

Preservation Environments Reagan W. Moore San Diego Supercomputer Center 9500 Gilman Drive, MC-0505 La Jolla, CA 92093-0505 moore@sdsc.edu

NASA/IEEE MSST 2004 2th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA April 13-16, 2004

Topics - Persistent Archives

- Persistent archive definition
- Properties of preservation environments
- How to build a persistent archive using data grids
- Implications for massive archives
 - Replication environments
 - Deep archives

Persistent Archive Definition

- Data grid community
 - Persistent Archive is the infrastructure that manages storage technology evolution while preserving a collection
- Archivist community
 - Persistent Archive is the collection that is being preserved in some choice of infrastructure
- Together they define a preservation environment

Persistent Archive Requirements

- Persistent identifier
 - Name remains unchanged when the file is moved
- Management of context
 - Preservation, administrative, integrity metadata
- Management of content
 - Containers, transformative migrations, replication
- Consistency between context and content
 - Assert that all operations on material are tracked and controlled
 - Manage technology evolution

Data Grids

- Virtualization mechanisms to manage storage
 - Storage repository virtualization
 - Information repository virtualization
- Virtualization mechanisms to manage data
 - Data virtualization
 - Access virtualization
- Simplify management of data distributed across multiple sites and across multiple types of storage repositories

Storage Repository Virtualization

San Diego Supercomputer Center

National Partnership for Advanced Computational Infrastructure

Storage Repository Virtualization

Remote operations
Unix file system
Latency management
Procedures
Transformations
Third party transfer
Filtering
Queries
Containers

San Diego Supercomputer Center

National Partnership for Advanced Computational Infrastructure

Containers

- Archivists store hardcopy in "cardboard boxes"
- A container is the digital equivalent, the aggregation of digital files into a single file, with an associated "packing list"

Data Stored at SDSC

- HPSS archive
 - Stores 1 Petabyte of data
 - Stores 17 million files
- Storage Resource Broker data grid
 - Stores 114 Terabytes of data
 - Stores 31 million files
 - Containers are used to aggregate files before loading into HPSS

SRB Collections at SDSC

	As of 12/22/20	00	As of 5/17/2002	2	As of 3/3/2004	ļ	
Project Instance	Data_size	Count	Data_size	Count	Data_size	Count	
	(in GB)	(files)	(in GB)	(files)	(in GB)	(files)	Users
Data Grid							
Digsky	7,599.00	3,630,300	17,800.00	5,139,249	45,939.00	8,685,572	80
NPACI	329.63	46,844	1,972.00	1,083,230	13,700.00	4,050,863	379
Hayden			6,800.00	41,391	7,835.00	60,001	168
SLAC			514.00	77,168	3,432.00	446,613	43
LDAS/SALK			239.00	1,766	2,002.00	14,427	66
TeraGrid					22,563.00	452,868	2,585
BIRN					892.00	2,472,299	160
Digital Library							
DigEmbryo	124.30	2,479	433.00	31,629	720.00	45,365	23
HyperLter	28.94	69	158.00	3,596	215.00	5,110	29
Portal			33.00	5,485	1,610.00	46,278	374
AfCS			27.00	4,007	236.00	42,987	21
NSDL/SIO Exp			19.20	383	1,217.00	193,888	26
TRA			5.80	92	92.00	2,387	26
SCEC					12,311.00	1,730,432	47
UCSDLib					127.00	202,445	29
Persistent Archive							
NARA/Collection			7.00	2,455	72.00	82,192	58
NSDL/CI					1,529.00	12,658,072	116
TOTAL	8 TB	3.7 million	28 TB	6.4 million	114 TB	31 million	4230

* Does not cover data brokered by SRB spaces administered outside SDSC.

Does not cover databases; covers only files stored in file systems and archival storage systems

Does not cover shadow-linked directories

San Diego Supercomputer Center

National Partnership for Advanced Computational Infrastructure

Data Virtualization

Data Virtualization

- Logical name space Location independent identifier Persistent identifier
- Collection owned data Access controls Audit trails Checksums Descriptive metadata
- Inter-realm authentication Single sign-on system

Data Virtualization

- Associate information context with each digital entity
 - Organize information context as metadata in a collection
- Administrative metadata
 - Location, file name in storage, size, creation time, update time, owner, container, replica
- Descriptive metadata
 - Provenance, record series attributes, discovery attributes
- Integrity metadata
 - GUID, checksum, access controls, audit trails
- Structural metadata
 - Encoding format, component order
- Behavioral metadata
 - Operations that can be applied for presentation and manipulation

Logical Name Space for Files (Persistent Identifiers)

- Infrastructure independent naming convention for files
 - Map Global Unique Identifier to the logical file name
 - Map physical location to the logical file name
 - Map descriptive metadata to the logical file name

Information Repository Virtualization

Operations used to manage administrative, descriptive, user-defined metadata Import from XML file Export to XML file Bulk load Bulk unload Schema extension Access controls **Dynamic SQL** generation

Choice of database for Metadata Catalog

Technology Evolution

- All components of the "Persistent Archive" will evolve
 - Hardware systems
 - Software systems
 - Protocols
 - Access methods
 - Encoding syntax for digital entities
- Create drivers for each new storage repository protocol
 - Migrate data to each new storage system
- Manage evolution of the encoding syntax through either transformative migration or emulation

Are Repeated Media Migrations Feasible?

- At SDSC, cartridge capacity has increased from 200 Mbytes to 200 Gbytes for same cartridge cost
- Only migrate to new technology when the cost per Gigabyte is a factor of two lower
- Then the media cost is fixed when sum over all migrations

(1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ...) = 2

SDSC migrates to new media to reduce cost
 All tape are stored in robots to minize labor costs

Transformative Migration versus Emulation

- Transform the encoding format to a new standard
 - Read the digital entity and apply transformations
 - Can combine encoding format transformation with media migration
- Emulation
 - Create a transportable parser for the original encoding format
 - Example Multivalent Browser (written in Java) for parsing pdf

Persistent Archives

- When migrate from an old technology to a new technology, both versions are available.
- Virtualization mechanisms used for federation across space can be used to manage migration over time
- Persistent archives can be built on data grid infrastructure

Automation of Archival Processes

Archival Process	Functionality
Appraisal	Assessment of digital entities
Accession	Import of digital entities
Description	Assignment of preservation metadata
Arrangement	Logical organization of digital entities
Preservation	Long-term storage
Access	Discovery and retrieval

Data Grid Core Capabilities and Functionality

Storage repository abstraction

Storage interface to at least one repository

Standard data access mechanism

Standard data movement protocol support

Containers for data

Logical name space

Registration of files in logical name space

Retrieval by logical name

Logical name space structural independence from physical file

Persistent handle

Information Repository Abstraction

Collection owned data

Collection hierarchy for organizing logical name space

Standard metadata attributes (controlled vocabulary)

Attribute creation and deletion

Scalable metadata insertion

Access control lists for logical name space

Attributes for mapping from logical file name to physical file

Encoding format specification attributes

Data referenced by catalog query

Containers for metadata

Distributed Resilient Architecture

Specification of system availability

Standard error messages

Status checking

Authentication mechanism

Specification of reliability against permanent data loss

Specification of mechanism to validate integrity of data

Specification of mechanism to assure integrity of data

Virtual Data Grid

Knowledge repositories for managing collection properties

Characterization of the application of transformative migrations on encoding format

Characterization of the application of archival processes

Data Grid Federation

- Data grids provide the ability to name, organize, and manage data on distributed storage resources
- Federation provides a way to control sharing of resources, users, data and metadata between independent data grids.
- We call each data grid a "zone", hence zoneSRB

Deep Archive

- Impose sharing constraints:
 - Only system administrator access
 - Selected replication of files
 - Write once, with versions created on changes to data
- Impose consistency constraints
 - Coordinate update of preservation metadata with file replication
- Use federation to guarantee preservation against
 - Local hardware and software failures
 - Local operation errors
 - Local disasters

San Diego Supercomputer Center

National Partnership for Advanced Computational Infrastructure

Data Grid Federation - zoneSRB

San Diego Supercomputer Center

29

National Partnership for Advanced Computational Infrastructure

For More Information

Reagan W. Moore San Diego Supercomputer Center

moore@sdsc.edu

http://www.npaci.edu/DICE

http://www.npaci.edu/DICE/SRB

http://www.npaci.edu/dice/srb/mySRB/mySRB.html

