
A Design of Metadata Server Cluster in 
Large Distributed Object-based Storage

Yan Jie, Jeffrey

Tel:+0065-68748158 

e_mail: yan_jie@dsi.a-star.edu.sg

Data Storage Institute



Context
Application Server Cluster

Object-based Storage Device Cluster

Storage Network
(Fibre Channel) MDS

Cluster

Web 
Server

Database
Server

E-mail 
Server

File 
Server

Data

Metadata

Security

VoD 
Server

BrainStor



Problem

0

10

20

30

40

50

60

70

80

0.
5k 1k 2k 4k 16
k

64
k

12
8k

25
6k

51
2k

DataReq%

MetadataReq%

Too many metadata requests

File Size

Percentage (%)

This figure shows the data request percent (DataReq%) and the metadata request 
percent (MetadataReq%) of the total requests. This test is based on our BrainStor
prototype (one client, one MDS and one Object Storage Module) connected by 2G 
Fibre Channel, using Postmark (1000 files, 10 subdirectories, random access, 500 
transactions).



Solution: Hashing Partition (HAP)

• Features:
• 1. Hashing method instead 

of directory subtree
management, to reduce the 
number of metadata 
requests

• 2. Common Storage Space 
(divided into logical 
partitions) to facility Load 
balancing, Scalability and
Failover design

Application Servers

Mapping Manager
File Hashing Manager

Application

MDS Cluster

MDS Backend

Logical Partition Manager

Common Storage Space

H
ashing Partition



• 1. Hashing to f_id
• 2. Mapping from f_id 

to obj_id(s) to partition 
number. Then sending 
it to the dedicate MDS 
mounting that partition

• 3. Accessing metadata 
and checking the 
permission 

• 4. Returning metadata 
to server or deny 
request

Pathname: /Dir1/Dir2/filename

MDS Cluster

Logical Partitions

Mapping Manager

2

Object_id: i

Security
Metadata

&
etc

Object_id: (i+1)

Security
Metadata

&
etc

3

4

18

1

f_id

HAP for BrainStor



A  MDS Failover
• 1. Detecting the MDS failure
• 2. Adjust the mapping 

relationship
• 3.Other MDSs take over 

logical partitions of the 
failure one

• 4.Journal recovery
B  MDS Cluster Scalability

Common Storage Space

MDS Cluster

Logical Partitions

Hashing Partition

Mapping Manager

1

2

3

4

HAP
Load balancing, Scalability and Failover Design

B

A

Conclusion: if the number of logical partitions is not changed, Load 
balancing, Scalability and Failover can be simply and efficiently implemented 
just by some mount/umount operations on logical partitions.



• But if the number of logical partitions is changed, … … ??

74New

64

18

Logical Partitions

MDS Cluster

Old

File: /Dir1/Dir2/filename

256

HAP --- MDS Cluster Rebuild

Existed metadata records need to be redistributed among logical 
partitions. This procedure is called MDS Cluster Rebuild.



HAP --- MDS Cluster Rebuild

18

Logical Partitions

74

MDS Cluster

Metadata Asker
(MDS or Client)

Pathname: /a/b/filec

1

2

3

New

Old

Metadata
in local?

Where?

Metadata 
in remote?

3 4

Y

Metadata 
in local?

5 5 6

Metadata Request
From Client

From other MDS

N

N

Y
Y N

Op. A

Op. A
1.Computing old partition 

number based on the old f
2.Finding the MDS that 

mounting the old partition 
based on the new MLT

3.Issuing a request to get 
metadata from the MDS.

Op. A

5
6

4



Conclusion

•HAP reduces the number of metadata requests 
based on the hashing method.

•HAP uses filename hashing policy to remove the 
overhead of multi-MDS communication. 

•HAP provides efficient solutions for load 
balancing, failover and scalability of MDS cluster.


	Context
	Problem
	Solution: Hashing Partition (HAP)
	HAP for BrainStor
	HAPLoad balancing, Scalability and Failover Design
	HAP --- MDS Cluster Rebuild
	HAP --- MDS Cluster Rebuild
	Conclusion

