Clotho: Transparent Data Versioning
at theBlock 1/O Leve

Michail D. Flouris Angelos Bilas!
Department of Computer Science, Institute of Computer Science
University of Toronto, Foundation for Research and Technology - Hellas
10 King's College Road, Vassilika Vouton, P.O.Box 1385,
Toronto, Ontario M5S 3G4, Canada GR 711 10 Heraklion, Greece
Tel: +1-416-978-6610, Fax: +1-416-978-1931 Tel: +30-281-039-1600, Fax: +30-281-039-1601
e-mail: flouris@cs.toronto.edu e-mail: bilas@ics.forth.gr
Abstract cessing, and network transfer capacity in a cost-efficient

manner and they will be able to process and store ever in-
Recently storage management has emerged as one of the majreasing amounts of data. The cost of managing these large
problems in building cost effective storage infrastructures. Oneamounts of stored data becomes the dominant complex-
of the issues that contribute to management complexity of stority and cost factor for building, using, and operating mod-
age systems is maintaining previous versions of data. Up till nov storage systems. Recent studies [10] show that stor-
such functionality has been implemented by high-level applica—age expenditures represent more than 50% of the typical
tions or at the filesystem level. However, many modern systems h ice f licati h OLTP (On-
aim at higher scalability and do not employ such managemen??rver purc a_se price or_app cations suc a_s (On
entities as filesystems. Line Transactlon Processing) or ERE (Enterprise Resource

Planning) and these percentages will keep growing. Fur-
In this paper we propose pushing the versioning functionalitythermore, the cost of storage administration is estimated at
closer to the disk by taking advantage of modern, block-levelseyeral times the purchase price of the storage hardware

storage devices. We presetibtho, a storage block abstraction [2, 5,7, 12, 33, 34, 36]. Thus, building self-managed stor-
layer that allows transparent and automatic data versioning atthe . ' - 2 1 C 0 o '

Sge devices that reduce management-related overheads and
block level. Clotho provides a set of mechanisms that can becgm lexity is of paramount imgortance
used to build flexible higher-level version management policies P y P P)
that range from keeping all data modifications to version capturgne of the most cumbersome management tasks that re-
ing triggered by timers or other system events. quires human intervention is creating, maintaining, and

Overall, we find that our approach is promising in offloading sig-"€COVering previous versions of data for archival, dura-
nificant management overhead and complexity from higher sysPility, and other reasons. The problem is exacerbated as
tem layers to the disk itself and is a concrete step towards buildinge® capacity and scale of storage systems increases. To-
self-managed storage devices. Our specific contributions are: (§@Y, backup is the main mechanism used to serve these
We implementClotho as a new layer in the block I/O hierarchy needs. However, traditional backup systems are limited in
in Linux and demonstrate that versioning can be performed at thie functionality they provide. Moreover they usually in-
block level in a transparent manner. (i) We investigate the impacfUr high access and restore overheads on magnetic tapes,
on 1/0 path performance overhead using both microbenchmarkdey impose a very coarse granularity in the allowable
as well as SPEC SFS V3.0 over two real filesystems, Ext2FS an@rchival periods, usually at least one day, and they result

ReiserFS. (jii) We examine techniques that reduce the memor{? Significant management overheads [5, 27]. Automatic
and disk space required for metadata information. versioning, in conjunction with increasing disk capacities,

has been proposed [5, 27] as a method to address these is-
) sues. In particular, magnetic disks are becoming cheaper
1. Introduction and larger and it is projected that disk storage will soon be
as competitive as tape storage [5, 9]. With the advent of in-
Storage is currently emerging as one of the major probexpensive high-capacity disks, we can perform continuous,
lems in building tomorrow’s computing infrastructure. Fu- real-time versioning and we can maintain online reposito-
ture systems will provide tremendous storage, CPU prories of archived data. Moreovemline storage versioning

1Also, with the Department of Computer Science, University ofCrete,OﬁerS_a new ra,n_ge of pOSSIbIIItIQS compared to s_|mply re-
P.O. Box 2208, Heraklion, GR 714 09, Greece covering users’ files that are available today only in expen-

101

sive, high-end storage systems: for higher space overhead in storing previous versions of
data and the related metadata. (ii) I/O path performance
e Recovery from user mistakes. The users themselves overhead: It is not clear at what cost versioning function-
can recover accidentally deleted or modified data byality can be provided at the block-level. (iii) Consistency
rolling-back to a saved version. of the versioned data when the versioned volume is used in
conjunction with a filesystem. (iv) Versioning granularity:
Since versioning occurs at a lower system layer, informa-

tion about the content of data is not available, as is, for

instance, the case when versioning is implemented in the

previous, consistent system state [28, 30]. . L
.) o . filesystem or the application level. Thus, we only have ac-
o Historical analysis of data modifications. When itis egq to full volumes as opposed to individual files.

necessary to understand how a piece of data has reached
a certain state, versioning proves a valuable tool. We designClotho?, a system that provides versioning at
the block-level and addresses all above issues, demonstrat-

Our goal in this paper is to provide online storage ver-ing that this can be done at minimal space and perfor-
sioning capabilities in commodity storage systems, in amance overheads. Firsglotho has low memory space
transparent andcost-effective manner. Storage versioning Overhead and uses a novel method to avoid copy-on-write
has been previously proposed and examined purely at thg0Sts when the versioning extent size is larger than the
filesystem level [24, 26] or at the block level [14, 31] but block size. Furthermor&lotho employs off-linedifferen-
being filesystem aware. These approaches to versioningi@ compression (or diffing) to reduce disk space overhead
were intended for large, centralized storage servers or apor archived versions. Second, using advanced disk man-
pliances. We argue that to build self-managed storage sy®2gement algorithmsClotho's operation is reduced in all
tems, versioning functionality should be pushed to lowercases to simply manipulating pointers in in-memory data
system layers, closer to the disk to offload higher systenftructures. ThusClotho's common-path overhead follows
layers [30]. This is made possible by underlying tech-the rapidly increasing processor-memory curve and does
nologies that drive storage systems. Disk storage, networRot depend on the much lower disk speeds. Tt@idtho
bandwidth, processor speed, and main memory are reacf§leals with version consistency by providing mechanisms
ing speeds and capacities that make it possible to buildhat can be used by higher system layers to guarantee that
cost-effective storage systems with significant processingither all data is consistent or to mark which data (files)
capabilities [9, 11, 13, 22] that will be able to both store are not. Finally, we believe that volumes are an appropri-

vast amounts of information [13, 17] and to provide ad- ate granularity for versioning policies. Given the amounts
vanced functionality. of information that will need to be managed in the future,
specifying volume-wide policies and placing files on vol-
Our approach of providing online storage versioning is toymes with the appropriate properties, will result in more
provide all related functionality at the block level. This efficient data management.
approach has a number of advantages compared to other
approaches that try to provide the same features either /e implementClotho as an additional layer (driver) in
the application or the filesystem level. First, it provides the I/O hierarchy of Linux. Our implementation approach
a h|gher level of transparency and in particu|ar is Com_aHOWS Clotho the ﬂEX|b|l|ty to be inserted in many dif-
pletely filesystem agnostic. For instance, we have usederent points in the block layer hierarchy in a single ma-
our versioned volumes with multiple, third party, filesys- chine, a clustered 1/O system, or a SAGlotho works
tems without the need for any modifications. Data snap-over simple block devices such as a standard disk driver or

shots can be taken on demand and previous versions cdRore advanced device drivers such as volume managers or
be accessed online simultaneously with the current verhardware/software RAIDs. Furthermore, our implementa-
sion. Second, it reduces complexity in higher layers oftion provides to higher layers the abstraction of a standard
storage systems, namely the filesystem and storage maklock device and thus, can be used by other disk drivers,
agement applications [15]. Third, it takes advantage of thevolume/storage managers, object stores or filesystems.

ipcreased processing capabilities and memory sizes of a%Ve evaluate our implementation with both microbench-
tive storage nodes and offloads expensive host-processi arks as well as real filesystems and the SPEC SFS 3.0
overheads to the disk subsystem, thus, increasing the scal; o over NES. The main memory overheacCttho for
ability of a storage archival system [15]. metadata is about 500 Kbytes per GByte of disk space and

However, block-level versioning poses certain challengesan be further reduced by using larger extents. Moreover,
as well: (i) Memory and disk space overhead: Because wéhe performance overhead Gfotho for I/O operations is
only have access to blocks of information, depending 0N 2ciotho, one of the Fates in ancient Greek mythology, spins the thread
application data access patterns, there is increased danggtife for every mortal.

e Recovery from system corruption. In the event of
a malicious incident on a system, administrators cal
quickly identify corrupted data as well as recover to a

102

minimal, however, it may change the behavior of higheranismsClotho provides and we only present simple poli-
layers (including the filesystem), especially if they make cies we have implemented and tested ourselves. We expect
implicit assumptions about the underlying block device, that systems administrators will further define their own
e.g. the location of disk blocks. In such cases, co-desigmolicies in the context of higher-level storage management
of the two layers, or system tuning maybe necessary tdools.
not degrade system performance. Overall, we find that our, _ N .
approach is promising in offloading significant manage-c_IOtho prowdes_ a set of primitives (meghanlsms) that
ment overhead and complexity from higher system |ayer§1|gher—level policies can use for automatic version man-
to the disk itself and is a concrete step towards buildingagement
self-managed storage systems.

_))) e CreateVersion() provides a mechanism for cap-
The rest of this paper is organized as follows. Section 2. {ring the lower-level block device’s state into a version.
presents our design and discusses the related challenges . . .
in building block-level versioning systems. Section 3. s Del (_at eVers! on() epr|C|_tIy removes a prewpusly
presents our implementation. Section 4. presents our ex- archived version and reclaims the corresponding vol-
perimental evaluation and results. Section 5. discusses re- ume space.
lated work, while section 6. presents limitations and futuree Li st Ver si ons() shows all saved version of a spe-

work. Finally, Section 7. draws our conclusions. cific block device.
e Vi ewVWer si on() enables creating a virtual device
2. System Design that corresponds to a specific version of the volume and

is accessible in read-only mode.

The design oflotho is driven by the following high-level e Conpact Ver si on() and Unconpact Ver -
goals and challenges: si on() provide the ability to compact and uncompact
existing versions for reducing disk space overhead.

¢ Flexibility and transparency.

e Low metadata footprint and low disk space overhead. Versions of a volume have the following properties: Each

version is identified by a uniqueersion number, which

is an integer counter starting from value 0 and increasing

o Consistent online snapshots. with each new version. Version numbers are associated
with timestamps for presentation purposes. All blocks of

Next we discuss how we address each of these challengége device that are accessible to higher layers during a pe-

separately. riod of time will be part of the version of the volume taken

at that moment (if any) and will be identified by the same

version number. Each of the archived versions exists solely

in read-only state and will be presented to the higher levels

. . . of the block I/O hierarchy as a distinct, virtual, read-only
Clotho provides versioned volumes to higher system Iay'block device. The latest version of a device is both read-

ehrs. Theszre] volumest:ook S|m|Ia_r t(()jo[)dma(rjy physmalddli_ksa le and writable, exists through the entire lifetime of the
that can, however, be customized, based on user-defineg) i1 s operation, and cannot be deleted.

policies to keep previous versions of the data they store.

EssentiallyClotho provides a set of mechanisms that allow Clotho can be inserted arbitrarily in a system’s layered
the user to add time as a dimension in managing data bblock I/O hierarchy. This stackable driver concept has
creating and manipulating volume versions. Every piecebeen employed to design other block-level 1/0O abstrac-
of data passing througlotho is indexed based not only tions, such as software RAID systems or volume man-
on its location on the block device, but also on the timeagers, in a clean and flexible manner [31]. Tinput

the block was written. When a new version is created, ahigher) layer can be any filesystem or other block-level
subsequent write to a block will create a new block pre-abstraction or application, such as a RAID, volume man-
serving the previous version. Multiple writes to the sameager, or another storage systentlotho accepts block
data block between versions result in overwriting the samd/O requests (read, write, ioctl) from this layer. Similarly,
block. UsingClotho, device versions can be captured ei- the output (lower) layer can be any other block device or
ther on demand or automatically at prespecified periodsblock-level abstraction. This design provides great flexibil-
The user can view and access all previous versions of they in configuring a system’s block device hierarchy. Fig-
data online, as independent block devices along with theure 1 shows some possible configurationsGtotho. On
current version. The user can compact and/or delete previthe left part of Figure 1Clotho operates on top of a physi-
ous volume versions. In this work we focus on the mech-cal disk device. In the middI&lotho acts as a wrapper of

e Low-overhead common I/O path operation.

2.1. Flexibility and Transparency

103

FS, Database, NFS, etc. FS, Database, NFS, etc.

< <
e e
‘ FS, Database, NFS, et# Clotho (Versioning Layer) Clotho (Versioning Lay@r

S S e ——

e —
Clotho (Versioning Layen) Virtual Block Volume RAID Controller
—— e — i —

n e s oe =

Figure 1:Clotho in the block device hierarchy.

i,
i,

a single virtual volume constructed by a volume managermost block-level abstractions, such as volume managers,
which abstracts multiple physical disks. In this configura-and software RAID device£lotho stores metadata to the
tion Clotho captures versions of the whole virtual volume. output device periodically. The size of the metadata de-
On the right side of Figure Llothois layered ontop of a pends on the size of the encapsulated device and the extent
RAID controller which adds reliability to the system. The size. In generalClotho’s metadata are much less than the
result is a storage volume that is both versioned and cametadata of a typical filesystem and thus, saving them to
tolerate disk failures. stable storage is not an issue.

Most higher level abstractions that are built on top of exist-

ing block devices assume a device of fixed size, with few2 2 Reducing M etadata Footprint

rare exceptions such as resizable filesystems. However,

the space taken by previous versions of dat&iatho, The three main types of metadataGtotho are thelogical

depends on the number and the amount of modified dat&ytent Table (LXT), the Device Version List (DVL), and
between themClotho can provide both a fixed size block the Device Superblock (DSB).

device abstraction to higher layers, as well as dynamically

resizable devices, if the higher layers support it. At deviceThelLogical Extent Table (LXT) is a structure used for log-
initialization time Clotho reserves a configurable percent- ical to physical block translationClotho presents to the
age of the available device space for keeping previous verinput layerlogical block numbers as opposed to thigys-
sions of the data. This essentially partitions (logically notical block numbers provided by the wrapped device. Note
physically) the capacity of the wrapped device into two that these block numbers need not directly correspond to
logical segments as illustrated in Figure 2. TPrémary actual physical locations, if another block I/O abstraction,
Data Segment (PDS), which contains the data of the cur- such as a volume manager (e.g. LVM [32]) is used as the
rent (latest) version and tHgackup Data Segment (BDS), output layerClotho uses the LXT to translate logical block
which contains all the data of the archived versions. Whernumbers to physical block numbers.

BDS becomes fullClotho simply returns an appropriate The Device Version List (DVL) is a list of all versions of

grrc()jr Icoth and the us:;r has tq reclaim .parts oft';he BD%he output device that are available to higher layers as sep-
y deleting or compacting previous VErsions, or by Mov-, aie piock devices. For every existing version, it stores its

ing them to some other device. These operations can aIS\(})ersion number, the virtual device it may be linked to, the

b? performed automatically by a_m_odule that 'mplemer_}tsversion creation timestamp, and a number of flags.
high-level data management policies. The latest version

of the block device continues to be available and usable aThe Device Superblock (DSB) is a small table contain-

all times. Clotho enforces this capacity segmentation by ing important attributes of the output versioned device. It

reporting as its total size to the input layer, only the sizestores information about the capacity of the input and out-
of the PDS. The space reserved for storing versions is hidput device, the space partitioning, the size of the extents,
den from the input layer and is accessed and managed onlye sector and block size, the current version counter, the
through the API provided bglotho. number of existing versions and other usage counters.

Finally, Clotho's metadata needs to be saved on the outpuThe LXT is the most demanding type of metadata and is
device along with the actual data. Losing metadata usedonceptually an array indexed by block numbers. The ba-
for indexing extents would render the data stored through=sic block size for most block devices varies between 512
out the block I/O hierarchy unusable. This is similar to Bytes (the size of a disk sector) and 8 KBytes. This results

104

=— Input Layer Capacity—= (Device Block Size (input and output): 4 Kbyles

01 0 0 0O O 1 0 ~

[B)g(t?ja(up Valid subexten
I . I i

| Primary I Segmat D e

| +—— Data Segment— | =——

4-KByte extent 32-KByte extent with
4-KByte subextents
| | - - -
! Output Layer Capacity—— ! Figure 3: Subextent addressing in large extents.

Metadata

To address this problem we usgbextent addressing. Us-

ing a small (24-bit) bitmap in each LXT entry we need not
copy the whole extent in a partial update. Instead we just
translate the block write to a subextent of the same size and
mark it in the subextent bitmap as valid, using just 1 bit. In
in large memory requirements. For instance, for 1 TBytea subsequent read operation we search for the valid subex-
of disk storage with 4-KByte blocks, the LXT has 256M tents in the LXT before translating the read operation. For
entries. In the current version @iotho, every LXT en- a 32-Kbyte extent size, we need only 8 bits in the bitmap
try is 128-bits (16 bytes). These include 32 bits for block for 4-KByte subextents.

addressing and 32 bits for versions that allow for a prac- . o
tically unlimited number of versions. Thus, the LXT re- Another possible approach to reduce memory footprint is

quires about 4 GBytes per TByte of disk storage. Note thaf® Store only part of the metadata in main memory and

a 32-bit address space, with 4 KByte blocks, can addresBerform swapping of active metadata from stable storage.
16 TBytes of storage However, this solution is not adequate for storage systems

where large amounts of data need to be addressed. More-
To reduce the footprint of the LXT and at the same time over it is orthogonal to subextent addressing and can be
increase the addressing range of LXT, we egents as combined with it.
opposed to device blocks as our basic data unit. An extent
is a set of consecutive (logical and physical) blocks. Ex-
tents can be thought &otho's internal block size, which 2.3. Version Management Over head
one can configure to arbitrary sizes, up to several hundred
KBytes or a few MBytes. Similarly to physical and logi- All version management operations can be performed at a
cal blocks, we denote extents as logical (input) extents onegligible cost by manipulating in-memory data structures.
physical (output) extents. We have implemented and teste@reating a new version i€lotho involves simply incre-
extent sizes ranging from 1 KByte to 64 KBytes. With 32- menting the current version counter and does not involve
KByte extents and subextent addressing, we need only 5080pying any data. Whe@r eat eVer si on() is called,
MBytes of memory per TByte of storage. Moreover with Clotho stalls all incoming 1/O requests for the time re-
a 32-KByte extent size we can address 128 TBytes of storguired to flush all its outstanding writes to the output layer.
age. When everything is synchronized on stable storðo

. L increases the current version counter, appends a new entry
However, large extent sizes may result in significant P€To the device version list, and creates a new virtual block

formance ovelr)rllealzj ’ 'Wk}f;; thhe eb>iter:<t jlze_: and thehc’perdevice that can be used to access the captured version of
ating system block size otho block devices are the output device, as explained later. Since each version

same (e.g. 4KBytes[lotho receives from the operating is linked to exactly one virtual device, the (OS-specific)

system the full extent for which it has to create a full ver- device number that sends the I/O request can be used to
sion. When using extents larger than this maximum Sizeretrieve the I/O request's version

Clotho sees only a subset of the extent for which it needs

to create a new version. Thus, it needs to copy the resThe fact that device versioning is a low-overhead opera-
of the extent in the new version, even though only a smalltion makes it possible to create flexible versioning poli-
portion of it written by the higher system layers. This copy cies. Versions can be created by external processes peri-
can significantly decrease performance in the common I/Qodically or based on system events. For instance, the user
path, especially for large extent sizes. However, large exprocesses can specify that it requires a new version every
tents are desirable for reducing metadata footprint. Giveril hour, or whenever all files to the device are closed or on
that operating systems support I/O blocks of up to a max-every single write to the device. Some of the mechanisms
imum size (e.g. 4K in Linux), this may result in severe to detect such events, e.g. if there are any open files on a
performance overheads. device, may be (and currently are) implemente@liatho

Figure 2: Logical space segmentsGtotho.

105

but could also be provided by other system components. Write requests can only be performed on the current ver-
sion of a device, since older versions are read-only. Thus,
Clotho can locate the LXT entry of a current version ex-

meclhamsm o delgte éloluhme ver5|ons.hODa?l et e\IS(T tent with asingle LXT access. Write requests can be one
er si on() operationClotho traverses the primary of three kinds as shown in Figure 4:

segment and for every entry that has a version number

equal to the delete candidate, changes the version num-

ber to the next existing version number. It then traverses. Writes to new, unallocated blocks. In this caSktho

the backup LXT segment and frees the related physi- calls its extent allocator module, which returns an avail-
cal extents. As with version creation, all operations for able physical extent of the output device, it updates the
version deletion are performed in-memory and can over- corresponding entry in the LXT, and forwards the write
lap with regular I/ODel et eVer si on() is provided to operation to the output device. Tiegtent allocation
higher layer in order to implemenersion cleaning poli- policy in our current implementation is a scan-type pol-
cies. Since storage space is finite, such policies are neces- icy, starting from the beginning of the PDS to its end.
sary in order to continue versioning without running out of ~ Free extents are ignored until we reach the end of the
backup storage. Finally, even if the backup data segment device, when we rewind the allocation pointer and start
(BDS) is full, I/O to the primary data segment and the lat- allocating the free extents.

est version of data can continue without interruption.

In order to free backup disk spac€]otho provides a

b. Writes to existing blocks that have been modified after
the last snapshot was captured (i.e. their version number
is equal to the current version number). In this case

2.4. Common |I/O Path Overhead Clotho locates the corresponding entry in the primary
LXT segment with a single lookup and translates the
We consider the common path fGtotho, as the I/O path request's block address to the existing physical block

to read and write to the latest (current) version of the out- number of the output device. Note that in this case the
put block device, while versioning occurs frequently. Ac- blocks areupdated in place.

cesses to older versions are of less importance since they \yrites to existing blocks that have not been modified
are not expected to occur as frequently as current version gince the last snapshot was captured (i.e. their version

usage. Accordingly, we divide read and write access 0 n,mper is lower than the current version number). The
volume versions in two categories, accesses to the current 4t in the existing physical extent must not be over-
version and accesses to any previous version. The main jiten, but instead the new data should be written in a
technique to reduce common path overhead is to divide jtferent location and a new version of the extent must
the LXT in two logical segments, correspondingto the pri- o created.Clotho allocates a new LXT entrjn the
mary and backup data segments of the output device as backup segment andswaps the old and new LXT entries
illustrated in Figure 2. The primary segment of the LXT ¢4 that the old one is moved to the backup LXT seg-
(mentioned as PLX n figures) has an equal numberoflogi- - ment The block address is then translated to the new
cal extents as the input layer to allow a direct, 1-1 mapping yhysical extent address, and the request is forwarded to
between the logical extents and the physical extents of the 4,4 output layer. This “swapping” of LXT entries main-
current version on the output device. By using a direct, 1-1 t5ins the 1-1 mapping of current version logical extents

mappingClotho can locate a physical extent of tberrent in the LXT which optimizes common-path references to
version of a data block with @ingle lookup in the primary a single LXT lookup.

LXT segment, when translating 1/0O requests to the current
version of the versioned device. If the input device needs
to access previous versions of a versioned output devicelhis write translation algorithm allows for independent,
then multiple accesses to the LXT maybe required to lo-fine grain versioning at the extent level. Every extent in
cate the appropriate version of the requested extent. the LXT is versioned according to its updates from the in-

i . . .__put level. Extents that are updated more often have more
To find the physical extent that holds the specific VErSion . sions than extents written less frequently
of the requested blocK;lotho first references the primary |

LXT segment entry to locate the current version of the Read request translation is illustrated in Figure 5. First
requested extent (a single table access). Then it uses ti@otho determines the desired version of the device by
linked list that represents the version history of the extentthe virtual device name and number in the request (e.g.
to locate the appropriate version of the requested block/dev/clt1-01 corresponds to version 1 and /dev/clt1-02 to
Depending on the type of each I/O request and the statgersion 2). ThenClotho traverses the version list on the
of the requested block, I/O requests can be categorized dsXT for the specific extent or subextent and locates the
follows: appropriate physical block.

106

Write Write Write
type (@) type (b) type (c)

Ian.'t Read request Read request
Logical M (Latest Version) (Older Version)
Extents | Ol(()jVEX Input
i | Direct | Mapping | & Link E)c:t%ﬁ?sl § ‘ ‘ Lookup
| Y | : Direct : BackupLXs
LXT . § 1y Mapping

@
I
Il
,t.

B s
e
psse=ed
=

A
LXT.§

Output , A = | Arbitrary |
Physical y////// ////l///// \/ Output Mapping ,
Extents * overwrite Allocate Keep AIIocate Physical M W

Old PX New PX Old PX New PX Extents Read Physical

& Write & Write Extents (PXs)
Figure 4: Translation path for write requests. Figure 5: Translation path for read requests.

Finally, previous versions of @lotho device appear as dif- Reading
ferent virtual block devices. Higher layers, e.g. filesys- [nput Compact LX
tems, can use these devices to access old versions of theLogical Lookup
data. If the device id of a read request is different from EXtents = Direct | Backup L Xs
the normal input layer’s device id, the read request refers
to an extent belonging to a previous versidZiotho de- . e o
termines from the device id the version of the extent re- LXT | /7 =

guested. Then, it traverses the version list associated with
this extent to locate the backup LXT entry that holds the
appropriate version of the logical extent. This translation Output

process is illustrated in Figure 5. Physicalij % W

Extents Ancestor PX Compact PX
(stores multiple LXs)

2.5. Reducing Disk Space Requirements _ _ _

Figure 6: Read translation for compact versions.
SinceClotho operates at the block level, there is an induced
overhead in the amount of space it needs to store data up-
dates. If an application for instance, using a file modifies aing with the previous version. Furthermore, although ver-
few consecutive bytes in the fil€lotho will create a new sions can also be compressed independently of differential
version for the full block that contains the modified data. compression using algorithms such as Lempel-Ziv encod-
To reduce the space overheaddiotho we provide a dif- ing [37] or Wheeler-Burrows encoding [3], this is beyond
ferential, content-based compaction mechanism, which wehe scope of our work. We envision that such functionality
describe next. can be provided by other layers in the 1/0O device stack.

Clotho provides the user with the ability to compact de- The differential encoding algorithm works as follows.
vice versions and still be able to transparently access thertdvhen a compaction operation is triggered, the algorithm
online. The policy decision on when to compact a ver-runs through the backup data segment of the LXT and lo-
sion is left to higher-layers in the system, similarly to all cates the extents that belong to the version under consid-
policy decisions inClotho. We use a form of binary dif- eration. If an extent does not have a previous version, it
ferential compression [1] to only store the data that hass not compacted. For each of the extents to be compacted
been modified since the last version capture. Woem the algorithm locates its previous version, diffs the two ex-
pact Ver si on() is called,Clotho constructs a differen- tents, and writes the diffs to a physical extent on the output
tial encoding (or delta) between the blocks that belong todevice. If the diff size is greater than a threshold and diff-
a given version with corresponding blocks in its previousing is not very effective, the@lotho discards this pair and
version [1]. Although a lot of differential policies can be proceeds with the next extent of the version to be com-
applied in this case, such as to compare the content of pacted. In other word€lotho's differential compression
specific version with its next version, or both the previousalgorithm works selectively on the physical extents, com-
and the next version, at this stage we only explore diff-pacting only the extents that can be reduced in size. The

107

rest are left in their normal format to avoid performance Open file consistency: When a filesystem is used on top of
penalties necessary for their reconstruction. a versioned device, certain files may be open at the time

of a snapshot. Althougklotho does not deal with this

Since the compacted form of an extent requires less Siz%sue it provides a mechanism to assist users. When a
than a whole physical extent, the algorithm stores multi—neW version is create@lotho's user-level module queries

ple_deltas in the same physical extent, effecti_/ely imIOOSir]gthe system for open files on the particular device. If such
a d|ffe;ent structutr € don th_e outputltt_)lcl)ck dte_vlcg. E]urt&a;'files are openClotho creates a special directory with links
more, Tor compacted versions, mulliple entries In the LA, 5 open files and includes the directory in the archived
may point to the same physical extent. The related entrie ersion. Thus, when accessing older versions the user can
in the LXT and _the ancestor extent are keptQfotho's . find out which files were open at versioning time.
metadata. Physical extents that are freed after compaction

are reused for storage. Figure 6 shows sample LXT mapApplication consistency: Applications using the versioned
pings for a compacted version of the output layer. volume may have a specialized notion of consistency. For

Dat ted . b dt instance, an application may be using two files that are
ala onacompacted version can be accesse ransparengxth updated atomically. If a version is created after the
online as data on uncompacted volumes (Figur€gjtho ﬂ

ol h o | h) _ irst file is updated and closed but before the second one is
oflows the same path to locate the appropriate version o pen and updated, then, although no files were open dur-

the logical extent in the LXT. To recreate the original, full ing version creation, the application data may still be in-

extept ditahwf n.ee? the dlff\;evr'e;tﬁl c.iafta of t,hén prhev'ou%onsistent. This type of consistency is not possible to deal
version of the logical extent. With this informati@otho iy, transparently without application knowledge or sup-

can reconstruct the requested block and return it to the 'nbort, and thus, is not addressed@ptho.

put driver. We evaluate the related overheads in Section 4..

Clotho supports recursive compaction of devices. The next

version of a compacted version can still be compacted3. System Implementation

Also, compacted versions can be uncompacted to their

original state with the reverse process. A side-effect ofWe have implemente€lotho as a block device driver
the differential encoding concept is that it creates depenmodule in the Linux 2.4 kernel and a user-level control
dences between two consecutive versions of a logical exdtility, in about 6,000 lines of C code. The kernel mod-
tent, which affects the way versions are accessed, as exde can be loaded at runtime and configured for any output
plained next. layer device by means of aroct | () command triggered

. : . by the user-level agent. After configuring the output layer
When deleting versiongZlotho checks for dependencies dZvice the user an manipulate tgh)thc? block dZVicey

of compacted versions on a previous version and does no&epending on the higher layer that they want to use. For
delete extents that are required for un-diffing, even if theirinstance the user can build a filesystem on top @fatho

versions are deleted. These logical extents are marked 88, i-a withnkf s or newf s and themmount it as a regu-
"shadow' and are attached to the compacted version. ItIar filesystem

is left to higher-level policies to decide if keeping such
blocks increases the space overhead and it would be beGur module adheres to the framework of block I/O devices
ter to uncompact the related version and delete any shadow the Linux kernel and provides two interfaces to user pro-
logical extents. grams: an oct | command interface and/gr oc inter-
face for device information and statistics. All operations
described in the design section to create, delete, and man-
2.6. Consistency age version have been implemented throughitbet |
interface and are initiated by the user-level agent. The
One of the main issues in block device versioning at ar-/ pr oc interface provides information about each device
bitrary times is consistency of the stored data. There ararersion through readable ASCII filesClotho also uses
three levels of consistency for online versioning: this interface to report a number of statistics, including the

Semaat isencv: This refers t ist ‘ times of creation, a version’s time span, the size of mod-
System state consistency: This refers to consistency of sys- igeq gata from the previous version and some specific in-

tem buffers and data structures that are used in the I/O paﬂ?ormation to compacted versions, such as the compaction
To deal with this,Clotho flushes all device buffers in the level and the number ahadow exténts

kernel as well as filesystem metadata before version cre-

ation. This guarantees that the data and metadata on thehe Clotho module uses the zero-copy mechanism of the
block device correspond to a valid snapshot of the filesysitake_r equest _f n() fashion that is used by LVM [32].
tem at a point-in-time. That is, there are no consistencyWith this mechanisn€lotho is able to translate the device
issues in internal system data structures. driver id (kdev_t) and the sector address of a block re-

108

Bonnie++ 1/0 Performance - Write, Rewrite & Read

6000 Bonnie++ 1/O Performance - Seek
— IR 170 : :
S 5500 fr e 160 Disk —— |
2 5000 — Clotho -
2 150 frosem
e
a 4500 Disk Write —— o 140
= 4000 Clotho Write -—- xemeee a 130
a Clotho Read-—=-- @ 120
£ 3500 Disk Read © > 110
= Disk Rewrite ---=--- 3
2 3000 Clotho Rewrite----- 1 100
. 2500 & %
= e M T Sy S-S p; 80
2000 70
1 2 4 8 16 32 64 60
Block Size (KBytes) 1 2 4 8 16 32 64

Figure 7: Bonnie++ throughput for write, rewrite, and read Block Size (KBytes)

operations. Figure 8: Bonnie “seek and read” performance.

quest(struct buffer _head) and redirect it to other higher memory requirements. For our 21-GByte partition,
devices with minimal overhead. To achieve persistence ofClotho with 4-KByte extent size uses 82 MBytes of in-
metadataClotho uses a kernel thread created at modulememory metadata, the dirty parts of which are flushed
load time, which flushes the metadata to the output layer ato disk every 30 seconds. We evaludiéotho using
configurable (currently 30s) intervals. both microbenchmarks (Bonnie++ version 1.02 [4] and an
. . . . in-house developed microbenchmark) and real-life setups
T_he virtual de\{|ce cre_atlon uses the pa_rtl_tlonablt_e block de'with production-level filesystems. The Bonnie++ bench-
vice c_oncepts n the L.II"IUX kernel. A limitin the Linux ke.r- mark is a publicly available filesystem I/O benchmark [4].
nel minor numbermg S that_there can be at most 255 MINOEo; the real-life setup we run the SPEC SFS V3.0 suite on
numbers for a specific device and thus, only 255 versmn:iop of two well-known Linux filesystems, Ext2FS, and the

can btehseen stl)multfemetz_l:_sly as partltlogﬁbfmo. Hovk\)/— high-performance journaled ReiserFS [20]. In our results
ever, the number of partiions supporte (@ygtho can be we use the labdDisk to denote experiments with the regu-
much larger. To overcome this limitation we have created Aar disk. without theClotho driver on top

mechanism through anoct | call that allows the user to

link and unlink on demand any of the available versions to

any of the 255 minor number partitions o€otho device. 4.1. Bonnie++

As mentioned, each of these partitions is read-only and can

be used as a normal block device, e.g. can be mounted tow/e use the Bonnie++ microbenchmark to quantify the ba-

mount-point. sic overhead o€lotho. The filesystem we use in all Bon-
nie++ experiments is the Ext2FS with a 4-KByte extent
size. The size of the file to be tested is 2 GBytes with block

4. Experimental Results sizes ranging from 1 KByte to 64 KBytes. We measure ac-
cesses to the latest version of a volume with the following

Our experimental environment consists of two identical OP€rations:

PCs running Linux. Each system has two Pentium IIl 866

MHz CPUs, 768 MBytes of RAM, an IBM-DTLA-307045 g|ock Write: A large file is created using thr i t e()
ATA Hard Disk Drive with a capacity of 46116 MBytes
(2-MByte cache), and a 100MBps Ethernet NIC. The op-) o)
erating system is Red Hat Linux 7.1, with the 2.4.18 SMP ® Block Rewrite: Each block of the file is read with
kernel. All experiments are performed on a 21-GByte par- " €ad() , dirtied, and rewritten witlwr i t e() , requir-
tition of the IBM disk. With a 32-KByte extent, we need ~ inganl seek() .

only 10.5 MBytes of memory for our 21-GByte partition. o Block Read: The file is read using read() for every

Although a number of system parameters are worth inves- block.

tigation, we evaluat€lotho with respect to two param- e Random Seek: Processes running in parallel are per-
eters: memory and performance overhead. We use two formingl seek() to random locations in the file and
extent sizes, 4 and 32 KBytes. Smaller extent sizes have r ead() ing the corresponding file blocks.

system call.

109

SPEC SFS 3.0 - Response Time vs. Load (4KB Extents) SPEC SFS 3.0 - Req. Load vs. Measured Load (4KB Extents)
T T T T T 900

g Clotho Reiser No'Ver. —— = Clotho Ext2 5min Ver. —— ' ' ' '

2 Disk Ext2 FS - & Clotho Ext2 10min Ver. -

5 35 Disk Reiser FS - % 800 | Clotho Ext2 No Ver. - A

o 7 |Clotho Reiser 10min Ver. 2 ; i a

g ! : S Clotho Reiser 5min Ver.

3 Clotho Reiser 5min Ver. = Clotho RES 10min Ver. --—-#—- N

@ Clotho Ext2 No Ver. --o-- 5] Disk Reiser FS o

£ 3| Clotho Ext2 10min Ver. g 700 [; 7 <

=3 ! Disk Ext2 FS N

P Clotho Ext2 Smin Ver. e Clotho Reiser No Ver. -

E 25 3 600 seniD X

< L a

[} [=2} ~

2] > - - a2l

% 2 £ 500 S

114 3 R *

S 15 : 3 400 g

g . g Tl

o . - - e

> G- o Z LA s] A

< 1 b Pt | | | | | 300 | | | | | | |

300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000

Requested Load (NFS V3 operations/second) Requested Load (NFS V3 operations/second)

Figure 9: SPEC SFS response time using 4-KByte extentsgure 10: SPEC SFS throughput using 4-KByte extents.

SPEC SFS 3.0 - Response Time vs. Load (32KB /w sub-extents) SPEC SFS 3.0 - Req. Load vs. Meas. Load (32KB /w sub-extents)

T T T T T T T T 900 T T T T T T T T
Clotho RFS No Ver. —— Clotho Ext2 5min Ver. ——

DisDILSIE(!,Eiétezr Eg e Clotho Ext2 10min Ver. -—--—

35 Clotho RFS 10min Ver, o 800 O ey a

Clotho RFS 5min Ver, ---=--- / Clotho RFS 10min Ver.,

Clotho Ext2 No Ver. ---o-- Disk Reiser FS --o--

3 I Clotho Ext2 10min Ver. ---e--- 700 -

Clotho Ext2 5min Ver. - Clotho gléé I,E\‘)gzvl;s L

Average Response Time (Msec/operation)
N
(62}
Measured Throughput (Operations/Sec)

oS 600
2 /. e 500
1.5 400
e P4 2
l 1 1 R 1 1 1 1 1 1 300 4 1 1 1 1 1 1 1
300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
Requested Load (NFS V3 operations/second) Requested Load (NFS V3 operations/second)
Figure 11: SPEC SFS response time using 32-Kbyte exkégtse 12: SPEC SFS throughput using 32-Kbyte extents
with subextents (RFS denotes ReiserFS). with subextents (RFS denotes ReiserFS).

Figure 7 shows that the overhead in write throughput isconnected with a switched 100 MBit/s Ethernet net-
minimal and the two curves are practically the same. Inwork. We use the following settings: NFS version
the read throughput cas€|otho performs slightly better 3 protocol over UDP/IP, one NFS exported directory,
than the regular disk. We believe this is due to the loggingbi od_nax_read=2, bi od.nax wite=2, and re-
(sequential) disk allocation policy th@lotho uses. Inthe quested loads ranging from 300 to 1000 NFS V3 opera-
rewrite case, the overhead®lfotho becomes more signif- tions/s with a 100 increment step. Both warm-up and run
icant. This is due to the random “seek and read” operationiime are 300 seconds for each run and the time for all the
overhead, as shown in Figure 8. Since the seeks in thiSPEC SFS runs in sequence is approximately 3 hours. As
experiment are randon€lotho's logging allocation has mentioned above, we report results for the Ext2FS and
no effect and the overhead of translating 1/0 requests andReiserFS (with -notail option) filesystems [20]. A new
flushing filesystem metadata to disk dominates. Even irfilesystem is created before every experiment.

this case, however, the overhead observed is at most 7.5% duct i ith SPEC SFS f h of
of the regular disk. e conduct four experiments witl oreach o

the two filesystems: Using the plain disk, usi@tptho

over the disk without versioning, usinglotho and ver-
4.2. SPEC SFS sioning every 5 minutes, and usi@otho with 10 minute

versioning. \ersioning is performed throughout the en-
We use the SPEC SFS 3.0 benchmark suite to medire 3 hour run of SPEC SFS. Figures 9 and 10 show our
sure NFS file server throughput and response time ovethroughput and latency results for 4-Kbyte extents, while
Clotho. We use one NFS client and one NFS server.Figures 11 and 12 show the results using 32-KByte extents
The two systems that serve as client and server arwith subextentaddressing.

110

=
Packed vs. Unpacked Snapshots -- Random Read Throughg2it Packed vs. Unpacked Snapshots -- Random Read Latency

@
o 3072 ‘ ‘ ! g 30 w x w
3 100% Packed Snapshoet—— S 100% Packed Snapshet—+—
@ 75% Packed Snapshot-<- S 75% Packed Snapshot--—
'qi 50% Packed Snapshot--- o 25} 50% Packed Snapshet-x--
o 25% Packed Snapshot-= 2 25% Packed Snapshot-=
X 2048} 0% Packed Snapshot-=--- : 2 o0 0% Packed Snapshot =
2 . [~ .
< [0} I .
[=) . 17) e I X
3 i § 15 e e e
£ 1024 2 B
o (14
§ 512 g 10p,
'I 3
0t $ 5
1 2 4 8 16 32 64 < 1 2 4 8 16 32 64
Read Buffer Size (KBytes) Read Buffer Size (KBytes)
Figure 13: Random “compact-read” throughput. Figure 14: Random “compact-read” latency.

Our results show thatlotho outperforms the regular disk of similarity between two versions, and thus, the percent-
in all cases except ReiserFS without versioning. Theage of space required by compacted versions. In the sec-
higher performance is due to the logging (sequential) blockond stage, our benchmankbunt s a compacted version
allocation policy thaClotho uses. This explanationis rein- and performs 2000 random read operations on the files of
forced by the performance in the cases where versions aréhne compacted version. Before every run, the benchmark
created periodically. In this case, frequent versioning preflushes the system'’s buffer cache.

vents disk seeks caused by overwriting of old data, WhichF_ 13 and 14 lat dth hout it
are now written to new locations on the disk in a sequential Igures 12 an present fatency and throughput results
ftor different percentages of compaction. For 100% com-

fashion. Furthermore, we observe that the more frequen . . .
the versioning, the higher the performance. The 32-KBytepaCt'on’ the compacted version takes up minimal space on

extent size experiments (Figures 11 and 12) show that eveWe disk, whereas in the 0% case compaction is not space-

with much lower memory requirements, subextent map—eﬁectt'vﬁl ath‘f""r'] The dgfere?(c;_a Ln performance is rgalnly
ping offers almost the same performance as the 4-KByt 'ue 1o the highér number ot disk accesses per read opera-
tion required for compacted versions. Each such read op-

case. We attribute this small difference to the disk rota-"~ . : X
tional latency, when skipping unused space to write subeygration requires two disk reads to reconstruct the requested

tents, while in the 4-KByte extent size, the extents are writ—bIOCk' One read to fetgh the bIOCk, of the Prévious version
ten “back-to-back” in a sequential manner. and one to fetch the diffs. In particular, with 100% com-

paction, each and every read results in two disk accesses
Finally, comparing the two filesystems, Ext2 and ReiserFSand thus, performance is about half of the 0% compaction
we find that the latter performs worse on topabbtho. We case.

attribute this behavior to the journaled metadata manage-

ment of ReiserFS. While Ext2 updates metadata in place,

ReiserFS appends metadata updates to a journal. Thig, Reaated Work

technique in combination witlClotho's logging disk al-

location appears to have a negative effect on performancg ,,mper of projects have highlighted the importance and
in the SPEC SFS workload, compared to Ext2. issues in storage management [13, 16, 22, 36]. Our goal in
this work is to define innovative functionality that can be

used in future storage protocols and APIs to reduce man-

4.3. Compact version performance agement overheads.

Finally, we measure the read throughput of compacted verBlock-level versioning was recently discussed and used in
sions to evaluate the space-time tradeoff of diff-based comWAFL [14], a file system designed for Network Appli-
paction. Since old versions are only accessible in read-onlance’s NFS appliance. WAFL works in the block-level of
mode, we developed a two-phase microbenchmark thathe filesystem and can create up to 20 snapshots of a vol-
performs onlyr ead operations. In the first stage, our mi- ume and keep them available online through NFS. How-
crobenchmark writes a number of large files and capturegver, since WAFL is a filesystem and works in an NFS ap-
multiple versions of the data throug@tiotho. In writing pliance, this approach depends on the filesystem. In our
the data the benchmark is also able to control the amounivork we demonstrate thatlotho is filesystem agnostic

111

by presenting experimental data with two production-levelwhich runs only through the Solaris architecture and is also
filesystems. Moreover, WAFL can manage a limited num-filesystem aware.

ber of versions (up to 20), where&otho can manage a . .
Each of the above systems, especially the commercial

practically unlimited number. The authors in [14] men- . ized hard d
tion that WAFL's performance cannot be comparedto otherONeS; Uses proprietary customized hardware and sys-

general purpose file systems, since it runs on a specialize&?m software, which makes comparisons with commod-

NFS appliance and much of its performance comes fro 'Fy hardware and general purpose operating systems dif-

its NFS-specific tuning. The authors in [15] use WAFL to icult. Moreover, these systems are intended as standalone
compare the performance of filesystem- and block-level-S€Tvices within centralized storage appliances, whereas

based snapshots (within WAFL). They advocate the us lotho is designe_d as a transpa_rent autonomous_ block-
of block-level backup, due to cost and performance real€ver layer for active storage devices and appropriate for

sons. However, they do not provide any evidence on theoushing functionality closer to the physical disk. In this di-

performance overhead of block-level versioned disks Com_rection,CIotho categorizes the challenges of implementing

pared to regular, non-versioned block devices. In our Workblock—level versioning and addresses the related problems.

we thoroughly evaluate this with both microbenchmarks asthe authors in [6] examine the possibility of introducing
well as standard workloads. SnapMirror [23] is an exten-an additional layer in the 1/O device stack to provide cer-
sion of WAFL, which introduces management of remote tain functionality at lower system layers, which also affect
replicas in WAFL's snapshots to optimize data transfer andhe functionality that is provided by the filesystem. Other
ensure consistency. efforts in this direction, mostly include work in logical vol-
Venti [27] is a block-level network storage service, in- ume mgnagement oy stor_age virtualizati(_)n thattry to cre-
ate a higher level abstraction on-top of simple block de-

tended as a repository for backup data. Venti follows a“,

write-once storage model and uses content based addresd®es- The authors in [32] present a survey of such sys-

ing by means of hash functions to identify blocks with tgms ffor Lt;InU)E lSuclh sylstemshusually Erowde_the a(l;)strac-
identical content. Instead;lotho uses differential com- tion of a block-level volume that can be partitioned, ag-

pression concepts. Furthermore, Venti does not supper Vegregated, expanded, or S*_‘Y‘_‘”" on de_mand. Other S.UCh ef-
sioning featuresClotho and Venti are designed to perform forts [18] add RAID capabilities to arbitrary block devices.

complementary tasks, the former to version data and thé)(;;.work |s_complemerg_?:y totthtisebleffokrtz ar}d ﬁrop?ses
latter as a repository to store safely the archived data block&0ddINg versioning capabilities to the block-device level.

over the network. Distributed block-level VerSioning Sup- Other previous work in versioning data has mostly been
port was included in Petal [7]. Although the concepts areperformed either at the filesystem layer or at higher lay-
similar to Clotho, Petal also targets networks of worksta- ers. The authors in [26] propose Versioning of data at the
tions as opposed to active storage devices. file level, discussing how the filesystem can transparently

Since backup and archival of data is an important problemmaintain file versions as well as how these can be cleaned
Up. The authors in [19] try to achieve similar functional-

there are many products available that try to address the

related issues. However, specific information about thesdY by providing mount points to previous versions of di-

systems and their performance with commodity hardware,reCtor'es and files. They propose a solution that does not

filesystems, or well-known benchmarks are scarce. LiveS€9uire kernel-level modification but relies on a set of user

Backup [29] captures changes at the file level on client maPrOCesSes to capture user requests to files anc_i to communi-
chines and sends modifications to a back-end server tha2t€ W'th a back-end St.orage server that archives previous
archives previous file versions. EMC'’s SnapView [8] runs lle versions. Other, similar efforts [21, 24, 25, 28, 30]
on the CLARIION storage servers at the block level andapproach the probler_n at the f|Iesyst§m level as well and
uses a "copy-on-first-write” algorithm. However, it can e|lth.er provide th_e ability for ch_gckpomtmg O.f data or ex-
capture only up to 8 snapshots and its copy algorithm doe?“c'tly manage time as an additional file attribute.

not use logging block allocation to speed up writes. In- Self-securing storage [30] and its filesystem, CVFS [28]
Stead, it COpieS the old block data to hidden Storage SpaC%rget secure Storage Systems and operate at the fi|esys_
on every first write, overwriting another block. Veritas's tem level. Some of the versioning concepts in self-securing
FIashSnap [35] software works inside the Veritas File SySstorage and CVFS are similar @otho, but there are nu-
tem, and thus, unlik€lotho, is not filesystem agnostic. merous differences as well. The most significant one is
Furthermore it supports only up to 32 snapshots of vol-that self-securing storage policies are not intended for data
umes. Sun’s Instant Image [31] works also at the block-archiving and thus, retain versions of data for a short pe-
level in the Sun StorEdge storage servers. Its operatiofiod of time calleddetection window. No versions are
appears similar t&Clotho. However, it is used through guaranteed to exist outside this window of time and no
drivers and programs in the Sun’s StorEdge architectureyersion management control is provided for specifying

112

higher-level policies. CVFS introduces certain interest-age functionality. In this work we propose pushing ver-
ing concepts for reducing metadata space, which howevesioning functionality closer to the disk and implementing
are also geared towards security and are not intended fat at the block-device level. This approach takes advantage
archival purposes. Since certain concepts in [28, 30] aref technology trends in building active self-managed stor-
similar toClotho, we believe that a block-level self-secure age systems to address issues related to backup and version
storage system could be based@wtho, separating the management.

orthogonal versioning and security functionalities in dif-

ferent subsystems. We present a detailed design of our systéigtho, that

provides versioning at the block-levelClotho imposes
small memory and disk space overhead for version data
6. Limitationsand Future work and metadata management by using large extents, sub-
extent addressing and diff-based compaction. It imposes
The main limitation ofClotho is that it cannot be layered minimal performance overhead in the I/O path by eliminat-
below abstractions that aggregate multiple block devicesng the need for copy-on-write even when the extent size is
in a single volume and cannot be used with shared blockarger than the disk-block size and by employing logging
devices transparently. [Elotho is layered below a vol- (sequential) disk allocation. It provides mechanisms for
ume abstraction that performs aggregation and on top oflealing with data consistency and allows for flexible poli-
the block devices that are being aggregated in a single voleies for both manual and automatic version management.
ume, policies for creating versions need to perform syn-
. s . We implement our system in the Linux operating sys-
chronized versioning accross devices to ensure data CONZ 1 and evaluate its im)
pact on I/O path performance with

sistency. Howev_er, this may not be possible n a_transparboth microbenchmarks as well as the SPEC SFS standard
ent manner to higher system layers. The main issue her

. . . 1€ NeT e nchmark on top of two production-level file systems,
is that it is not clear what are the semantics of verS|on|ngExtFS and ReiserFS. We find that the common path over-

parts of a “coherent”, larger volume. Furthermore, when L . X

. . . head is minimal for read and write 1/O operations when
multiple clients have access to a shared block device, &Jersions are not compacted. For compact versions, the user
is usually the case with distributed block devices [7, 33], P ' P '

Clotho cannot be layered on top of the shared volume inhas to pay the penalty of double disk accesses for each 1/0

._operation that accesses a compact block.
each client, since internal metadata will become inconsis-

tent accros€lotho instances. Solutions to these problems Overall, we believe that our approach is promising in of-
are interesting topics for future work. floading significant management overhead and complexity
from higher system layers to the disk itself and is a con-

Another limitation ofClotho is that it imposes a change in crete step towards building sel-managed storage devices.

the block layout from the input to the output lay&totho
acts as a filter between two block devices, transferring
blocks of data from one layer to the next. Although this
does not introduce any new issues with wasting space du
to fragmentation (e.g. for files if a filesystem is used with
Clotho), it alters significantly the data layout. Thus, it may We thankfully acknowledge the support of Natural Sci-
affect I/O performance, if free blocks are scattered over theences and Engineering Research Council of Canada,
disk or if h|gher |ayers re'y on a Speciﬁc block mapping’ Canada Foundation for |nn0Vati0n, Ontario Innovation
e.g. block 0 being the first block on the disk, block 1 the Trust, the Nortel Institute of Technology, Communica-
second, etc. However, this is an issue not only W@itbtho, tions and Information Technology Ontario, Nortel Net-
but with any layer in the 1/O hierarchy that performs block works and the General Secretariat for Research and Tech-
remapping, such as RAIDs and some volume managerg!ology, Greece.

Moreover, as 1/O subsystems become more complex and

provide more functionality, general solutions to this prob-

lem may become necessary. Since this is beyond the scogd€ferences

of this work, we do not discuss this any further here.

8 Acknowledgments

[1] M. Ajtai, R. Burns, R. Fagin, D. Long, and L. Stockmeyer.
Compactly Encoding Unstructured Inputs with Differential
CompressionJournal of the ACM, 39(3), 2002.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,

. . . o and A. Veitch. Hippodrome: Running Circles Around Stor-

Storage management is an important problem in building age Administration. IrProceedings of the FAST ' 02 Con-

future storage systems. Online storage versioning can as- ference on File and Storage Technologies (FAST-02), pages

sist reduce these costs directly, by addressing data archival 175-188, Berkeley, CA, Jan. 28-30 2002. USENIX Asso-
and retrieval costs and indirectly, by providing novel stor- ciation.

7. Conclusions

113

(3]

(4]
(5]

M. Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, 1994.

R. Coker. Bonnie++. http://www.coker.com.au/bonnie++. [23]

L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making
Backup Cheap and Easy. Rroceedings of the 5th Sym-
posium on Operating Systems Desigh and |mplementation

(OSDI-02), Berkeley, CA, Dec. 9-11 2002. The USENIX [24]

Association.

[6] W.de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical

(7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]

[22]

Disk: A New Approach to Improving File Systems.Pnoc.

of 14th SOSP, pages 15-28, 1993.

Edward K. Lee and Chandramohan A. Thekkath. Petal:
Distributed Virtual Disks. InProceedings of ASPLOS VI,
Oct. 1996.

EMC. Snapview data sheet. http://www.emc.com/pdf/
products/ clariion/SnapViewPS.pdf.

S. C. Esener, M. H. Kryder, W. D. Doyle, M. Keshner, [27]

M. Mansuripur, and D. A. Thompson. WTEC Panel Report
on The Future of Data Storage Technologies. International

Technology Research Institute. World Technology (WTEC)[28]

Division, June 1999.

GartnerGroup. Total Cost of Storage Ownership — A User-
oriented Approach, Sept. 2000.

G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,

H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze- [29]

lenka. A Cost-Effective, High-Bandwidth Storage Archi-
tecture. InProc. of the 8th ASPLOS, Oct. 1998.

G. A. Gibson and J. Wilkes. Self-managing network-
attached storageACM Computing Surveys, 28(4es):209—
209, Dec. 1996.

J. Gray. What Next? A Few Remaining Problems in In-
formation Technology (Turing Lecture). lRCM Federated
Computer Research Conferences (FCRC), May 1999.

D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. IRroceedings of the Winter
1994 USENIX Conference, pages 235-246, 1994.

N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris, [32]

D. Hitz, S. Kleiman, and S. O’'Malley. Logical vs. Physi-
cal File System Backup. IRroc. of the 3rd USENIX Sym-
posium on Operating Systems Design and Impl. (OSDI199),
Feb. 1999.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,

C. Wells, and B. Zhao. OceanStore: An Architecture for [34]

Global-scale Persistent Storage. Rroceedings of ACM
ASPLOS, November 2000.

M. Lesk. How Much Information Is There In the World?
http://www.lesk.com/ mlesk/ ksg97/ ksg.html, 1997.

M. Icaza and I. Molnhar and G. Oxman. The Linux RAID- [35]

1,-4,-5 Code. IrLinuxExpo, Apr. 1997.

J. Moran, B. Lyon, and L. S. Incorporated. The Restore-[36]

o-Mounter: The File Motel Revisited. IRroc. of USENIX
93 Summer Technical Conference, June 1993.
Namesys. Reiserfs. http://www.namesys.com.

M. A. Olson. The Design and Implementation of the Inver- [37]

sion File System. IfProc. of USENIX 93 Winter Technical
Conference, Jan. 1993.

D. Patterson. The UC Berkeley ISTORE Project: bring-
ing availability, maintainability, and evolutionary growth to

114

(25]

(26]

(30]

(31]

(33]

storage-based clusters. http://roc.cs.berkeley.edu, January
2000.

R. H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. SnapMirror: File-System-Based
Asynchronous Mirroring for Disaster Recovery. Rno-
ceedings of FAST '02. USENIX, Jan. 28-30 2002.

R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9
From Bell Labs. InProc. of the Summer UKUUG Confer-
ence, 1990.

W. D. Roome. 3DFS: A Time-Oriented File Server. In
Proceedings of USENIX '92 Winter Technical Conference,
Jan. 1992.

D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding When to Forget in the
Elephant File System. IRroceedings of 17th SOSP, Dec.
1999.

Sean Quinlan and Sean Dorward. Venti: A New Approach
to Archival Data Storage. IProceedings of FAST '02,
pages 89-102. USENIX, Jan. 28-30 2002.

C. A. Soules, G. R. Goodson, J. D. Strunk, and G. R.
Ganger. Metadata Efficiency in Versioning File Systems. In
Proceedings of the FAST ' 03 Conference on File and Sor-

age Technologies (FAST-03), Berkeley, CA, Apr. 2003. The
USENIX Association.

Storactive. Delivering real-time data protection &
easy disaster recovery for windows workstations.
http://www.storactive.com/files/StoractiWhitepaper.doc,
Jan. 2002.

J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing Storage: Protect-
ing Data in Compromised Systems. Pnoceedings of the

4th Symposium on Operating Systems Design and Imple-
mentation (OSDI-00), pages 165-180, Berkeley, CA, Oct.
23-25 2000.

Sun Microsystems. Instant image white paper.
http://www.sun.com/storage/white-papersiift arch.pdf.

D. Teigland and H. Mauelshagen. Volume managers in
linux. In Proceedings of USENIX 2001 Technical Confer-
ence, June 2001.

C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
Scalable Distributed File System. RFroceedings of the
16th SOSP, volume 31 ofOperating Systems Review, pages
224-237, New York, Oct. 5-8 1997. ACM Press.

A. C. Veitch, E. Riedel, S. J. Towers, and J. Wilkes. To-
wards Global Storage Management and Data Placement. In
Eighth 1EEE Workshop on Hot Topics in Operating Sys-
tems (HotOS-VIII), pages 184-184. IEEE Computer Soci-
ety Press, May 20-23 2001.

Veritas. Flashsnap. http://eval.veritas.com/ downloads/ pro/
fsnapguide wp.pdf.

J. Wilkes. Traveling to Rome: QoS specifications for
automated storage system management.Prioc. of the

Int. Workshop on QoS (IWQoS 2001). Karlsruhe, Germany,
June 2001.

J. Ziv and A. Lempel. A Universal Algorithm for Sequen-
tial Data CompressionlEEE Transactions on Information
Theory, 23:337-343, May 1977.

