
100

Managing Scalability in Object Storage Systems for HPC Linux
Clusters

Brent Welch
Panasas, Inc

6520 Kaiser Drive
Fremont, CA 94555
Tel: 1-510-608-7770

e-mail: welch@panasas.com

Garth Gibson
Panasas, Inc

1501 Reedsdale Street, Suite 400
Pittsburgh, PA 15233
Tel: 1-412-323-6409

e-mail: garth@panasas.com

Abstract
This paper describes the performance and manageability of scalable storage systems
based on Object Storage Devices (OSD). Object-based storage was invented to provide
scalable performance as the storage cluster scales in size. For example, in our large file
tests a 10-OSD system provided 325 MB/sec read bandwidth to 5 clients (from disk), and
a 299-OSD system provided 10,334 MB/sec read bandwidth to 151 clients. This shows
linear scaling of 30x speedup with 30x more client demand and 30x more storage
resources. However, the system must not become more difficult to manage as it grows.
Otherwise, the performance benefits can be quickly overshadowed by the administrative
burden of managing the system. Instead, the storage cluster must feel like a single
system image from the management perspective, even though it may be internally
composed of 10’s, 100’s or thousands of object storage devices. For the HPC market,
which is characterized as having unusually large clusters with usually small IT budgets, it
is important that the storage system “just work” with relatively little administrative
overhead.

1. Scale Out, not Scale Up

The high-performance computing (HPC) sector has often driven the development of new
computing architectures, and has given impetus to the development of the Object Storage
Architecture. The new architecture driving change today is the Linux cluster system,
which is revolutionizing scientific, technical, and business computing. The invention of
Beowulf clustering and the development of the Message Passing Interface (MPI)
middleware allowed racks of commodity Intel PC-based systems running the Linux
operating system to emulate most of the functionality of monolithic Symmetric Multi-
Processing (SMP) systems. Since this can be done at less than 10%

the cost of the

highly-specialized, shared memory systems, the cost of scientific research dropped
dramatically. Linux clusters are now the dominant computing architecture for scientific
computing, and are quickly gaining traction in technical computing environments as well.

101

Unfortunately, storage architecture scalability in terms of performance, capacity, and
manageability have not kept pace, causing systems administrators to perform tedious data
movement and staging tasks on multiple standalone storage systems to get data into and
out of the Linux clusters where scalable resources are available. There are two main
problems that the storage systems for clusters must solve. First, they must provide shared
access to ever larger amounts of data so that the applications are easier to write and
storage is easier to balance with the scaling compute requirements. Second, the storage
system must provide high levels of performance, in both I/O rates and data throughput, to
meet the aggregated requirements of 100’s, 1000’s and in some cases up to 10,000’s of
nodes in the Linux cluster. Linux cluster administrators have attempted several
approaches to meet the need for shared files and high performance, supporting multiple
NFS servers or copying data to the local disks in the cluster. But to date there has not
been an effective solution to match the power of the Linux compute cluster for the large
data sets typically found in scientific and technical computing.

1.1 Methods of Data Sharing in Clusters

Sharing files across the Linux cluster substantially decreases the burden on both the
scientist writing the programs and the system administrator trying to optimize the
performance of the system and control the complexity of cluster management. There are
several approaches to providing shared data to a computing cluster:

• Network file servers. The NFS protocol and file server hardware impose a bottleneck
between the clients that share the data and the disk resources that store it. As storage
needs grow, additional file servers with their own disk resources must be added, creating
storage “islands” and adding complexity for users and administrators alike.
• Block storage via SCSI on Fiber Channel (FC) provides good performance access for a
small number of disks, but block storage is private to individual hosts making it generally
unscalable. Systems like GFS [1] and GPFS [2], sometimes called SAN filesystems, can
provide shared FC storage for compute nodes. However, the costs of FC adapters per
node, FC switching with enough ports for all cluster nodes, as well as FC administrators,
can significantly increase the cost of each node in the compute cluster. Moreover, SAN
filesystems are also fundamentally block-based, and the overhead of managing block-
level metadata in terms of lock messaging and distribution of block-level metadata limits
scalability.
• Peer-to-peer systems share hard drives attached to individual compute clusters.
However, the complexity and cost of providing storage redundancy prohibits permanent
storage of valuable data in per node disks. Moreover, storing data in per node disks
introduces complexity in load balancing because some nodes have much worse I/O
performance depending on where the file was written.
• A new alternative is Object-based Storage Architectures. The Panasas object-based
storage system is built from commodity parts, including SATA drives, standard
processors and memory, and Gigabit Ethernet to provide a storage system with excellent
price/performance characteristics. Its high performance file system can be shared among
multiple compute clusters equally and with little overhead. It can also share the same

102

files with legacy engineering workstations using standard NFS and CIFS protocols. The
entire storage system is available through one global shared namespace in a manner
reminiscent of the Andrew File System (AFS) [3].

2. Object-based Storage Architecture

The Object-based Storage Architecture utilizes data Objects, which encapsulate variable-
length user data and attributes of that data [4,5,6]. The device that stores, retrieves and
interprets these objects is an Object Storage Device (OSD) [7]. The combination of data
and attributes allows an OSD to make decisions regarding data layout or quality of
service on a per-object basis, improving flexibility and manageability. The object
interface is mid-way between the read-write interface of a block device, and the high-
level interface of an NFS server. The core object operations are create, delete, read,
write, get attributes, and set attributes. By moving low-level storage functions into the
storage device itself and accessing the device through a higher-level object interface, the
Object Storage Device enables:
• Dedicated resources to block-level management,
• Intelligent space management in the storage layer allowing the OSD to make late

binding decisions on the allocation of data to the storage media,
• Data-aware pre-fetching, and caching,
• A natural paradigm for scaling the capacity and performance characteristics of the

storage system.

OSD-based storage systems can be created with the following characteristics:
• Robust, shared access by many clients,
• Scalable performance via an offloaded data path,
• Strong fine-grained end-to-end security.

These capabilities are highly desirable across a wide range of typical IT storage
applications. They are particularly valuable for scientific and technical applications that
are increasingly based on Linux cluster computing which generates high levels of
concurrent I/O demand for secure, shared files.

2.1 Implementing Files using Objects

An Object-based storage system includes metadata managers that coordinate data access
from multiple clients and implement POSIX filesystem semantics over the object storage.
They also provide location information and implement security policies. For scalable
performance, the metadata servers are “out-of-band” of the data path between clients and
storage nodes. The metadata servers retain strict control of what data clients can access
because the OSDs provide secure access rights enforcement with every operation [8].
Studies indicate that even in demanding small file with random access workloads, these
metadata servers handle less than 10% of the work associated with file access, with the
rest going to the object storage devices [9], and that load balancing metadata service can
be managed by partitioning the objects [10].

103

In the Panasas implementation,
metadata managers are
executed on server blades
called DirectorBlades, and the
OSDs are executed on server
blades called StorageBlades.
All permanent filesystem data
s t o r a g e i s o n t h e
StorageBlades. The storage
cluster can have a variable
number of Director and
StorageBlades depending on
the workload requirements;
workloads with legacy NFS
and CIFS access need more
DirectorBlades, while high-
bandwidth, large file workloads
need very few DirectorBlades.

The object interface has a core
security protocol that allows
safe concurrent access by
multiple clients. Clients read

directory objects to process filesystem pathnames. Directories map from names to object
identifiers. Clients contact metadata servers to obtain location information (maps) and
security capabilities (caps) that enable direct I/O access. These “maps and caps” are
cached by clients so repeated access to files do not require interaction with the metadata
manager. The OSDs verify security capabilities on every client access, so they enforce
the policies implemented on the managers without having to know the details of POSIX
or Windows ACL semantics. Our metadata managers also implement a lease-based
cache consistency protocol so clients can efficiently cache file attributes and data, which
provides further optimizations to file system access.

Individual files are striped across multiple StorageBlades (OSD). Striping files across
objects allows high bandwidth access as well as protection from failures by using
standard RAID techniques. The combination of file distribution across storage devices
and multiple client access leads to very high aggregate performance to the shared storage
system.

2.3 NAS Compatibility

It is also important that a new architecture such as Object-based storage be able to
support NFS and CIFS compatibility for data sharing with desktops and other non-cluster
computing platforms. The Panasas storage cluster does this in its DirectorBlades.
DirectorBlades export standard NFS and CIFS interfaces, hiding the Object Storage
Cluster from these legacy systems. Of course, a single NAS interface is a performance

Figure 1. Object Storage Architecture

104

bottleneck, but by deploying multiple NAS “filer head” interfaces in the storage cluster,
even legacy applications see scalable performance, albeit less efficiently than through the
Panasas file system protocol available on the Linux cluster nodes. Every DirectorBlade is
capable of serving any file in any StorageBlade to any client. Panasas provides a global
filesystem namespace, so clients only need a single mount point, which they can mount
from any available DirectorBlade.

By providing a shared filesystem between the Linux computing cluster and the rest of the
computing platforms, data management is dramatically simplified. For example, non-
cluster hosts with tape drives can import data via multiple NFS access points in parallel,
then the Linux computing cluster can access the data in place, and finally, non-cluster
desktop applications can visualize and analyze the results from the computing cluster. In
contrast, other approaches require explicit distribution of data to each node in the
computing cluster, or management of multiple separate NAS systems.

3. Performance of Object-based Filesystems

There are four main components of the Panasas storage system: the client, the
DirectorBlade, the StorageBlade, and the Shelf [11]. The client is a loadable kernel
module that runs in the Linux compute nodes and implements a POSIX filesystem. It
plugs into the VFS interface inside Linux. The StorageBlades have 2 SATA drives, a 1.2
GHz Pentium III processor, 512 MB memory, and 1 GE network port. The
DirectorBlades have a 2.4 GHz Pentium 4 CPU, 4 GB memory, and 1 GE network port.
Each shelf holds up to 11 Storage or DirectorBlades, and it has an integrated GE switch
that provides up to 4 trunked GE ports out of the shelf. (A pass-through card provides 11
independent ports, but the numbers shown here use the integrated switch.) Each shelf
also includes dual power supplies and a battery module, which together provide an
integrated UPS function for the DirectorBlades and StorageBlades.

The bandwidth tests described below were run with 9 or 10 StorageBlades (OSD) per
shelf, and in the bandwidth tests the DirectorBlades were mostly idle because most of
their resources are reserved for NFS and CIFS. The goal of presenting these numbers is
to give a general flavor of the scalability of the system performance. Results vary
depending on the speed of the clients, the size of their I/O requests, and network
topology. Typical clients in our tests have a single 2.4 GHz Pentium CPU and 1 GE
network interface. Typical I/O requests in our bandwidth tests are 64 KB, and the
network in our lab connects the systems and cluster under test through a high-end non-
blocking Extreme Network BlackDiamond GE switch. In the bandwidth tests, files are
always large enough that data must be streamed on and off the disk platters as opposed to
being satisfied by cached data.

105

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

Num Clients

M
B

/s
ec

Read (64K) Write (64K)

Figure 2. Bandwidth of 10 OSDs vs. the number of Clients

Figure 2 shows that aggregate bandwidth of one file per client in the same directory on a
single shelf of 10 OSDs scales quite well as the number of clients increases until the shelf
is providing about 380 MB/s. A single client can read from a file that is striped across 10
OSDs at about 90 MB/sec using a single GE port. As the number of clients scales up, but
the storage resources remain the same, the aggregate bandwidth increases but the per-
client bandwidth drops off. The less than linear scaling after about 8 clients per shelf is
due to increasing load and contention at the storage devices that have to manage multiple
I/O streams in parallel. There is also contention and a bottleneck in the shelf network as
the data passes through the four trunked GE links providing a maximum of 4 Gb/s to each
10-OSD shelf. At saturation, each SATA drive is delivering a sustained bandwidth of just
over 19 MB/sec split among the tens of clients pounding on it.

Write bandwidth follows a similar curve, with a single client writing at about 77 MB/sec
and 10 clients able to write at 335 MB/sec. The write bandwidth peaks at less than the
read bandwidth because the RAID engine runs at the client and so parity data flows over
the network between the client and the storage nodes. For example, there is about 12%
more data being written in an 8+1 RAID configuration than is reported in the bandwidth
number. The advantage of moving RAID to the client is that it allows shared access to a
scalable number of drives without the bottleneck of a traditional RAID controller [12]. In
addition, the XOR computations RAID requires can be done efficiently using specialized

106

MMX instructions on the Pentium CPU, and their speed increases as client CPUs and
memory systems get faster.

Figure 2 might led one to believe each shelf was a standalone 300-400 MB/s storage
system. Not so. When multiple shelves are bound together by Panasas object storage
software, total performance scales at 300-400 MB/s per shelf. Scaling when adding more
shelves works quite well even if files are still only striped over 10 StorageBlades because
the set of OSDs used to store each file are drawn from all OSDs on all shelves. The
contention at any single storage device remains about the same.

Figure 3 shows several multi-shelf high bandwidth test results. For example, the test with
299 OSDs achieved 10334 MB/sec read bandwidth. There were 32 shelves and 151
clients, or about 5 clients per shelf. The per-shelf bandwidth of 322 MB/sec in this
configuration is consistent with tests done with 5 clients against one shelf. (The large test
used a larger application read blocksize than in the chart shown in Figure 2, so the
numbers are not directly comparable.) As files are added, their data is spread across
different subsets of OSDs automatically, on a per-file basis. This allows large numbers
of clients to share many OSDs efficiently. Figure 3 shows that bandwidth scales quite
well with the number of OSDs. In fact, because our tests are generally done with only
about 5 clients per each 10-OSD shelf, Figure 2 indicates that the total bandwidth
achievable from these systems can be higher. For example, the difference between the
points at 116 and 118 OSDs is that the first test used 61 clients to achieve 3.1 GB/sec,
while the second used 79 clients to achieve 3.9 GB/sec. That is about 50 MB/sec per
client in both configurations. Finally, it is important to note that these data points were
taken over time in our labs with varying configurations of clients, network topology, and
software tuning, so each point is not strictly comparable. However, the overall result is
that the system scales well, at about 15-20 MB/s per disk, when the number of clients is
at least 25% as many as there are disks.

107

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350

G
B
/s
ec

Figure 3. Scaling Aggregate Bandwidth with Number of OSDs

When files are striped very widely, contention increases because each OSD has
connections to more clients. In a concurrent write test with 151 clients writing to a
single, shared file striped across 198 OSDs, the write bandwidth was 2775 MB/sec. The
OSDs were organized into 22 shelves with 9 OSDs each, for a per-shelf bandwidth of
about 126 MB/sec.

For legacy, non-cluster computers, access is through NFS or CIFS. Because Panasas
DirectorBlades offer multiple NFS servers as a single storage pool, the underlying
scalability of Object Storage is made available as a scalable NAS system. Figure 4 shows
two results from the industry standard SPEC SFS benchmark [13]1. First we ran the SFS
test against a 5-shelf system with 10 metadata managers and 45 OSDs, providing a single
rack 90-disk system similar to the high-end of dedicated monolithic NAS filers. This
delivered an excellent throughput of 50,907 ops/sec at an Overall Response Time (ORT)
of 1.67 msec. The average response time as a function of load is shown in Figure 4 in the
lightly shaded curve peaking at 50,000 ops/sec. ORT is a weighted average of the
average response time at each of 10 load points. To show how NFS scales, we also show
the results from a 30-shelf system with 60 metadata managers and 270 OSDs, which
achieved 305,805 ops/sec at an ORT of 1.76 msec. While 300,000 ops/sec is much larger
than any other reported SFS benchmark run to date, our real point is that a Panasas
storage cluster with 6x the resources delivers 6x the workload at about the same response
time profile.

1 NFS ops/sec as measured by the SPEC benchmark. SPEC and the benchmark name SPECsfs97_R1 are
registered trademarks of the Standard Performance Evaluation Corporation.

108

The SFS test has a uniform access requirement so each client is contacting every file
server during the benchmark run. In this case each DirectorBlade is running two
orthogonal functions: one is the metadata management for the object storage filesystem,
the second is a client of that filesystem that is being exported via an NFS server module.
The NFS server on each DirectorBlade accesses the metadata function on other directors
as well as storage on all the OSDs.

0

2

4

6

8

10

12

14

16

18

20

0 50000 100000 150000 200000 250000 300000 350000

SFS97_R1 Ops/sec

A
vg

 R
es

p
o

n
se

 T
im

e
(m

se
c)

60-Director ORT 10-Director ORT

Figure 4. Results for 10- and 60-DirectorBlade Systems

4. Managing Large Scale Systems

The ideal scalable storage system is a large, seamless storage pool that grows
incrementally without performance degradation and is shared uniformly by all clients of
the system under a common access control scheme. As the system scales in size,
however, issues arise in two general areas: traditional storage management and internal
resource management. Both of these areas are affected by the distributed system
implementation of the storage system itself. To external clients, the storage system
should feel like one large, high-performance system with essentially no physical
boundaries imposed by the implementation. Internally, the system must manage a large
and growing collection of computing and storage resources and shield the administrator
from chore of administering individual resources.

4.1 Traditional Storage Management

Traditional storage management issues include system configuration, monitoring system
performance and capacity utilization, responding to failures, and adding and configuring
hardware resources as the system grows. A scalable storage system should minimize the

109

burden these traditional storage management issues place on an administrator so the
system can grow to very large capacities with undue operating costs.

The Panasas object-storage architecture simplifies capacity and device management by
hiding the details normally associated with block devices such as LUN definition and
Fiber Channel zone definitions. Instead, the filesystem is built from a collection of
object storage devices (OSD) and metadata managers (Directors). The filesystem
automatically stripes files across storage devices using RAID techniques to tolerate the
failure of storage devices or individual objects (e.g., due to media errors). As more
storage devices are added, files are striped more widely. As stripes become wider,
additional parity objects are introduced to limit the size of failure domains. A unique
aspect of object-based storage is that RAID configurations are configurable on a per-file
basis. For example, mirroring is more efficient for small write accesses, but has high
capacity overhead compared with RAID 4 or RAID 5. Ordinarily RAID parameters are
managed automatically by the system. For example, the Panasas filesystem uses
mirroring for directories and small files, while larger files use RAID 5. However, in
simplifying management we do not want to go so far that we hurt our users’ ability to
optimize performance. For this reason an optional a programming interface exposes
stripe width and RAID parameters so MPI IO middleware layers can create files with
specific bandwidth and reliability attributes to best match application requirements.

New capacity is added simply by adding one or more new StorageBlades to the system.
However, this can create a capacity imbalance among the StorageBlades, new blades less
full than older blades, so the system actively rebalances capacity across StorageBlades.
This is done efficiently by transparently moving component objects. For example, if files
are striped across N StorageBlades, then each file is composed of N component objects,
one component on each StorageBlade. When a new StorageBlade is added to the system,
the system selects component objects from each of the existing StorageBlades, and
moves those component objects onto the newly available StorageBlade. This reduces the
capacity utilization across existing StorageBlades and fills up the new StorageBlade. The
active balancer runs in the background at a low priority. The filesystem blocks the
balancer from using files that are being used, and if an application happens to access a
file that is currently being rebalanced, it is temporarily blocked from using the file. The
application’s access proceeds automatically once the balancer has finished moving the
component object.

Backup and restore is obviously important for any storage system. One nice benefit of a
high performance, shared storage system is that multiple backups can proceed in parallel.
This helps the administrator reduce the backup window to manageable levels, even with
very large systems.

Monitoring and configuration is done via a central management console that has a Web
interface as well as a command line interface. Any feature accessible via the GUI is also
accessible via the CLI. It usually turns out that the GUI is best for new users, offering a
simple display of performance monitoring information, and a quick overview of the
system. However, for large systems and more experienced administrators, it can become

110

tedious to configure the system one click at a time. Instead, a CLI that can be scripted
(we have a TCL-based shell) can be a real time saver and an enabler for site-specific
monitoring and data collection.

4.2 Internal Resource Management

Because the storage system is itself a cluster of computers working together to provide
service, there are internal management issues such as resource discovery, software
upgrade, failure detection, power and thermal management. These internal issues should
be handled automatically by the system, yet provide the administrator with monitoring,
failure reporting, and robust failure handling.

The Panasas storage system is IP-based, and its system configuration includes a block of
IP addresses that is managed by an internal DHCP service. This runs on an alternate port
so it will not conflict with the customer’s existing DHCP infrastructure. The Panasas
DHCP protocol is extended with additional information about device serial numbers,
types (Storage or Director), software revision level, and physical location (shelf and slot).
As blades boot up the system discovers their type, location, and software version and
automatically builds its configuration database. StorageBlades are automatically added
to the storage pool as they come on-line, so provisioning a running system just requires
physical addition of StorageBlades.

The external view of the system is through a single DNS name. Clients mount the file
system from this single name, and their filesystem accesses are automatically directed to
the appropriate DirectorBlade as they access different directories. Of course, I/O access
goes directly between clients and StorageBlades using the maps they get from
DirectBlades during access control checks. In high availability configurations, the
system DNS name is mapped to a set of IP addresses, and clients can contact any of these
addresses to mount the filesystem. For NFS and CIFS load balancing, Panasas provides a
delegated DNS name server to distribute legacy clients across DirectorBlades.

Software versions are maintained uniformly across the storage cluster to avoid awkward
compatibility issues. Each blade boots from its own drive to avoid massive congestion
on a netboot server during system startup. Software upgrade is achieved with a two-
phase installation operation where all blades install a new version and reach a commit
point in the first phase. Only if all blades are ready does the system commit to the new
version and restart. Filesystem clients pause for the duration of the commit and restart,
which is about 5 minutes regardless of the size of the storage cluster. When new blades
are added to a system they are checked for hardware compatibility, and they are
automatically upgraded to the same version as the rest of the system.

Power and thermal management is important for any high-density cluster installation.
The Panasas blades are housed in a shelf that has dual power supplies and a battery
module that together provide an integrated UPS. The UPS protects the blades against
power surges and brown outs. If AC power is lost completely, the blades are signaled and
use battery power to write out cached data and safely shutdown the system. By providing

111

an integrated UPS and power management in every shelf, the system can be aggressive
about caching data in main memory without burdening the administrator with building a
foolproof data center-scale UPS and scaling it up as the system grows. The
StorageBlades accumulate data and metadata updates and periodically flush these in a
log-like fashion. This lets the system optimize disk arm seeks and provide very high
write throughput even during shared workloads. Thermal monitoring is also integrated,
and the system will proactively take itself offline if external temperatures rise and cause
blades to overheat. The system is able to differentiate between power or thermal failures
and disk or blade failures so it can respond appropriately.

5. Conclusion

The ability of storage systems built on the Object Storage Architecture to scale capacity
and performance addresses a key requirement for HPC Linux clusters. Panasas’ Object-
based storage cluster demonstrates scalability with 32-shelf systems providing 30x the
bandwidth of a single shelf, and 30 shelf NAS benchmarks providing 6x the throughput
of 5-shelf runs of the same benchmark.

While we want performance and capacity to grow linearly as resources are added to a
storage cluster, we do not want administrator effort to grow anywhere near linearly.
Object Storage Architectures are designed to abstract physical limitations, making
virtualization easier to provide, so that larger systems can be managed with little more
effort than small systems. Panasas object-based storage clusters use distributed
intelligence, a single namespace interface, file-level striping and RAID, and transparent
rebalancing to realize the manageability advantages of Object-based Storage.

References

[1] Soltis, Steven R., Ruwart, Thomas M., et al. The Global File System, proc. of the
Fifth NASA Goddard Conference on Mass Storage Systems, IEEE, 1996.

[2] Schmuck, Frank, and Haskin, Roger. GPFS: A Shared-Disk File System for Large
Computing Clusters. Proc First USENIX conf. on File and Storage Technologies
(FAST02), Montery, CA Jan 2002.

[3] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M.,
Sidebotham, R.N., West, M.J, Scale and Performance in a Distributed File System, ACM
Transactions on Computer Systems, Feb. 1988, Vol. 6, No. 1, pp. 51-81.

[4] Gibson, G. A., et. al., A Cost-Effective, High-Bandwidth Storage Architecture, 8th

ASPLOS, 1998.

[5] Azagury, A., Dreizin, V., Factor, M., Henis, E., Naor, D., Rinetzky, N., Satran, J.,
Tavory, A., Yerushalmi, L., Towards an Object Store, IBM Storage Systems Technology
Workshop, November 2002.

112

[6] Lustre: A Scalable, High Performance File System, Cluster File System, Inc. 2003.
http://www.lustre.org/docs.html

[7] Draft OSD Standard, T10 Committee, Storage Networking Industry Association
(SNIA), ftp://ftp.t10.org/t10/drafts/osd/osd-r05.pdf

[8] Gobioff, Howard. Security for a High Performance Commodity Storage Subsystem.
Carnegie Mellon PhD. Dissertation, CMU-CS-99-160, July 1999.

[9] Gibson et. al. File Server Scaling with Network-Attached Secure Disks, ACM
SIGMETRICS, June 1997, pp 272-284

 [10] Brandt, S., Xue, L., Miller, E., Long D., Efficient Metadata Management in Large
Distributed File Systems, Twentieth IEEE/Eleventh NASA Goddard Conference on Mass
Storage Systems and Technologies, April 2003.

[11] http://www.panasas.com

[12] Amiri, K., G.A. Gibson, R. Golding, Highly Concurrent Shared Storage, Int. Conf.
On Distributed Computing Systems (ICDCS2000), April 2000.

[13] http://www.spec.org/sfs97r1/

