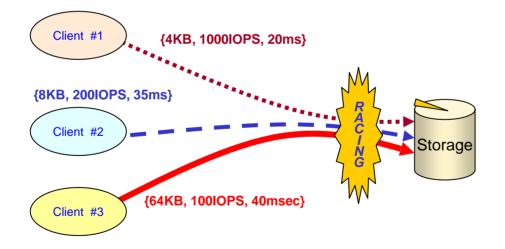


Regulating I/O Performance of Shared Storage with a Control Theoretical Approach Junkil Ryu (Han Deok Lee) lancer@postech.ac.kr

NASA/IEEE MSST 2004 12th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA April 13-16, 2004



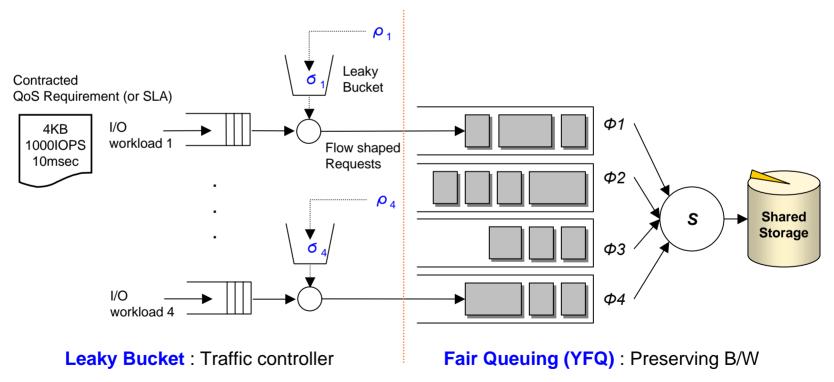
Talk Outline

- □ Introduction
- □ Proposed Scheme
- Performance Evaluations
- Conclusion & Future Work

□ Why Regulating I/O Performance?

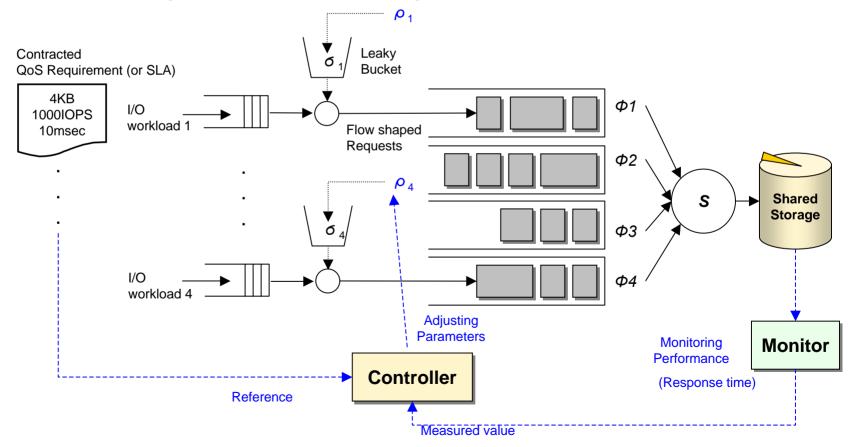
- Different clients demand different types of storage services
- When multiple clients share storage, a racing problem may occur
- However, storage itself doesn't provide any solution to the problem

Problem Description


- Given
 - a set of (storage) clients that share the same storage
 - demanded storage services (QoS) for each client
- Devise a control scheme that
 - assures the demanded storage services (statistically)
 - keeps the storage utilized as high as possible

❑ Specification of Storage Service per Client

- Request size
- Target IOPS
- Target response time

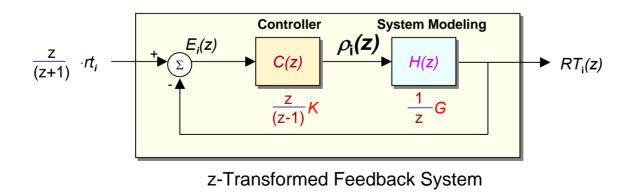

Previous Solution in Network Domain – FQ w/ "Leaky Bucket"

- Static I/O traffic policing
- Likely to under-utilize the storage resources

Our Solution – FQ w/ "Feedback-controlled Leaky Bucket"

- Adjusting each $\rho_i(k)$ according to current RT
- Maximizing the utilization of storage resources (w/ better perf.)

Proposed Scheme


Controller Design

- Estimating error: $E_i(k) = rt_i RT_i(k)$
- Computing LB param. of $\rho_i(k)$: $\rho_i(k) = \rho_i(k-1) + K \cdot E_i(k) \cdots \rho_i(z) = \begin{vmatrix} z \\ (z-1) \end{vmatrix} E_i(z)$

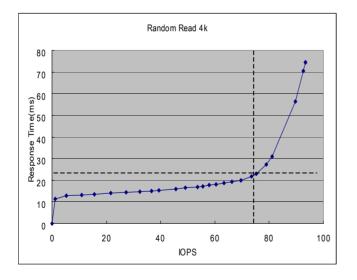
•
$$RT_i(k+1) - RT_i(k) = G(\rho_i(k) - \rho_i(k-1)) \longrightarrow RT_i(z) = \frac{1}{z} G \rho_i(z)$$

• Computing transfer function ---- $H_c(z) = \frac{C(z)H(z)}{1+C(z)H(z)} = \frac{KG}{z-(1-KG)}$

|1-KG|<1 (0<K<2/G) for system stabilization

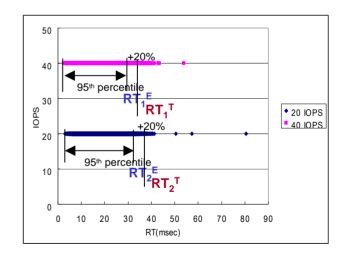
Simulation Environments

- Simulator specification
 - Disksim 2.0 w/ proposed scheme
 - two(2) clients
 - synthetic I/O workloads
 - shared storage spec.
 - IBM_DNES-309170W
 - 7200RPM
- Operational parameters
 - clients' resource weight = 2:1
 - clients' ♂ (bucket size) = 2:1
 - monitoring period: every 1sec

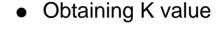

• Requested perf. requirement

Parameter	Client1	Client2
size	4KB	4KB
iops	40	20
rt(m sec)	35	38
access pattern	random	random
resource weight	2	1

- Sketch of our evaluations
 - perform simple admission control
 - determine K&G for controller
 - analyze system behavior w/ different pole locations
 - analyze system behavior w/ three types of competing workloads (step/pulse/active)


Admission Control

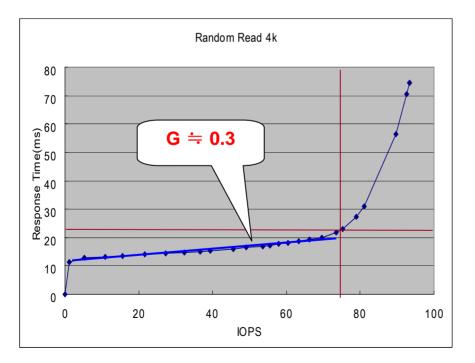
- Underlying storage performance
 - serves "75" 4KB-sized read I/O request per second


• Deliverable response times

	IOPS ^T	RT ^E (<i>msec</i>)	RT [⊤] (<i>msec</i>)	rt (<i>msec</i>)
Client 1	40	29.08	34.1	35
Client 2	20	31.38	37.65	38

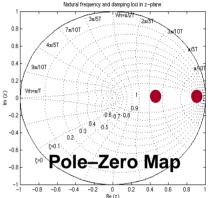
Determination of K, G parameters for Controller

- Obtaining G value
 - from IOPS vs. RT relationship
 - find the slope (sensitivity) in a reasonable area (lower-left box)

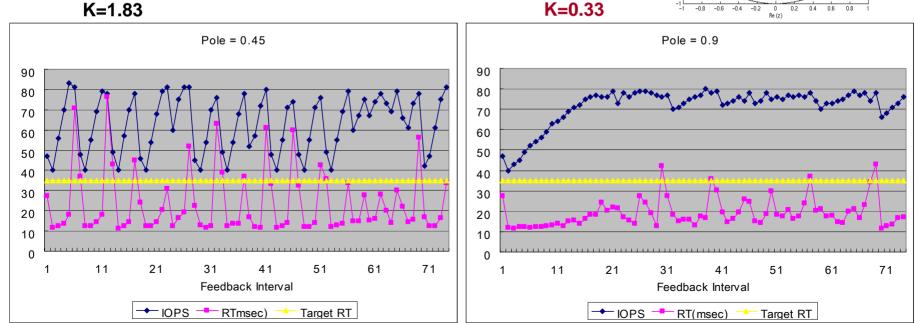


 $G \Rightarrow 0.3$

$$H_c(z) = \frac{KG}{z - (1 - KG)}$$

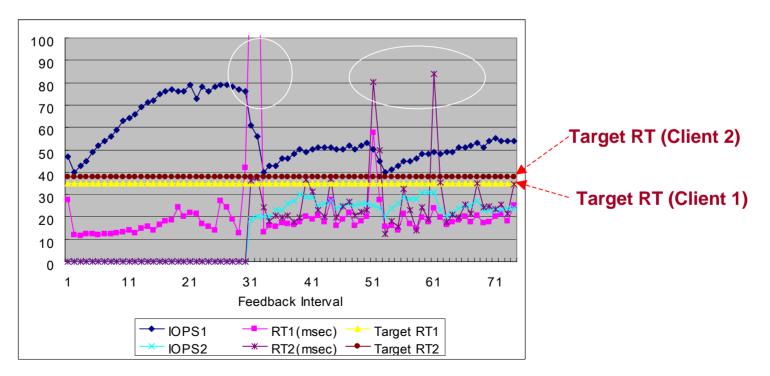

K = (1-pole) / G

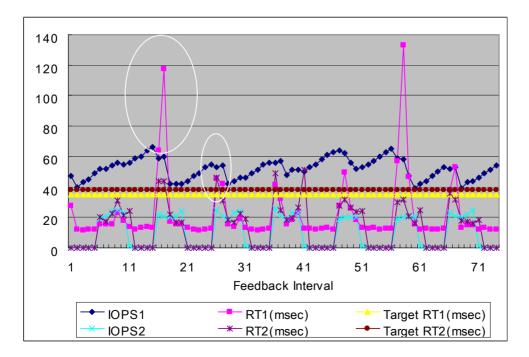
 $0 < K < 2/G \implies 0 < K < 6.67$



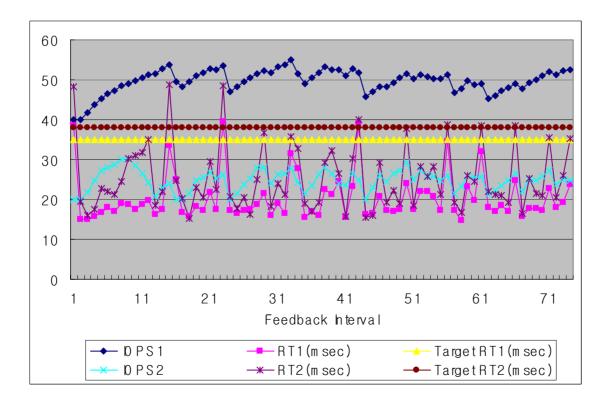
□ System Behavior w/ Different Pole Locations

- Left half of the unit circle (pole-zero map)
 - fast response; overshooting
- Right half of the unit circle
 - stable; slow response




□ System Behavior w/ Step Workload

- Client 2: I/O workload is issued @ 30 sec
- Client 1: high RT is observed @ 30sec due to the large # of backlogged I/O requests with the use of full B/W
- Target RT violation < 3%


□ System Behavior w/ Pulse Workload

- Client 2: I/O workload is on for 5 sec & off for 5 sec
- Client 1: spike is observed in RT periodically; disappeared quickly after 2~3 sec
- Target RT violation < 19(xx)% with higher I/O t-put

□ System Behavior w/ Two Active Workloads

- Client 1/2: both issue I/O workloads concurrently
- Target RT violation < 3% with higher I/O t-put

Conclusion & Future Work

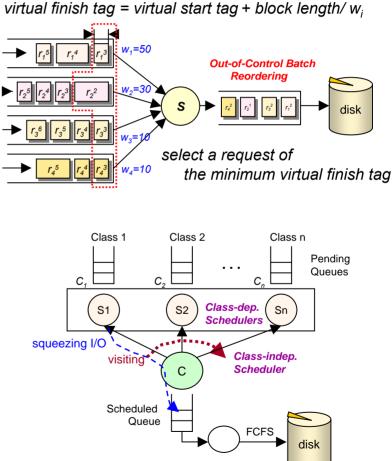
Conclusion

- We proposed a new I/O performance regulation scheme that
 - comprises LB-based traffic control & fair-queuing algorithm
 - adjusts an LB param(ρ) based on "feedback-controlled" loop by monitoring the current RT
- Simulation results proved that
 - the proposed scheme could efficiently utilize storage resource
 - while assuring the demanded storage services for each clients (esp. target RT)

Future Work

- Testing the proposed scheme with real I/O workloads
- Evaluating different types of feedback controllers (PD, PID)
- Support for assuring more complex storage services (QoS); for example, multiple pairs of target IOPS & RT

Backup Slides


Introduction

Previous Solutions

- YFQ [Bruno'99]
 - + packet-based fair queuing (SFQ+WFQ)
 - + t-put guarantee
- Cello framework [Shenoy'98/'02]
 - + two-level scheduling, t-put guarantee

C.,

- time-interal : adhocacy in the order of visiting class-specific queues
- accumulated errors of an amount of received service (t-put)
- hard to integrate this with other resources (CPU, network)
- Facade [Lumb'03] : EDF with I/O deadline
- SLEDs [Chamb'03] : traffic control w/ leaky bucket

