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Introduction

Why Regulating I/O Performance?
Different clients demand different types of storage services
When multiple clients share storage, a racing problem may occur
However, storage itself doesn’t provide any solution to the problem
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Introduction

Problem Description
Given

– a set of (storage) clients that share the same storage
– demanded storage services (QoS) for each client

Devise a control scheme that
– assures the demanded storage services (statistically)
– keeps the storage utilized as high as possible

Specification of Storage Service per Client
Request size
Target IOPS
Target response time



Introduction

Previous Solution in Network Domain – FQ w/ “Leaky Bucket”
Static I/O traffic policing
Likely to under-utilize the storage resources
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Proposed Scheme

Our Solution – FQ w/ “Feedback-controlled Leaky Bucket”
Adjusting each ρi(k) according to current RT
Maximizing the utilization of storage resources (w/ better perf.)
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Proposed Scheme

Controller Design
Estimating error: Ei(k) = rti – RTi(k)
Computing LB param. of ρi(k):  ρi(k) = ρi(k-1) + K⋅Ei(k)

RTi (k+1) - RTi (k) = G(ρi(k) - ρi(k-1))

Computing transfer function

z
(z+1) ⋅rti Σ RTi(z)

+

-

Ei(z)
C(z)C(z)

ρi(z)

z
(z-1) K

H(z)H(z)
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Controller System Modeling

z-Transformed Feedback System

z
(z-1)K⋅ Ei(z)ρi(z) =

1
z G ⋅ ρi (z)RTi(z) =

Hc(z) = C(z)H(z)
1+C(z)H(z)

= KG
z-(1-KG)

|1-KG|<1  (0<K<2/G) for system stabilization



Performance Evaluations

Simulation Environments
Simulator specification

– Disksim 2.0 w/ proposed 
scheme

– two(2) clients
– synthetic I/O workloads
– shared storage spec.

• IBM_DNES-309170W
• 7200RPM

Operational parameters
– clients’ resource weight = 2:1
– clients’ σ (bucket size) = 2:1
– monitoring period: every 1sec

Requested perf. requirement
P aram eter C lient 1 C lient 2

size 4KB 4KB
iops 40 20

rt(m sec) 35 38
access pattern random random
resource w eight 2 1

Sketch of our evaluations
– perform simple admission control 
– determine K&G for controller
– analyze system behavior w/ 

different pole locations
– analyze system behavior w/ three 

types of competing workloads 
(step/pulse/active)



Performance Evaluations

Admission Control
Underlying storage performance

– serves “75” 4KB-sized read I/O 
request per second

Deliverable response times

IOPST RTE 

(msec)
RTT

(msec)
rt

(msec)

Client 1 40 29.08 34.1 35
Client 2 20 31.38 37.65 38Random Read 4k
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Performance Evaluations

Obtaining G value
– from IOPS vs. RT relationship
– find the slope (sensitivity) in a 

reasonable area (lower-left box)

Obtaining K value

0<K< 2/G ⇒ 0<K<6.67

G ≒ 0.3
K = (1-pole) / G 

Hc(z) = KG
z-(1-KG)

Random Read 4k
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Performance Evaluations

System Behavior w/ Different Pole Locations
Left half of the unit circle (pole-zero map) 

– fast response; overshooting
Right half of the unit circle

– stable; slow response

Pole = 0.45
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Performance Evaluations
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System Behavior w/ Step Workload
Client 2: I/O workload is issued @ 30 sec
Client 1: high RT is observed @ 30sec due to the large # of 
backlogged I/O requests with the use of full B/W
Target RT violation < 3%
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Performance Evaluations

System Behavior w/ Pulse Workload
Client 2: I/O workload is on for 5 sec & off for 5 sec 
Client 1: spike is observed in RT periodically; 

disappeared quickly after 2~3 sec
Target RT violation < 19(xx)% with higher I/O t-put
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Performance Evaluations

System Behavior w/ Two Active Workloads
Client 1/2: both issue I/O workloads concurrently
Target RT violation < 3% with higher I/O t-put
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Conclusion & Future Work

Conclusion
We proposed a new I/O performance regulation scheme that

– comprises LB-based traffic control & fair-queuing algorithm
– adjusts an LB param(ρ) based on “feedback-controlled” loop by 

monitoring the current RT

Simulation results proved that
– the proposed scheme could efficiently utilize storage resource
– while assuring the demanded storage services for each clients (esp. 

target RT)

Future Work
Testing the proposed scheme with real I/O workloads
Evaluating different types of feedback controllers (PD, PID)
Support for assuring more complex storage services (QoS); for 
example, multiple pairs of target IOPS & RT
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Introduction
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YFQ [Bruno’99]
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Cello framework [Shenoy’98/‘02]
+ two-level scheduling, t-put guarantee
– time-interal : adhocacy in the order of 

visiting class-specific queues 
– accumulated errors of an amount of 

received service (t-put)
– hard to integrate this with other 

resources (CPU, network)
Facade [Lumb’03] : EDF with I/O deadline
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