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Problem
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This figure shows the data request percent (DataReq%) and the metadata request 
percent (MetadataReq%) of the total requests. This test is based on our BrainStor
prototype (one client, one MDS and one Object Storage Module) connected by 2G 
Fibre Channel, using Postmark (1000 files, 10 subdirectories, random access, 500 
transactions).



Solution: Hashing Partition (HAP)

• Features:
• 1. Hashing method instead 

of directory subtree
management, to reduce the 
number of metadata 
requests

• 2. Common Storage Space 
(divided into logical 
partitions) to facility Load 
balancing, Scalability and
Failover design
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• 1. Hashing to f_id
• 2. Mapping from f_id 

to obj_id(s) to partition 
number. Then sending 
it to the dedicate MDS 
mounting that partition

• 3. Accessing metadata 
and checking the 
permission 

• 4. Returning metadata 
to server or deny 
request
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A  MDS Failover
• 1. Detecting the MDS failure
• 2. Adjust the mapping 

relationship
• 3.Other MDSs take over 

logical partitions of the 
failure one

• 4.Journal recovery
B  MDS Cluster Scalability

Common Storage Space
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Conclusion: if the number of logical partitions is not changed, Load 
balancing, Scalability and Failover can be simply and efficiently implemented 
just by some mount/umount operations on logical partitions.



• But if the number of logical partitions is changed, … … ??
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HAP --- MDS Cluster Rebuild

Existed metadata records need to be redistributed among logical 
partitions. This procedure is called MDS Cluster Rebuild.



HAP --- MDS Cluster Rebuild
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Conclusion

•HAP reduces the number of metadata requests 
based on the hashing method.

•HAP uses filename hashing policy to remove the 
overhead of multi-MDS communication. 

•HAP provides efficient solutions for load 
balancing, failover and scalability of MDS cluster.
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