. Live-
Backup [29] captures changes at the file level on client ma-
chines and sends modifications to a back-end server that
archives previous file versions. EMC’s SnapView [8] runs
on the CLARiiON storage servers at the block level and
uses a ”copy-on-first-write” algorithm. However, it can
capture only up to 8 snapshots and its copy algorithm does
not use logging block allocation to speed up writes. In-
stead, it copies the old block data to hidden storage space
on every first write, overwriting another block. Veritas’s
FlashSnap [35] software works inside the Veritas File Sys-
tem, and thus, unlikeClotho, is not filesystem agnostic.
Furthermore it supports only up to 32 snapshots of vol-
umes. Sun’s Instant Image [31] works also at the block-
level in the Sun StorEdge storage servers. Its operation
appears similar toClotho. However, it is used through
drivers and programs in the Sun’s StorEdge architecture,

which runs only through the Solaris architecture and is also
filesystem aware.

Each of the above systems, especially the commercial
ones, uses proprietary customized hardware and sys-
tem software, which makes comparisons with commod-
ity hardware and general purpose operating systems dif-
ficult. Moreover, these systems are intended as standalone
services within centralized storage appliances, whereas
Clotho is designed as a transparent autonomous block-
lever layer for active storage devices and appropriate for
pushing functionality closer to the physical disk. In this di-
rection,Clotho categorizes the challenges of implementing
block-level versioning and addresses the related problems.

The authors in [6] examine the possibility of introducing
an additional layer in the I/O device stack to provide cer-
tain functionality at lower system layers, which also affect
the functionality that is provided by the filesystem. Other
efforts in this direction, mostly include work in logical vol-
ume management and storage virtualization that try to cre-
ate a higher level abstraction on-top of simple block de-
vices. The authors in [32] present a survey of such sys-
tems for Linux. Such systems usually provide the abstrac-
tion of a block-level volume that can be partitioned, ag-
gregated, expanded, or shrunk on demand. Other such ef-
forts [18] add RAID capabilities to arbitrary block devices.
Our work is complementary to these efforts and proposes
adding versioning capabilities to the block-device level.

Other previous work in versioning data has mostly been
performed either at the filesystem layer or at higher lay-
ers. The authors in [26] propose versioning of data at the
file level, discussing how the filesystem can transparently
maintain file versions as well as how these can be cleaned
up. The authors in [19] try to achieve similar functional-
ity by providing mount points to previous versions of di-
rectories and files. They propose a solution that does not
require kernel-level modification but relies on a set of user
processes to capture user requests to files and to communi-
cate with a back-end storage server that archives previous
file versions. Other, similar efforts [21, 24, 25, 28, 30]
approach the problem at the filesystem level as well and
either provide the ability for checkpointing of data or ex-
plicitly manage time as an additional file attribute.

Self-securing storage [30] and its filesystem, CVFS [28]
target secure storage systems and operate at the filesys-
tem level. Some of the versioning concepts in self-securing
storage and CVFS are similar toClotho, but there are nu-
merous differences as well. The most significant one is
that self-securing storage policies are not intended for data
archiving and thus, retain versions of data for a short pe-
riod of time calleddetection window. No versions are
guaranteed to exist outside this window of time and no
version management control is provided for specifying

112



higher-level policies. CVFS introduces certain interest-
ing concepts for reducing metadata space, which however,
are also geared towards security and are not intended for
archival purposes. Since certain concepts in [28, 30] are
similar toClotho, we believe that a block-level self-secure
storage system could be based onClotho, separating the
orthogonal versioning and security functionalities in dif-
ferent subsystems.

6. Limitations and Future work

The main limitation ofClotho is that it cannot be layered
below abstractions that aggregate multiple block devices
in a single volume and cannot be used with shared block
devices transparently. IfClotho is layered below a vol-
ume abstraction that performs aggregation and on top of
the block devices that are being aggregated in a single vol-
ume, policies for creating versions need to perform syn-
chronized versioning accross devices to ensure data con-
sistency. However, this may not be possible in a transpar-
ent manner to higher system layers. The main issue here
is that it is not clear what are the semantics of versioning
parts of a “coherent”, larger volume. Furthermore, when
multiple clients have access to a shared block device, as
is usually the case with distributed block devices [7, 33],
Clotho cannot be layered on top of the shared volume in
each client, since internal metadata will become inconsis-
tent accrossClotho instances. Solutions to these problems
are interesting topics for future work.

Another limitation ofClotho is that it imposes a change in
the block layout from the input to the output layer.Clotho
acts as a filter between two block devices, transferring
blocks of data from one layer to the next. Although this
does not introduce any new issues with wasting space due
to fragmentation (e.g. for files if a filesystem is used with
Clotho), it alters significantly the data layout. Thus, it may
affect I/O performance, if free blocks are scattered over the
disk or if higher layers rely on a specific block mapping,
e.g. block 0 being the first block on the disk, block 1 the
second, etc. However, this is an issue not only withClotho,
but with any layer in the I/O hierarchy that performs block
remapping, such as RAIDs and some volume managers.
Moreover, as I/O subsystems become more complex and
provide more functionality, general solutions to this prob-
lem may become necessary. Since this is beyond the scope
of this work, we do not discuss this any further here.

7. Conclusions

Storage management is an important problem in building
future storage systems. Online storage versioning can as-
sist reduce these costs directly, by addressing data archival
and retrieval costs and indirectly, by providing novel stor-

age functionality. In this work we propose pushing ver-
sioning functionality closer to the disk and implementing
it at the block-device level. This approach takes advantage
of technology trends in building active self-managed stor-
age systems to address issues related to backup and version
management.

We present a detailed design of our system,Clotho, that
provides versioning at the block-level.Clotho imposes
small memory and disk space overhead for version data
and metadata management by using large extents, sub-
extent addressing and diff-based compaction. It imposes
minimal performance overhead in the I/O path by eliminat-
ing the need for copy-on-write even when the extent size is
larger than the disk-block size and by employing logging
(sequential) disk allocation. It provides mechanisms for
dealing with data consistency and allows for flexible poli-
cies for both manual and automatic version management.

We implement our system in the Linux operating sys-
tem and evaluate its impact on I/O path performance with
both microbenchmarks as well as the SPEC SFS standard
benchmark on top of two production-level file systems,
ExtFS and ReiserFS. We find that the common path over-
head is minimal for read and write I/O operations when
versions are not compacted. For compact versions, the user
has to pay the penalty of double disk accesses for each I/O
operation that accesses a compact block.

Overall, we believe that our approach is promising in of-
floading significant management overhead and complexity
from higher system layers to the disk itself and is a con-
crete step towards building self-managed storage devices.

8. Acknowledgments

We thankfully acknowledge the support of Natural Sci-
ences and Engineering Research Council of Canada,
Canada Foundation for Innovation, Ontario Innovation
Trust, the Nortel Institute of Technology, Communica-
tions and Information Technology Ontario, Nortel Net-
works and the General Secretariat for Research and Tech-
nology, Greece.

References

[1] M. Ajtai, R. Burns, R. Fagin, D. Long, and L. Stockmeyer.
Compactly Encoding Unstructured Inputs with Differential
Compression.Journal of the ACM, 39(3), 2002.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: Running Circles Around Stor-
age Administration. InProceedings of the FAST ’02 Con-
ference on File and Storage Technologies (FAST-02), pages
175–188, Berkeley, CA, Jan. 28–30 2002. USENIX Asso-
ciation.

113



[3] M. Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, 1994.

[4] R. Coker. Bonnie++. http://www.coker.com.au/bonnie++.
[5] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making

Backup Cheap and Easy. InProceedings of the 5th Sym-
posium on Operating Systems Design and Implementation
(OSDI-02), Berkeley, CA, Dec. 9–11 2002. The USENIX
Association.

[6] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical
Disk: A New Approach to Improving File Systems. InProc.
of 14th SOSP, pages 15–28, 1993.

[7] Edward K. Lee and Chandramohan A. Thekkath. Petal:
Distributed Virtual Disks. InProceedings of ASPLOS VII,
Oct. 1996.

[8] EMC. Snapview data sheet. http://www.emc.com/pdf/
products/ clariion/SnapView2DS.pdf.

[9] S. C. Esener, M. H. Kryder, W. D. Doyle, M. Keshner,
M. Mansuripur, and D. A. Thompson. WTEC Panel Report
on The Future of Data Storage Technologies. International
Technology Research Institute. World Technology (WTEC)
Division, June 1999.

[10] GartnerGroup. Total Cost of Storage Ownership – A User-
oriented Approach, Sept. 2000.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. A Cost-Effective, High-Bandwidth Storage Archi-
tecture. InProc. of the 8th ASPLOS, Oct. 1998.

[12] G. A. Gibson and J. Wilkes. Self-managing network-
attached storage.ACM Computing Surveys, 28(4es):209–
209, Dec. 1996.

[13] J. Gray. What Next? A Few Remaining Problems in In-
formation Technology (Turing Lecture). InACM Federated
Computer Research Conferences (FCRC), May 1999.

[14] D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. InProceedings of the Winter
1994 USENIX Conference, pages 235–246, 1994.

[15] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris,
D. Hitz, S. Kleiman, and S. O’Malley. Logical vs. Physi-
cal File System Backup. InProc. of the 3rd USENIX Sym-
posium on Operating Systems Design and Impl. (OSDI99),
Feb. 1999.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage. InProceedings of ACM
ASPLOS, November 2000.

[17] M. Lesk. How Much Information Is There In the World?
http://www.lesk.com/ mlesk/ ksg97/ ksg.html, 1997.

[18] M. Icaza and I. Molnar and G. Oxman. The Linux RAID-
1,-4,-5 Code. InLinuxExpo, Apr. 1997.

[19] J. Moran, B. Lyon, and L. S. Incorporated. The Restore-
o-Mounter: The File Motel Revisited. InProc. of USENIX
’93 Summer Technical Conference, June 1993.

[20] Namesys. Reiserfs. http://www.namesys.com.
[21] M. A. Olson. The Design and Implementation of the Inver-

sion File System. InProc. of USENIX ’93 Winter Technical
Conference, Jan. 1993.

[22] D. Patterson. The UC Berkeley ISTORE Project: bring-
ing availability, maintainability, and evolutionary growth to

storage-based clusters. http://roc.cs.berkeley.edu, January
2000.

[23] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. SnapMirror: File-System-Based
Asynchronous Mirroring for Disaster Recovery. InPro-
ceedings of FAST ’02. USENIX, Jan. 28–30 2002.

[24] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9
From Bell Labs. InProc. of the Summer UKUUG Confer-
ence, 1990.

[25] W. D. Roome. 3DFS: A Time-Oriented File Server. In
Proceedings of USENIX ’92 Winter Technical Conference,
Jan. 1992.

[26] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding When to Forget in the
Elephant File System. InProceedings of 17th SOSP, Dec.
1999.

[27] Sean Quinlan and Sean Dorward. Venti: A New Approach
to Archival Data Storage. InProceedings of FAST ’02,
pages 89–102. USENIX, Jan. 28–30 2002.

[28] C. A. Soules, G. R. Goodson, J. D. Strunk, and G. R.
Ganger. Metadata Efficiency in Versioning File Systems. In
Proceedings of the FAST ’03 Conference on File and Stor-
age Technologies (FAST-03), Berkeley, CA, Apr. 2003. The
USENIX Association.

[29] Storactive. Delivering real-time data protection &
easy disaster recovery for windows workstations.
http://www.storactive.com/files/StoractiveWhitepaper.doc,
Jan. 2002.

[30] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing Storage: Protect-
ing Data in Compromised Systems. InProceedings of the
4th Symposium on Operating Systems Design and Imple-
mentation (OSDI-00), pages 165–180, Berkeley, CA, Oct.
23–25 2000.

[31] Sun Microsystems. Instant image white paper.
http://www.sun.com/storage/white-papers/iisoft arch.pdf.

[32] D. Teigland and H. Mauelshagen. Volume managers in
linux. In Proceedings of USENIX 2001 Technical Confer-
ence, June 2001.

[33] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
Scalable Distributed File System. InProceedings of the
16th SOSP, volume 31 ofOperating Systems Review, pages
224–237, New York, Oct. 5–8 1997. ACM Press.

[34] A. C. Veitch, E. Riedel, S. J. Towers, and J. Wilkes. To-
wards Global Storage Management and Data Placement. In
Eighth IEEE Workshop on Hot Topics in Operating Sys-
tems (HotOS-VIII), pages 184–184. IEEE Computer Soci-
ety Press, May 20–23 2001.

[35] Veritas. Flashsnap. http://eval.veritas.com/ downloads/ pro/
fsnapguide wp.pdf.

[36] J. Wilkes. Traveling to Rome: QoS specifications for
automated storage system management. InProc. of the
Int. Workshop on QoS (IWQoS’2001). Karlsruhe, Germany,
June 2001.

[37] J. Ziv and A. Lempel. A Universal Algorithm for Sequen-
tial Data Compression.IEEE Transactions on Information
Theory, 23:337–343, May 1977.

114


