

Parity Redundancy Strategies in a Large Scale Distributed Storage System John A. Chandy

john.chandy@uconn.edu

NASA/IEEE MSST 2004 12th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA April 13-16, 2004

Parity Redundancy Strategies in a Large Scale Distributed Storage System

- Large scale distributed storage typically uses
 mirroring for redundancy
 - Easier to manage than RAID-5 parity style redundancy across a large number of nodes
 - Much better reliability than RAID-5
 - High cost in terms of redundancy overhead
- Use delayed parity instead
 - Mean time to data loss better than mirroring
 - Redundancy overhead is comparable to RAID5

Delayed Parity Generation with Active Data Replication

- Mirror new data to a replication node
- Parity will be generated at a later time
- With the use of backups, can tolerate many double faults
- Active data replication node can be used to implement snapshots

DPGADR Data Distribution

a) initial data distribution

b) Data distribution after writes to D11 and D32

John A. Chandy

NASA/IEEE MSST 2004

DPGADR with two failures

John A. Chandy

NASA/IEEE MSST 2004

DPGADR comparison

 1000 data nodes, MTTF=100,000 hours, MTTR=24 hours

Configuration	MTTDL	Overhead
RAID5 (d=5)	7.9 years	200 nodes
Mirroring	23.8 years	1000 nodes
DPGADR (n _G =4)	39.6 years	250 nodes

NASA/IEEE MSST 2004

